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CF. Let X be a real valued random variable with EIXIr+ < for some positive

integer r and real number. 6. 0 < 5 r, and let {X, XI. X2 be a sequence of

independent, identically distributed random variables. In this note, we prove that,

(n)n-for almost all w e , r.n(W) r with probability 1. if lim inf m > 0 for

r-5
is the bootstrap r

th sample moment of the bootstrap samplesome > where r;n
th

with sample size m{n) from the data set {XI, X2 Xn} and Pr is the r moment of

X. The results obtained here not only improve on those of Athreya [3] but also the

proof is more elementary.
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I. INTRODUION

Let X be a real valued random variable with EIXI r+5 < for some positive real

number 6 r, and let {X, XI. X2 be a sequence of independent, identically

distributed random variables. Let

n

Fn(X’W) n 2 l[Xi(w x], n 1,2,..., w e , {I.I)
i=1
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be the empirical distribution functions associated with the sequence {Xl{W). X2{w).

X3(w ). For every positive integer n and w E f}, let {Xnl{W). Xn2(W)

XrunCn){W)} be independent, identically distributed random variables with distribution

function Fn(X’W} defined as in (I.I}. We call {Xnl{W}. Xn2{W}. Xnm{n}{W}} the

bootstrap sample set with bootstrap sample size m(n}; it is required that m(n} as
th

n . Denote by Pn.r{W} and n.r{W} the r sample moment of {Xl{W).
th

X2{w Xn{W)} and the bootstrap r sample moment of {Xnl{X). Xn2(w
th

Xnm(n{W)} respectively and denote by r the r moment of X. {When r=l, we use

gn(W) and (w) instead of gn;l(W) and gn.l(W)" further gn{W) and gn(W) are called

sample mean and bootstrap sample mean respectively. A problem, from the bootstrap

theory of Efron [1], is to find conditions such that, for almost all w, the bootstrap

sample mean converges to the population mean {when it exists). That is, for almost

all w.

ln.r{W) -*Ir as n -m {1.2}

with probability 1. By using the abstract "Vasserstein’s metric" among distributions

and a Rallow type inequality, Bickel and Freedman [2] showed that if EIX < w, then

for almost all w E , {2) holds in probability. Athreya [3] found that if EIXI 0 <
for some 0 1, and lim inf m{n)n-/3 > 0 for some /3 > 0 such that > I, then for

almost all w e , {1.2) holds with probability 1. To show this he used the difficult

and complex inequality of Kurtz [d]. Bickel and Freedman and Athreya used deep

mathematics and hard inequalities to prove the consistency of the bootstrap sample

mean to the population mean. Their proofs are not easily comprehended. This note,

provides an elementary way to obtain the strong consistency, relying on the }4arkov

inequality. oreover, the consistency property holds under weaker conditions than

those presented in Athreya [3].

2. RESULTS AND PROOFS

THEOREb[ 2.1. Let {X. X1. X2 be a sequence o[ tndependent, tdenttcallN

dtstrtbuted random vartables vtth E[X[ r+i < for some integer r and real number

5 r. Then, for almost all w 9, (1.2) holds atth probabtlttN 1, tf lira inf
n-o

m(n)n-/3 > 0 for some real number / > 0 such that /3 > r-’"

First. a lemma is needed in proving the theorem. The lemma is known in the

literature. For the sake of completeness, a proof for the lemma is given.

2.2. Let {X, X1. X2 be a sequence of independent, identically

distributed random variables. Then. for any 0 < p ( 1, EIX[p ( implies that
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Y. <
n=l

wi th probabi ty I.

PROOF. Let Y
n

Ixn
lip

n

Ixn
Thus

Ixn . e(IXnl > nl/p)

: P( ]x p > n} <
n=l

since EIxIp < -. Defining Aj {{j-l) 1/p < Ixl (j)I/p}, we have. for a I,

: E(IY =) "fA IX ladP :z .J’^ Ix = dP
n=l n

n=l J=l J n
a/p

j=l n=J na/p j

Ix . c q Ixlp c EIxlp <
j=l J=l

where the constant C depends only on a and p.

and

Choosing a and 2, we have that

ElY <"
n--1

2 Var Y < .
n=l n

Thus, by the "three series Theorem" of Kolmogorov the lemma is established.

We are now in a position to prove the main result, which provides the strong

consistency of the bootstrap sample moments.

PROOF OF THEORF 2.1. It suffices to prove the result for the case r=l. The

other cases can be proved in a similar way with minor changes. Recall that, for each

n and w E f}. {Xnl{W), Xn2{w XnmCn){W)) are the independent, identically

distributed random variables with distribution function defined in {1.1). By the

strong law of large numbers, we have for almost all w

/n{W) -H as n --. (2.1)

Thus. it suffices to show that. for almost all w

I:{w} .n{W}l --... o as

with probability I. From the Borel-Cantelll lemma, we only need to prove for almost
all w I and for every e > O,
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r. I.-2- i=l Xni (w) llnCW > e Ix c-). x2c.) x.c.) < (R).

n=1

For the case of presentation, we suppress all the symbol w in Xi(w). Xni(W) and ttn(W
1-8

and the symbol n in re(n). Let q be an integer such that 1 ( - 1- and from the
q

Xarkov inequal ty, we have

m mP[] il Xni-ln] )e]XI’X2 Xn} {_)2q E[{i=l{Xni_ln))2q[xi.x2 Xn] {2.3}

Now we write

n

m m m r
Y. . E (Xni l-ln) (Xni
ii=1 i2=1 12q=1 2q-*n) IX ,X

2 Xnl
2q {2q)! q
Y" Y ((7) E(Xnl-nt=l ql+...+qt=2q ql qt"

qil,i=l t

qt
{Xnt-/n) IX ,x

2 XnJ

q.
t=l ql+" "+qt=2q

qi22. i=l t

C2q! {7) E [{Xnl_btn}ql,..., Ix.x. Xn]

...E[{Xnt-.n}qt Xl.X2 xn]
where the third equality in (2.4) holds since Xnl, Xn2 Xnmare identically

distributed. Further the last equality in (2.4) is Justified since X Xn2,.. X
nl nm

are independent and E{Xnl-n 0 implies that there is no contribution for those

terms which contain at least one of qi=l. In the sequel, we use the shorthand

notation a b for a O(bn) as n . Thus, from (2.4) we have
n n n

q
m
t [(Xnl-,n)ql

t=l

x -.n (x-.n)

t:l
c)t i-1- CXi-Xn) i--1 (Xi-n)
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q

2
2q

n n

Ix+. lqt+ l..lqt)]

qt

i=l (Ixi t+ Inlqt)

since qj 2. ql+q2+...+qt 2q and where the first inequality in (2.5) is obtained

for fact that [a+bl s 2S(lalS+]b[ s) for a. b and s real numbers. Since I is finite

it follows from (2.1) that. for almost all w. there exists a constant C such that

/an < C for every n. Further note that 5 < and qj 2 for J 1.2 q which imply

> I. Thus. for almost all w

qj
qj-l+5 qJ

q. (2.6)- lnl < -. + t.2
i=l

Now applying our lemma to
qj qj-t++

and choosing p
qt

< 1. we have. for almost all

weft.

.1.qj-l+5 iqjtT IXi < m. J 1.2 q. {2.7)
i=1

Without loss of generality we put mCn) n/ where / is some real number such that

I-_._5 then from {2 5} C2.6) and C2 7) we have
1+5

t qJ
q

2qJg+{ l-/) t J=l qj-l+5

Denote the exponent of (} in (2.8) as @(t) for t 1.2 q. Note that

@(t) 2 + (1-/)t
t qj

J=l qj-l+5

2
2- t(/-I + T-
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1-5

(2.0)
1-6q( -)

2for 1,2 q, where (2.9) holds since
q-l/6 < " for J 1,2 t. By the

appropriate choice of q. (2.2) follows From (2.3). (2.8) and (2.10). This completes

the proof.

Theorem of Athreya. stated in Corollary 2.3. is an immediate consequence of

If EIXI < and re(n) pn for some p ) 1, then (2.2) holds, for

If E X2 < and m(n) n’ for some p > O, then (2.2} holds for

By letting 6 l-a for some

our Theorem 2. I.

03ROSY 2.3.

r=l.

COROY 2.4.

PROOF.

. Let m(n) growth with an algebraic rate: that is, m(n) n
p

for some

p > O. First note that 1+6 in our notation plays the role of 8 in Athreya’s. In
I-6case < 8 < 2 we have > 1-> -. Hence, in this case, our condition Is strictly

weaker than the one is posed by Athreya. In case 8 2. we only require ) 0 which

is even much weaker than p > the requirement in the Theorem 2 of Athreya. However,

if O 1, then both of our theorem and Athreya’s theorem require > I.

Recently. the author learned that Professor Csorgo also improved the result of
Athreya using a different approaching.
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