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ABSTRACT. By an Alexandrov lattice we mean a § normal lattice of subsets of an abstract set X,
such that the set of £-regular countably additive bounded measures is sequentially closed in the set
of L-regular finitely additive bounded measures on the algebra generated by £ with the weak
topology.

For a pair of lattices £, C L, in X sufficient conditions are indicated to determine when £,
Alexandrov implies that £, is also Alexandrov and vice versa. The extension of this situation is
given where T:X—Y and £, and £, are lattices of subsets of X and Y respectively and T is £, -2,

continuous.
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1. INTRODUCTION.

We adhere for the most part to the basic terminology of A. Alexandrov [1] (see also H.
Bergstrom [6]). Let X be an abstract set, and £ a lattice of subsets of X. MR(L) denotes the 2-
regular finitely additive bounded measures on %(2), the algebra generated by £, and MR(s,2) those
elements of MR(L) that are countably additive. We assume without loss of generality that all
measures are non-negative.

A fundamental theorem of A. Alexandrov states that if £ is,§ normal and complement
generated (i.e., completely normal), then u, € MR(s,2) and u, %y (i.e., converges weakly) implies
that u € MR(o,L). '

In general we will call lattices for which this is true Alexandrov lattices, and our major concern
in this paper is in determining further type lattices which are Alexandrov. In particular, we
investigate the interrelationships between a pair of lattices £, C £, in X and determine conditions
when 2, Alexandrov implies £, Alexandrov and conversely, and then extend this to the situation
where T: X—Y and £,,2, are lattices of subsets of X and Y respectively and T is £, - £, continuous.
It is well known (see [5] that if y€ MR(L), then y induces measures' i and ji on the associated
Wallman space IR(2) and also a measure y on the space IR(s,2) (see below for definitions), and we
investigate how weak convergence: p,%pu in general is reflected over to these induced measures.
This enables us to give alternative proofs of important results of Kirk and Crenshaw (8], who have
also investigated certain aspects of topological measure theory in the Alexandrov framework.
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We begin with certain notations and terminology which will be used throughout the paper, and
then set up the general Alexandrov framework of reference. The associated Wallman space is then
investigated, enabling us to readily generalize results of Varadarajan [9] and obtain in a different
manner results of Kirk and Crenshaw. Finally, in the last section we investigate Alexandrov
lattices and extend Alexandrov’s fundamental theorem.

Our notation and terminology is standard for the most part (see [1], [6], [8], [5]), and we collect
it in the next section for the reader’s convenience.

2. TERMS AND NOTATION.

In this section we introduce some basic terms, facts, and notation of topological measure
theory used throughout this paper.

Let X be a set and £ be any lattice of subsets of X. We shall always assume that @, X € L.
The following notation is used here: N for the natural numbers, R for the real numbers, = for the
general element of X, %(2) for the smallest algebra containing 2, ¢(2) for the smallest o-algebra
containing L. 6(L) is the set of all arbitrary intersections n2; with L; € £ and r(2) is the set of all
arbitrary intersections A, with 4, € L. L is complemented if A € L implies A"€ L where A'= X - A.
L is the class of all complements of L-sets, i.e., £'={L:L€L}. L is complement generated if AeL
implies A= N A'.,' where A; € L; s(£) are the Souslin sets determined by 2.

L is separating or T, if for all z,y€ X, z # y implies there exists an 4 € £ such that z¢ A and
y¢ A. L is disjunctive if for any A € L and z ¢ 4, there exists a B £ such that z€ Band AnB=0.
L is Hausdorff or T, if for all z,y € X,z # y implies there exist A,B€ L such that z€ A,y € B’ and
ANB =0. L is regular if for every z€ X and every A€ L, z¢ A implies there exist B,C € L such
that ze B,Ac C and BnC =@; & is normal if for all A,Be 2,AnB =0 implies there exist C,De L
such that AcC,Bc D, and CNnD =@; L is strongly normal if it is §, normal, disjunctive and
separating. L is compact if any family of sets in £ with the finite intersection property has a non-
empty intersection. Similarly, we define £ is countably compact (c.c.). L is countably
paracompact (c.p.) if A, € 2 and A, | @ imply there exist B, € L such that A, C B, and B, | O.

A function f:X—RuU{zoo} is L-continuous if f~)(C)e L for every closed set C C RU{% ).
The set whose general element is a zero set of an 2-continuous function is denoted by %(L); B € Z(2)
iff Z = f—1(0) for some L-continuous function f. A measure ux on %(2) is a finitely additive bounded
real-valued set function. M(L) denotes the set of all measures on %(L). A measure u is said to be o-
smooth on £ if A, €2, A, | @ implies u(4,)—0. A measure u € M(L) is said to be L-regular if for
every A€ ¥(L) and every ¢ > 0, there exists an L € £ such that L c A and /| p(A) - p(L)| <e. The set
whose general element is an £-regular measure on %(2) is denoted by MR(L), and the set whose
general element is an element of M(L), which is o-smooth on 2, is denoted by M(os,2). Moreover,
we use the notation MR(c,2) = MR(L)NM(o,2). The set of all measures u such that u(4) = {0,1} for
every A€¥%(L) and u(X)=1 is denoted by I(2). The set of all {0,1}-valued L-regular measures is
denoted by IR(2), i.e., IR(L) = I()Nn MR(L). The Dirac measure (concentrated) at z is denoted by
p,. For pe M(L) the support of u is defined and denoted by S(u)= n{LeL:|p|(L)= |u|(X)}
where |u| denoted the variation of measure u. L is said to be replete if for every u€ IR(s,2) we
have S(p) # O, where IR(0,2) = IR(L)NI(0,L). A measure p€ MR(L) is r-smooth if L, | @ implies
p(L,)—0 for any net {L,} in £. The set of r-smooth regular measures is denoted by MR(r,2).

Since any measure p€ M(L) splits into its non-negative and non-positive parts g+ and u~
respectively , w.l.o.g. we shall work with non-negative measures.
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Let £, and £, be two lattices of subsets of X. Throughout this paper we shall assume that
L, c L, The following describe relationships between £, and ¢,.

L, semiseparates (s.s) L, if for every A€ L, and Be L,, AnB =0 implies there exists a Ce ¢,
such that BC C and ANC =0; L, separates L, if for all 4, BeL,, AnB =0 implies there exist
C,De 2, such that ACC,Bc D and CND=0Q. L, coseparates L, if for all A, BeL, ANB=0
implies there exist C, De L, such that AcC, Bc D and ¢'nD'=0. Clearly, £, coseparates £,
implies 2, separates %,, and L, separates L, implies L, semiseparates £,. L, is £, countably
paracompact (c.p.) if for every A,€L,, A, | @ imply there exist B, €L, such that 4,c B, and
B,19. L, is L, countably bounded (c.b.) if for all 4, €2, A, | @ imply there exist B, € £, such
that A, Cc B, and B, | @.

For the restriction of v € MR(L,) to %(L,) we adopt the notation v | 2, °F simply, v|. Note that
if ve MR(L,) and if L, s.s. L,, then v| € MR(L,)).

We conclude this section with the following general extension theorem.

THEOREM 2.1 [4]. Let 2, C £, be two lattices of subsets of X. Then any measure u € MR(L,)
can be extended to a v, v € MR(L,), and if £, separates L, then v is unique. If y€ MR(s,,2,) and 2,
is 2; countably paracompact or countably bounded, then v € MR(c, 2,).

3. WALLMAN SPACES.

Let X be an abstract set and £ be a lattice of subsets of X with @, X e £. In this section we
review some facts pertaining to the Wallman spaces IR(L) and IR(o,L), and we introduce measures
induced by x € M(L) on various algebras generated by lattices in these spaces.

We assume for convenience throughout that £ is a disjunctive lattice, although this is not
necessary in all statements that follow.

Define W(A) = {u € IR(L): u(A) = 1}, for A € W(L).

PROPOSITION 3.1. If £ is a disjunctive lattice, then VA, B € %(£) we have
i)  W(ANB)=W(A)NnW(B)

ii) W(AUB)=W(A)UW(B)
iii) AC BeW(4)C W(B)
iv) W(A) =w(4)

v) W(%(L))=%W(2))
Consequently,

W(L) = {W(A): A € L} is a disjunctive lattice.

Note that if £ is separating and disjunctive, then the closure in.IR(L) of Le L is given by
I = n{W(A):LC W(A),A€ L} =W(L).

PROPOSITION 3.2. To each pe M(L), there corresponds a je M(W(L)) defined by
A(W(A)) = u(A), A €%(L)such that
a) fiis well-defined.

b) @eMW(L)),
c) if ve M(W(L)), then v =, for some u € M(L),
d) ue MR(2)if and only if 5 € MR(W(L)).
PROOF.
a) Since L is disjunctive, we have W(A) = W(B)=>A = B=>u(A) = u(B)=>A(W(A)) = i(W(B))
b) If W(A)nW(B)=W(ANB) =0, then AnB =0 (because ¢ is disjunctive) and #(D) = u(D) = 0.
B(W(A))UW(B)) = u(AU B) = p(A) + p(B) = B(W(A)) + A(W(B)), i € M(W(L))
c) We have u, # p,=p,(A) # py(A) for some A€ L. Therefore, i,(W(A)) # & (W(A)); hence, u, # py.
Suppose v € M(W(L)). Define u on (L) by u(A) = (W (A)) for all A €¥(L). Then, u is well-defined

and v = ji.
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d) It suffices to show that 7€ MR(W(L)) implies u€ MR(L). Since u is L-regular, p(A) ~ p(L) and
Ae€¥(L),A> L. However, u(L) = @(W(L)). Therefore, W(L) c W(A). Hence, u€ MR(L).

We can define a closed set topology on IR(L) by taking the closed sets ¥ =rW(2). This
generates the Wallman topology (W-top.). The topological space {IR(L),W} is compact and T,. It
is T, if and only if £ is normal.

Since W(L) and rW(L) are compact lattices, W(L) separates rW(L). Therefore, if u € MR(L),
then jie MR(W(L)) and by Theorem 2.1 has a unique extension to jie MR(rW(L)). We note that
since W(L) and rW(L) are compact lattices, i and ji are not only o-smooth on their respective
lattices, but also r-smooth. Since both i and i are countably additive, we can extend them
uniquely to o(W(L)) and o(rW(L)) respectively and continue to denote the extensions by i and j.
Note that 7 is 6W(L) regular on o(W(2)) while p is still 7W(2) regular on o(rW(2)).

We now summarize some smoothness properties of u in terms of & and j (further details can be
found in [5]).

PROPOSITION 3.3. Let X be a set and let L be separating and disjunctive. If ue MR(2),
then the following statements are equivalent:

1) pe MR(o,2)

2) B(NW(L,))=0, NW(L)CIRL)-X, L; |, L,el

3) A(NW(L))=0, NW(L)CIR(L)-IR(s,2), L, |, L;eL

4) .ﬁ‘(X ) = A(IR(L)), where " is the induced “outer” measure.

PROPOSITION 3.4. Let £ be a separating and disjunctive lattice of subsets of X and let

p€ MR(L). The following statements are equivalent:

1) pe MR(r,L)

2) fi vanishes on every W-closed set of IR(2) - X

3) W(X)=i(IR(L))

Under the same conditions on £, when u € MR(L), we also have

PROPOSITION 3.5. The following statements are true:
1) jion O=(rW(L)) is W(L)-regular
2) a*=jpon tW(L)

PROOF. Define a(W(L)) = u(L), L€ U(L); ji is i extended to Y(rW(L)). Let O € (rW(L)), i.e., O
is W open. Since ji€ MR(rW (L)), there exists Fe€%, FCO such that u(O—-F)<e. Assume that
F=nW(L,). Then, FNO'=0. Thus, NnW(La)NO =@. Hence, W(L) = W:(“Lak) CO, Lel. Since
F=nWwW(L,), then F c W(L) which implies that #(0-W(L)) < u(O~ F)<e, i.e., i is W(L)-regular on
0= (rW(2)).

We now show that p(F)=pa*(F). Clearly, rW(L) is a 6 lattice. Also, a(F)=a(NW(L,))
= infH(W(Ly)) = infi(W(L,)) > p*(F). Therefore, 4*<j on tW(L). On the other hand, #(W(L))
Co(tW(L)) and i* < i* everywhere. For F e rW(L),i(F)=i*(F)<a*(F). Hence, s <™ on rW(L).
Finally, i = i* on tW(2) i.e., i =i, on (tW(L)).

It is important to note that 7 is defined on zero sets of the W-topology. Namely, we have

PROPOSITION 3.6. Every zero set Z of a continuous function on IR(L) is an element of
o(W(L)).

PROOF. Z is compact, and also a Gj; set; thus Z= °1r'?0,,, 0,€(rw(L)). Hence
0,=YW(L, )\L, €t Thus Z€ yW(L, ). Z has a finite cover ’l;_ll W(L, Y=W(L). Hence,

ZcW(L,y cO, for all n and consequently, Z C c;rﬁ’W(L,,)’c :r?o,, =2. Thus Z= "lr‘w’W(L,,)', ie,Zisa
countable intersection of W(L,)L, € £, or Z € o(W(L)).

Now, let us modify lightly the W mapping and consider W(o,A)= {u € IR(s,L); p(A) = 1}
= W(A)NIR(o,2). For pe MR(L) define 4 on %(W(q,L)) = W(o,%(L)) by 4 (W(o,B)) = u(B), B € ¥(L).
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PROPOSITION 3.7. Let L be a separating and disjunctive lattice. Then the following

statements are equivalent:

1) 4 € MR(W(o,L)) for all p€ MR(L)

2) If pe MR(W(o,L)) then p = 4, where p€ MR(L)

3) ue MR(o,2) if and only if 4 € MR(s,W(0,L))

4) If pe MR(s,L), then 4 is the projection of fi on IR(s,L) (since A*(IR(0.L)) = A(IR(L)) in this
case).

The proof of the equivalence is not difficult (see [5]).

4. ALEXANDROV’S REPRESENTATION THEOREM AND WEAK CONVERGENCE.

In this section we summarize some of the properties of weak convergence of measures due to
Alexandrov and investigate the relationship of these properties to the induced measures on IR(2)
and IR(c,L) considered in the previous section, i.e., fi, ji, and u” respectively.

Let X be an abstract set and let £ be a § normal lattice. The algebra of all £-continuous
functions is denoted by C(L); the algebra of bounded £-continuous functions is denoted by C,(2).

We state for reference Alexandrov’s Representation Theorem (A.R.T.).

THEOREM (Alexandrov) [1b]. Let £ be a § normal lattice. Then, the conjugate space Cy(L)
of Cy(2) is MR(L). In more details: To every bounded linear functional & there corresponds a
unique p € MR(L) such that &(f)= [ fdu with ||@|| = |u|. The positive and negative parts of &
correspond to those of u. Furthermore, if @ is non-negative, then VA € L, p(A) = inf®(f) where inf is
taken over all f in C,(2) such that x, < f <1, where x, is the characteristic function of A.

The spaces C(L) and Cy(L) are vector spaces. In particular, Cy(2) is a Banach space with sup
norm. We can topologize MR(L) with the (weak *) topology as follows: If u€ MR(L), then
u, € MR(L) converges to u in the weak topology if and only if [ fdu, converges to [ fdu for all
f € Cy(2). In other words, we write u, € MR(L) and p,Bp: iff [ fdu,— [ fdu for all f € Cy(L).

PROPOSITION 4.1 (Portmanteau) [lc]. Let {u,} be a net in MR* (L) the set of all non-
negative measures of MR(2). The following statements are equivalent:

1) p™=,
2) pa(X)—p(X) and fim p (L) < p(L) forall Le 2
3) ua(X)—po(X) and lim p (L) > p(L) for all Le £
In what follows we assume that £ is § normal and disjunctive. Note the following facts:
1) IR(L)is closed in MR* (L)
2) K 2 is separating, then [X]= MR(L), where [X] is the linear spacé spanned by all u_ in MR(L)
and the closure is taken with respect to the weak topology.
These statements are not difficult to prove. In fact, with regards to 1), we have to use the w-
compactness of IR(£) and the following
PROPOSITION 4.2. Let p,,pu€ IR(L). Then,

I‘a'w’ﬂ if and only if ;40—“‘;4

PROOF. Let u %y and let Le L be such that u(L)=1. Then, p € W(L). Since W(L) is W-
open, hence u, € W(L) for all @, a > a,, ie., lim p,(L')=1>p(L)=1. Hence lim p (L) > w(L),VLE L.
Obviously, lim p(X)=1=p(X). By Proposition 4.1, we have u,Zpu.

Conversely, suppose p, %y and let peW(L)Y. Then, u(L)=1 and by Proposition 4.1, lim
pa(L)=1. Thus, lim p(L)=1 and p, € W(LY for all @,a >a,. Hence pa!V-»p because the open sets are
generated by W(L').
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COROLLARY 4.1. Proposition 4.2 holds if the topological space {IR(L),W} is replaced by its
subspace {IR(o,L2),W}.

Next, we consider the situation with two § normal lattices £,, £,, and £, C £,.

Set w(E) = inf{p(L):E C L',L € L,}. Similarly, define y (E) = sup{u(L):L C E,L € £,} for EC X.

PROPOSITION 4.3. Let L, semiseparate £, If Bely, p, pe MR*(L,) and p,Zp. then
w(B) > lim py(B) and p (B) < lim(u,) .

PROOF. Since £, semiseparates L,, then for every Be2,and Le L, BCLc L, Let,. Hence

w(B)=inf {y(L): BC L, Lel}).
Similarly, we get
p(B)=sup {u(A): A'CB, AeL,}.
Now, the conclusion of the proposition follows from the Portmanteau theorem.

PROPOSITION 4.4. Let £, separate L,, and for p,, p€ MR*(L,) let v,, v € MR(L,) denote the
extensions of u,, u to %(L,). Then

B = v B
PROOF. By Theorem 2.1 v, and v, respectively are determined uniquely. Since 2,

sefniseparates £,, we have

w(E)=inf{u(A): ECA, Ae L)} =inf{u(A): ECA, AeL,}.

However, v=p' on L, and v=p on L,. By Proposition 4.3 we have u(B)>limuy(B) or
v(B) > limy (B) for Be L,.

On the other hand, p (X)—p(X), pa(X) = vy (X), p(X)=v(X). By the Portmanteau theorem we have

l/a'—”'l/
It is of interest to note that if ue M(L), then &(f)= [fdu for feCy(L) is a bounded linear
functional on Cy(L), and even a positive linear functional)if p>0. By AR.T. &(f) = [ fdv, where
v € MR(L), and it is not difficult to see that u <v on £ and u(X) = v(X). X
PROPOSITION 4.5. If L is a strongly normal lattice of subsets of X and u, € MR(L), then

w ~ Wa
Ha—t & fig—ii.

PROOF. Let fecCyt). Define f on IR(L) by f(u) = [ fdu. Since f(u,)= [ fdp, = f(z), then f
extends f. Also, f is continuous with respect to the weak tgpology, i.e., (be definition)

Boom = Flug) = [ fdp,— J fdp = F(w).
Without loss of generality we can assume f>0 and u>0. We show that [fdu= fFda, for all
feCy(2). Note that the set {F:f e Cy(2)} with the sup norm is a subalgebra of the Banach algebra
C(rW(L)) and is isometrically isomorphic to the Banach algebra Cy(£). Moreover, by the Stone-
Weierstrass theorem {f:f€Cy(£)} is a dense subset of C(rW()). Thus, we have
CEW (L) = {f:f € Cy(L)}-

Let & be a bounded linear functional on Cy(£). Thus, by A.R.T., &)= [ fdu, where
n€ MR(L). Define & on C(rW(L)) by

&(F) = &(f) for f e Cy(L).
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Clearly, & is a bounded linear functional. Again, by A.R.T.

&(f) = J fdv
where 7 € MR(rW(L)) and #(W (L)) = inf{®(f): xyy(1) < f < 1}

=inf{®(f):x < f <1} = p(L) = HW(L)).

Hence, 7 = ji and &(f) = ®(f) = [ fdis = [ fdp.
Thus L uei, B

Proposition 4.4 and Proposition 4.5 together give an alternative proof of a theorem of Kirk and
Crenshaw in the following formulation.

COROLLARY 4.5.1. Let £ be a strongly normal lattice of subsets of X and rW(L) be the
Wallman topology on IR(L). Let {u,} be a net in MR*(2) and pe MR*(2). The following are
equivalent:

1) G,=7
2) po(X)—p(X) and lim p (L)< p(L) for all Le 2
3) #a(X)—p(X) and lim p (L) > p(L) forall Le2

PROOF. Let u,, u€ MR(L) and suppose that fi,%i where we are, of course, referring here to
t'he lattice W(£) and the space C,(W(L)). Then, since W(L) separates W (L), Proposition 4.4 gives
fa>p which is equivalent to u,%u (by Proposition 4.5). This in conjunction with the Portmanteau
theorem completes the proof.

We introduce a set of measures ME (L) as follows:
MR (L) = {u e MR(L) and for any p € IR(L) - IR(o,L), there exists a G € (rW(L)) such that p € G and
[#l(G)=10}.
Note that the measures of MR (L) integrate all f € C(L).
Let p,e MR (L), and let O:(V(u,, f1, fare fn €)=w€EMR(L): | [fdu— [fidp,| <c, where
f,€C(L),(1 <i<n)} be a neighborhood system at point u,. Ois a basexfor topéﬁogy G on ME(2).
Clearly, 3 and (rW(s, L)) coincide on IR(s,L).

PROPOSITION 4.6. Let p_,pu, € MR (£). Then,

pan, & uy B,

PROOF. By definition, a net {u_} on ME (2) converges to p € MTE (L) with respect to O if and

only if { fdp,— }[{ fdu for all f e C(L). Therefore, if pag oy then clearly p %y .

Conversely, let u, %u . We have to prove that pag p, or, equivalently, that the functional

Fw= [ fd, we 1R(@,2)

is continuous with respect to TW(s,2), for all f € C(2).

First we show that f:IR(c,2)—R.
Let F,={z€ X:|f(z)| <n}eL. Since f€C(L), then F, 1 X and consequently, u(F,) 1 1, i.e., there
exists N such that u(F_)=1 for n > N. Thus,

|F(w)) = | [fdul = | [ fdu| < [ |f1du<N.
X Fn Fn
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Next, we show that f is continuous. Assume w.lo.g. f>0. Let L, = {z: f(z) > n} where L_ € and
L, | @. Then, p,(L,)=0 for some N. Clearly, u,(L,)=0 for all a > a, and

| Fua) = Flpo) | = If!du., ffd#°| = | fdeua fdeuo

for all a > a,,, where fy = fAN € Cy(L). Smce B Sp,, We have | f(By) — f(p,) | —0. Thus pag B

Let X and Y be topological spaces and £, and £, be lattices of closed subsets of X and Y
respectively. Suppose T is a linear mapping of ME(L,) onto ME(L;) and 1:1 such that
ITull = |u| and T is continuous both ways in the respective topologies, i.e,, T is 0,-0,
homeomorphic. @ ; is a neighborhood system at point p,,i = 1,2 which forms a basis for the topology
of ME(L;). By Proposition 4.6 G, topology restricted to IR(s,L;) yields the same closed sets as
™W(o,2,). If £, and £, are separating, disjunctive and replete, then we can identify IR(0,2,) =X
and IR(o,2,) =Y

PROPOSITION 4.7. Let £, and £, be separating, disjunctive and replete. If MR (£,) and
MT (L,) are isomorphic, then X and Y are homeomorphic with respect to the r£, and 72, topologies
of closed sets.

The proof follows immediately from Proposition 4.6 and the definitions of the relevant
topologies.

This isomorphism proposition gives the following results:
1) If X is T, (a Tychonov space) and L, =%, and if Y is T o and L, =%, where £, and £, are
replete, i.e., X and Y are real-compact, then MR (%,) and ME (%2) isomorphic implies that X and Y
are homeomorphic [9].
2) I X, 2,(=9%)and Y, L)(=9,) are T, spaces and each L; is replete, then ME (%,) and MR (%,)
isomorphic implies that X and Y are homeomorphic.

We now turn attention to C(2); unlike the situation with C,(£) we have

C(L) = C(W(o,L))
fe7
where f(u)= [ fdp,p € IR(s,L), i.e., C(L) is algebraically isomorphic to C(W(s,2)). Details can be
b
found in (3].
PROPOSITION 4.8. p, % p & u, % i where y',,p € MR(0,2) for all u>0.
PROOF. We have

e S p= )f( fdp, — )f‘ fdp, for all f e Cy(2).
On the other hand,

Ha B W & [Fdiy —f fdy, f €CyW(o,L),
IR (0,L) IR (0,2)
since Cy(2) and Cy(W(o,2) are isomorphic (f — f). Let &(f)= ffdu,n>0. By A.R.T. define

& (F) = ®(f) on W(o,2). Clearly, @ is a bounded linear functional. Again, by A.R.T. & (f) = S fdp
IR(e,L)
where p € MR(W(o,L)) and p(W(L)) = inf& (f) = inf®(f) = u(L) = (W (0, L)) Xw(o,2) < Fsux <<t

Thus & (f) = ®(f) = [ fdu' = [ fdu. Hence,

Ba D ue iy Sy
REMARK. If heC(rW(o,L)), then f=h|yeC(rt), and if feC(L) then h=F and
h e C(W(o,2)). This situation arises, for example, if X is T o SPace and £ = % (the lattice of zero sets
of X).
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5. ALEXANDROV LATTICES.

Consider X,L where L is § normal and complement generated (completely normal). Then
Alexandrov’s Fundamental Theorem [1b], states that MR(s,2) is weakly sequentially closed in
MR(L), i.e., if p, € MR(o,L) and p, ¥ pu, then p€ MR(o,2). We will call lattices for which this is
true, Alexandrov lattices and will initiate a consideration of such lattices in this section. Formally,
then we have

DEFINITION. A § normal lattice L of subsets of X is said to be an Alexandrov lattice if
4, € MR(s,2) and p, & y, where u € MR(L), imply p € MR(o,L)

PROPOSITION 5.1. Let £, and 2,, £, C L, be § normal lattices. If £,is £, c.p. or c.b. and £,
s.s. L,, then if £, is an Alexandrov lattice, £, is also an Alexandrov lattice.

PROOF. Suppose v, € MR(s,L,) and v, % v, v€ MR(L,). Since L, s.s. L, and Cy(L,) D Cy(2)),

then we have

v, Yy, pn=unle MR(o,L,), p=v].

Since £, is Alexandrov, u€ MR(o,L,) and consequently, v € MR(o,L,) (since £, is £, c.p. or c.b.).
Thus £, is also an Alexandrov lattice.

REMARK. If instead of £, s.s. £, we assume that 2, is § and o(2,) C s(2,), then in this case
Pn=V,| €M(o,L,) and therefore, by Choquet’s capacity theorem (7] u,€ MR(s.L,). Also,
pBp=v| € M(L,), but p<p on &,, where p€ MR(L,) and p(X) = p(X), and since [ fdu= [fdp for
all feCy(L,), p, % p. Hence p € MR(o,2,) since L, is Alexandrov and consequently u € M(s,L,).

Note that if 2, and 2, are § normal and C(&,) = C(Z,), which implies that £, separates £,, and
if £, is c.p., then 2, is 2, c.p. and p€ MR(s,2;). Then by Theorem 2.1 x extends uniquely to
v € MR(0,L,). In other words, we have

COROLLARY 5.1. Let £, and £, be § normal, C(L,) = C(L,) and £, be c.p.. Then,

L, Alezandrov => L, Alezandrov.

By Proposition 5.1 we also have the following

COROLLARY 5.2. If £ is § normal and c.p. then £ is %(£) c.p. and ¢ is also Alexandrov since
%(L) is Alexandrov.

Suppose 2, and L, are § normal lattices, £, CL, and C(2,)=C(;). Let u, 5 u where
B, € MR(0,2,) and p€ MR(L,). Then, if v, € MR(o,L,) is the unique extension of 4,, and v that of 4,
we have v, % v and v € MR(o,2,) assuming £, is Alexandrov. Therefore, u € MR(o,2,) and L, is
Alexandrov. This fact together with Corollary 5.1 gives

COROLLARY 5.3. If £, and 2, are § normal lattices, £, is c.p. and C(L,) = C(L,), then £, is
Alexandrov if and only if £, is Alexandrov.

PROPOSITION 5.2. If £ is a 6 normal and c.p. lattice of subsets of X and p, % u where
B, € M(o,2),p€ M(L), then pe M(o,2).

PROOF. Let p,€M(o,2) and p, % p. The functional ¢,(f) = [ fdu, is a bounded linear
functional of f € Cy(2), and by A.R.T., we have &, (f)= [ fdu,= [ fdv,, v, € MR(L), p,(X)=r.(X)
and p, <v, on L. Since L is c.p., we also have v, € MR(s,2). Thus (fdv,= [fdu,— [ fdp. Also,
by AR.T., ®(f)= [ fdu= [ fdv,v € MR(L) and p(X)=w(X) on L. Therefore, f fdv,— [ fdv or v, %v.
Since £ is § normal and c.p., by Alexandrov’s theorem v € MR(s,2). On the other hand, we have
pu<von L. Therefore, p € M(c,2).

PROPOSITION 5.3. Let £, and £, be lattices of subsets of X. Suppose L, separates £, and £,
is an Alexandrov lattice. If M(0,2,)N MR(L,) C M(0,L,), then 2, is also an Alexandrov lattice.
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PROOF. Let v, & v where v, € MR(0,L,) and v € MR(L,). Since L, is an Alexandrov lattice
and v, | = p, € MR(0.2,), we have v, | =p, & v| = p€ MR(o,2,). L, actually coseparates L, since £,
separates £, and £, is normal. It is not difficult to see that v € M(s,L",) since v must be £,-regular
on L, Now, since ve€ MR(L,) and ve M(o,L;), we have veM(o,L)nMR(L,). Clearly, if
M(o,L,)N MR(L,) C M(0,L,), then v € MR(o,L,). Therefore, £, is an Alexandrov lattice.

Let £, be a lattice of subsets of X and £, be a lattice of subsets of Y. Again, we assume that
2, and £, are 6 normal.

Let T: X—Y be £, - £, continuous. Consider a mapping A:Cy(L;)—Cy(L,), such that A is linear
and bounded.

If the mapping A is defined by Ag=gT where g€ Cy(L,), then define the adjoint map by
ACy(L,)—Cy(L,) where Cy(L,) is congruent to MR(L,) (i=1,2) and (4'd)(g) = ®(Ag). By A.R.T., we

have

® — 4, p€ MR(L,) and A — v,y € MR(L,). Then,
®(AG) = [ Agdp and (A'®)(g) = [gdv, for all g€ Cy(L,)

and consequently A MR(L,)-MR(L,) where A’y =v and
[ gdv=(A®)(g) = ®(Ag) = [Agdp= [gTdu= [gduT 1, g€ CyL,).
Y X X Y

Note that 4 is a linear mapping and that Ag,g, = g,Tg,T = Ag,Ag,. Therefore, 4 is an algebra
homeomorphism. Also, we have || Ag]| = ||¢T|| < |/g]|- Indeed, A is bounded. If T s surjective,
then || Ag|l = |l g|l, i.e., A is an isometry, and consequently A is invertible.

Some basic properties of A" are collected in the following

PROPOSITION 5.4. a) I u>0, thenv=Au>0

b) Au=v>uT~'onL,and v(Y)=pT~Y(Y)
c) A(IR(Ly)C IR(L,)
d) 4, R(L,) is Wallman continuous.

PROOF. We show only b). Further details can be found in [2]. We have
uT " YL)= fdpT~'= [x dpT 1< [gdpT ~'= [gdv where geCy(L,) and x;<g<1. Therefore,
uT~YL)< uL(L) for all }:e L, Ifg =}i, we obt.a,ilr Jdv= [duT~1. Hence v(Y)=uT ~}(Y).

PROPOSITION 5.5. a) If £, is c.p., then 4(MR{s,L,)) C MR(c,L,)

b) If T is surjective and 2, is T ~}(2,) c.b., then MR(s,2,) C A(MR(c,L,))’
c) If a) and b) hold, then A(MR(s,2,)) = MR(s,1,)

PROOF. Here we show only a). Suppose L, is c.p.. Let p€ MR(s,L,) and consider any
element of A(MR(c,2,)), A'p. We must show that Au=v € MR(s,2,). By A.R.T., we have y — &
and @ is o-smooth. In fact, consider {g,}, g,€Cy(L;), 9, | 0. Then, ¢,7 | 0 and, therefore,
lim [ g, Tdu=0. However, lim [g,Tdp=1lim [g,dv =0 which means & —~ v where &(¢g) = [ gdv, for all
g € Cy(L,). Since @ is o-smooth and L, is c.p., we have A'u=v € MR(s,2,). Hence

A(MR(c,L,)) C MR(o,L,).
PROPOSITION 5.6. 1) Under the assumption a) of Proposition 5.5, if £, is an Alexandrov
lattice and
Fn ™ B, B, € MR(0,Ly),

then A%y, & A’y and A'p,, A'p€ MR(o,L,);
2) Under the assumptions a) and b) of Proposition 5.5 and if 4 is surjective, then £, Alexandrov

implies that £, is Alexandrov.
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PROOF. 1) Since L, is Alexandrov, we have

Ho L m p€MR(0,L)).

Then by Proposition 5.4 d) A'u,—As. By Proposition 5.5 a)

A'p, € MR(0,L,) and A'u€ A(MR(s,L,)) C MR(0,L,).

2) Let v, € MR(s,L,). Then v, %v € MR(L,).
By Proposition 5.5 b) we have

vo=Ap, p,€EMR(s,L,); v=Ap, pe€MRL)).

Since A is surjective, we have

JAgdp, = [gdv,— [ gdv = [ Agdp.
Hence
by > e
Since £, is Alexandrov, u € MR(s,2,). Therefore, by Proposition 5.5 a) A'u=v € MR(s,L;). Hence
2, is Alexandrov.

Thus, under the above assumptions the measure defined on Alexandrov lattices is invariant

under adjoint mappings.
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