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ABSTRACT . Let Ln denote the nth Lucas number, where n is a natural number.

. . : . 2
Using elementary techniques, we find all solutions of the equation: Ln = px
where p is prime and p €1000.
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1. INTRODUCTION

Let. n denote a natural number. Let Ln denote the nth Lucas number, that is,
L1=l' L2=3, Ln = Ln_1+Ln_2 for n23. 1In [1], J.H.E. Cohn found all Lucas numbers
which are square or twice a square. As a result of a later paper of Cohn [2], it
is known that for each integer c 23, there is at most one Lucas number of the
form cx2. Using [3], Definition 2, and (9) below, we see that there are 111
primes, p, such that (i) 2<p<1000, and (ii) there exists n such that pan .
In this paper, we find all solutions of the equation:

L = px’ *)

where the prime p satisfies conditions (i) and (ii) above. We find that only 8
such values of p yield solutions of (*). The results are summarized in Table 3
on the last page. The larger problem of finding all solutions to t*) appears
more difficult; its solution would yield all Lucas numbers which are prime.
2. PRELIMINARIES

Let n denote a natural number. Let p denote a prime, not necessarily
satisfying conditions (1) and (ii) above.

Definition 1 Let Fn denote the nt-h Fibonacci number, that is, F1 = F2 =1,
Fo=F 1 *Fio for n2 3.

Definition 2 Let z(n) = Min{k: k21 and nlr, 3.

Definition 3 Let y(n) = %z(n) if 2|z(n).

For each integer c >3, the equation Ln = cx2 has at most one solution. (1)

1f Ln=q is prime, then y(q)=n and y(q2)=qn. (2)
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_ J3if n=2 (mod 4)
(Ln'LBn/Ln) - L1 otherwise 3)
Ln = x2 iff n=1 or 3 (4)

_ 2_5(_1,\D

Ly, = Ly e-3¢-0" )
1f m is odd and m2 3, then m|I..n iff yr(]m) is an odd integer (6)

= 7
(Ln'LSn/Ln) 1 (7)
If k is odd, then (L.n,l.kn/Ln)lk. (8)
1f p is an odd prime, then p|Ln iff ’z_%%) is an odd integer. (9)

_ 12_5._1,D
Lo, = Ly 2(-1) (10)
LnII_.kn iff k is odd or n=1. (11)
% (m-1) . .
_ 1y s(m=1) (n+1) =11 (3-1) (n+1) . .
Lon/In = -1 + gl (-1) L(m+1-29)n if m is odd. (12)
1If p is odd and pILn , then 2 y(p) £ %(p+1). (13)
If p and m are odd, pfm, and ph||Ln , then ph+kl|L x for all k=0. (14)
mnp

L %3 (mod 4) for all n21. @i15)
2
L8n‘: 2 (mod 3) for all nz1. (16)
1f p is a prime such that y(p) exists, then (p,y(p)) = 1. (17)
If m/(m,n) and n/(m,n) are both odd, then (Lm,Ln) = L(m,n) (18)
1f y(pz) = py(p), then y(pk) = pk_IY(p) for all k2'1. (19)

Remarks: (1) follows from Theorem 11 in [2] with a=1; (4) is Theorem 1 in [1]:
(8) follows from Theorem 4 in ([5]; (12) follows from (44) in [4]; (14) follows
from Theorem XI in [6]; (19) follows from (14). The other identities are
elementary.
3. THE MAIN RESULTS

THEOREM 1 If p is a prime such that y(p) exists and L
(*) has the unique solution: n = y(p), x2 = u2. Y

PROOF: This follows from hypothesis and (1).

THEOREM 2  If pe{3,7,11,19,29,47,199,521,2207,9349 } , then (*) has a
solution with n = 2,4,5,9,7,8,11,13,16,19 respectively; if p=19, then x =4;

) = puz, then

in each other case, x2=1.
PROOF : This follows from (2) and Theorem 1, since L2=3, L

9=19*4, L7=29, L8=47, Lll=199' L13=521, L, =2207, L1

THEOREM 3 Ly, = px? iff either (i) k=p=2, x2=9, or (ii) k=3, p=19, x°=4.
PROOF: Sufficiency is readily shown, since L6=18=2(3)2 and L9=76=19(2)2.

2 . .
Now suppose L3k =px-. Let d-= (Lk,L3k/I..k). If k ¥ 2 (mod 4), then (3) implies

4=7, L5=11 '

L, =9349, and y(19)=9.

16 9

d=1, so (1) implies I.k=u2, L3k/l"k = pv2 for some u,v. Now (4) implies k=1 or 3.

1f k=1, then L3/\‘..1 =4 = pv2, an impossibility. If k=3, then I_‘9/L3 =19 = pvz,
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so p=19 and x2 = L9/19 = 4., If k=2 (mod 4), then (3) implies d=3, so

.. 2
either (i) Lk = 3u2, L3k/Lk = 3pv2 , or (ii) I‘k = 3pu2 , L3k“‘k = 3v® for some

u,v. 1f (i) holds, then Theorem 2 implies k=2, so L3k = L6 =18 = pxz, which

implies p=2 and x2=9. 1f (ii) holds, then (5) implies Lgk-{i = 3v2. Since 3|Lk’

we get 3v2’5 -3 (mod 9), so v2§ -1 (mod 3), an impossibility.

THEOREM 4  1f p>19 and 3|y(p), then L_ = px® is impossible.

PROOF: If L, = pxz, then pan , so (6) implies y(p)|n. Now hypothesis
implies 3|n, so n=3k for some k. The conclusion now follows from hypothesis
and Theorem 3.

THEOREM 5 (*) has no solution if p€{123,31,79,83,107,167,181,211,227,229,
241,271,349,379,383,409,431,439,443,467,499,503,541,571,587,601,631,647,683,691,
739,751,769,811,827,859,863,887,919,947,983,991}.

PROOF: This follows from hypothesis and Theorem 4, since in each case,
p> 19 and according to [3], 3|y(p).

THEOREM 6 LSk = px2 iff k = x2 =1 and p=11. 5

PROOF: Sufficiency is readily shown, since L5 =11 = 11*1°. Now suppose
LSk = px2. Theorem 2 of [1] implies p is odd. Now (7), (1) and hypothesis

imply L = u2, LSk/Lk = pv2 for some u,v. Now (4) implies k=1 ot 3. If k=1,

then pv2 = LS/Ll = 11, so p=11 and x> = L5/11 = 1. 1f k=3, then pv2 = LIS/L3 =

1364/4 = 341 = 11*31, an impossibility.

THEOREM 7 If L_ = px” and S|y(p), then n=5, p=11, x°=1.

PROOF: Hypothesis and (6) imply y(p)|n. Therefore hypothesis implies
5|n, that is, n=5k for some k, so the conclusion follows from Theorem 6.

THEOREM 8  (*) has no solution if p6{41,71,101,131,151,191,251,311,331,
401,491,641,911,941,971 }.

PROOF: This follows from Theorem 7, since in each case, p»> 11, and
according to (3], S|y(p).

THEOREM 9 Let p be an odd prime such that y(p) exists and is odd, and
such that for every prime divisor, q, of y(p), z(q) ¥ 2 (mod ‘4). if L = PXZ:
then n = yl(p).

PROOF: If L = px%, then (6) implies n = my(p) for odd m. Now (8)
implies dl% , that is, d]y(p). If d>1, then there exists an odd prime, q,

such that q|d. Therefore q|Lm , so (9) implies is an odd integer; since

_2m
z(q)
m is odd, this implies z(q) =2 (mod 4), contrary to hypothesis. Therefore d=1.
Now (13) implies y(p)> 1, so m<n. Therefore hypothesis and (1) imply L, = u2,

Ln/L.m = pv2 for some u,v. Now (4) implies m=1 or 3. I1f m=3, then

L = p(2v)2, so Theorem 3 implies n=9, p=19. But then Y_x(\[;) =1 # 3. There-

fore m=1 so n = y(p).
THEOREM 10 (*) has no solution if p&{139,179,239,461,509,599,619,659}.
PROOF: This follows from hypothesis and Theorem 9, since in each case,
according to [3] and (7], p fulfills the hypothesis of Theorem 9, yet L

. pxz'. y(p)
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In the work which follows, we will need the following lemmas:

261" (moa 1Y) if =1
LEMMA 1 L. =
2 T 20 ...
2 (mod Lt) if j>2

PROOF: (1nduction on j) (10) implies Lemma 1 holds for j=1. 1f j22,

J-1 2
then (10) implies L . = L2._l -2(-1)2 = Lz._l -2. But 12, 1 24 (mod 1)
20 227 277 27N
by induction hypothesis. Therefore L 3 = 4-2322 (mod L'Z).
2°t

LEMMA 2 If k=1 and 2|n, then Loyn® 2(- 1) (mod er‘).
PROOF : Hypothesis and (10) imply L2kn = Lkn-2. I1f k is odd, then (11)

2,2 N 2 S
implies Ln“"kn'SOI"zkn' 232(-1)" (mod L) . 1f k=271 with j21 and 1 odd,

2

X 2
then Lemma 1 implies L 22 (mod Ly ). Now (11) implies LnlLfn , SO

2kn T Lgen
i ook 2
Loy 22 22(-1° (mod L)

LEMMA 3 If m12n:0 (nod 2), then L /L : m-1) 2™ (og er]).

PROOF: Hypothesis and (12) imply Lmn/Ln =

%(m—l) .
1 - . .
‘i(m- ), ] = -1)7 I"(m+1—2j)n . Hypothesis and Lemma 2 imply
L(mﬂ-zj)nz 2(-1)7(™1-23) (mod Lﬁ) . Therefore L /L =
. ks (m-1)
0 S e ™2 12 () (0 H ™ 2 nen ™ moa 1)
i=1

LEMMA 4 If p is an odd prime, pan , and 2|n, then
= (_1y2(p-1)
Lpn/an-( 1) (mod p) .
. . : - 1y 5(p1) 2
PROOF: Hypothesis and Lemma 3 imply Lpn/Ln = p(-1) (mod Ln). Now

hypothesis implies L /L = p(-1) 7P 1) (103 p?), from which the conclusion
immediately follows.
LEMMA 5 If 2|n, pan , p is prime, and p£3 (mod 4), then Lpn/an # 2.
PROOF: Hypothesis and Lemma 4 imply Lpn/an':'-l (mod p). Also, hypo-

thesis implies 52 # -1 (mod p), so L /pL # sz.

.

LEMMA 6 Let L px2 where p and y(p) are odd. Let mly(p)

Let 4 = (Lm, Ln/Lm). Then d=1 iff m=1.

PROOF: 1If m=1, then d|L1 , that is d|1, so d=1. Conversely, if d=1,
then since hypothesm and (13) imply m<n, hypothesis and (1) imply L = uz,
Ln/L pv for some u,v. Now (4) implies m=1 or 3. If m=3, then hypothesis
and Theorem 3 imply p=19, n=9=y(19), so m|1, an impossibility. Therefore m=1.
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LEMA 7 If L = pxz, p and y(p) are odd, m>1 and mly?—p-), then
(Lm,Ln/Lm) >1.

PROOF: This follows from hypothesis and Lemma 6.

IMA 8 Let p, q be odd primes such that pq|L for some n. Then 2h||y(p)
ifg 2" |ly(q), where h20.

PROOF: Hypothesis and (6) imply n = jy(p) = ky(q) with j, k odd. Fhe
conclusion now follows.

THEOREM 11  Let L = pxz, where p ishan odd p;ime, 2h||y(p) for some h21,
and L2h = q is prime. Then either (i) n=2", p=q, x"=1, or (ii) n=2q,
p=1, /ta?,

2q

PROOF : Hypothesis and (15) imply =3 (mod 4), so q is odd. Hypothesis
implies y(p)/z is odd, so (11) implies Lh|L ® ° that is, q|L - Hypo—

= (qt)? for some t21.

p)’
thesis and (6) imply n/y(p) is an odd 1nteger, so (11) implies L, v (p )IL , hence
q|L . If p=q, then hypothesxs and (1) imply n-2 B x2 =1. 1f p#q, then hypo-
thesis implies qlx , so q |x , SO gq |L Now (6) implies n = my-(qz) for odd m.
Hypothesis and (2) imply y(qz) qylq), son = nqy(q) . We have

2 . .
- - 1
Lmy(q) (Lmqy(q) /L (q)) px~. Let d (L (q) (q)/ (q)) Now (8) implies

dlq ; (6) implies q|L Let q HL Then (14) implies q ||L

my (q) my (q) y (q)

so q]| (L (q)/ my(q))' Therefore q|d, so d=q. Letting t = x/q, we obtain

2 ) )
(Lmy(q) (q)/ Lmy(q)) = pt~ , where the factors on the left side of the
2

equat ion are relatively prime. Therefore either (a) L /q = pu” ,

my (g)
2
/Iy (q) /a =07 Ly (/W

/) (L

= v ,or (b) L = pv2 for some u,v.

my (q) my (q)

Ly (@)
Now hypothesis and (2) imply y(q) = Zh, so Lemma 5 implies (a) is impossible.
Therefore (b) must hold. Now (1), (2) and hypothesis imply m = u = 1,
_ 2 _ 2 _ _ 5h _
Lyt = plav)™ = plat)” , n = gy(q) = 2°q , x=qt.
THEOREM 12 If p is an odd prime and Zhlly(p) where 1£h<4, then the
only solutions of (*) are given by Table 1 below.

Table 1
n| p |
2 3 1
4 7 1
8 47 1
16 | 2207 1

28 114503 |49

PROOF: This follows from hypothesis and Theorem 11, since L2=3, L4=7,

Ly=47, L, =2207 (all primes); also L, = 14503*72 Note that L/3° = 2 (prime
but. not odd.) According to [7], L376/47 # pt2

2, .2
1553729} |Lygy, , and Lygs, 0/1553729%2207° # t°.

According to the referee,



702 N. ROBBINS

TIEOREM 13 (*) has no solution if p6{43,67,103,163,223,263,281,283,307,
347,367,449,463,487,523,547,563,569,607,643,727,743,787,823,881,883,907,929,967}.
PROOF: This follows from hypothesis and Theorem 12, since in each case,
according to [3], p satisfies the hypothesis of Theorem 12 but does not appear
in Table 1 above.

THEOREM 14 Lllk = px2 iff k = x° = 1 and p=199. 5

PROOF: Sufficiency is readily shown, since L11 =199 = 199*17. Now
suppose L, = . Let d = (L Ly, /ly)- (8) implies d[11. 1f d=11, then
since y(11)=5, (6) implies 5|k, so 5|11k. But then hypothesis and Theorem 6
imply 11k=5, an impossibility. If d=1, then (10) implies Lk=u2, Lllk/Lk = pv
for some u,v. Now (4) implies k=1 or 3. Theorem 3 implies k#3, so k=1, hence
p=199, x2=1.

TUEOREM 15 1f L = px’ and 11|y(p), then n=11, p=199, x=1.

PROOF: Hypothesis and (6) imply 11|n, so the conclusion follows from
Theorem 14.

THEOREM 16 L = 419x” is impossible.

PROOF: According to [3], y(419) = 209 = 11*19. The conclusion now
follows from Theorem 15.

THEOREM 17 Ln = 127x2 is impossible.

PROOF:  Suppose L = 127x°. Since y(127)=64, (6) implies 64|n. Hypo-

2

2

thesis and (16) now imply x2= 2 (mod 3), an impossibility.

THEOREM 18 1If p and y(p)=q are primes, 9 >3, q IL v PZILq v

Lq # p52 , and either (I) 2|y(q) or (II) 2[y(q) and the equation L, = q52

(considered as an equation in m) either (A) has no solution or (B) has the
solution m=y(q) but there exists a prime, t, such that t||(L /p) and t{y(),
then Ln = px2 is impossible. 9

PROOF: Suppose L, = pxz. Hypothesis and (6) imply n=mg, m odd, m>1.
Let d = (L ,L /L. (8) implies d|q. Lemma 7 implies d>1, so d=q. There-
fore qan. If (I) holds, then we get a contradlctlon via Lemma 8, since pq|L .
If (I1) holds, then either (i) L_ = qu?, L /L = pav? or (ii) L = paqu® ,
I..n/Lm = qv2 for some u,v. 1f (i) holds, then (1) and hypothesm imply m=y(q) .
Now (B) implies there exists a prime, t, such that tII(Lq/p) and t]y(q).
t=p, then p|| (Lq/p), so p2|L , contrary to hypothesis. 1f t#p, then t| |L ,
so (14) implies t||L w(q) that is, t||px2, so t||x , an impossibility.

1f (ii) holds 1nstead then (6) implies y(p)|m and y(q)|m, so

LCM(y (P) ,y(Q)) |m, that is, LCM(q,y(q))|m. But (17) implies LCM(q,y(q))=ay(q),

so qy(q) |m. Since q [L v by hypothesis, we have q||L , so (14) implies

q) y(q)
Y(qz)-qy(q), hence y(q )Im. 'I‘hexefore hypothes1s and (6) imply q |L so
that q]u , which implies q |u , hence g le- Now (19) and (6) imply g Y(q)lmr
so m=gk, qy(q)|k. Let d1 = (Lk’Lm/Lk)' Now (8) implies dllq. Therefore

L = ca2, where ¢ = 1, p, q, or pg. Since k<m<n, (1) implies c#p, c#pg.

1f c=1, then (4) implies k=1 or 3, violating qy(q) |k. I1f c=q, then hypothesis
and (1) imply k=y(q), again violating qy(q) |k.
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THEOREM 19  (*) has no solution if p4{59,359,479,709,719,809,839}.

PROOF: In each case, according to [3] and [7], p satisfies the hypo-
thesis of Theorem 18, from which the conclusion follows. Table 2 below
gives the details.

Table 2
jo) q y(q) relevant section of Theorem 18
59 29 7 11B, t=19489
359 179 89 I1IA (see Theorem 10 above)
479 239 119 IIA (see theorem 10 above)
709 59 29 1IA (see first entry in Table 2)
719 359 179 1IA (see second entry in Table 2)
809 101 50 I
839 419 209 I1IA (see Theorem 16 above)

We summarize our results in Table 3 below, which contains all solutions
of (*) with 2<p<1000.

Table 3
2
p n X
3 2 1
7 4 1
11 5 1
19 9 4
29 7 1
47 8 1
199 11 1
521 13 1

Remark: The related results of M. Goldman [8] follow immediately from (1).
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