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1. INTRODUCTION.
The study of Complementarity Problems is an interesting and important domain of applied

mathematics [1], [5], [8], [10] etc. In this domain, a special chapter is the Implicit

Complementarity Problem. It seems that the first Implicit Complementarity Problem was

defined in 1973 by Bensoussan and Lions [2], as the mathematical .model of some stochastic

optimal control problems [2], [3], [4]. Now, it is well known that, the Implicit Complementarity
Problem can be used to study the optimal stopping of Markov chains [6].

The first existence results for the Implicit Complementarity are the results obtained by
Dolcetta and Mosco [7], [18], [19].

As numerical methods for solving the Implicit Complementarity Problem we remark the

iterative methods proposed by Pang [20], [21] and Uosco [22].
In this paper, we study some existence theorems for the general Implicit Complementarity

Problem in an infinite dimensional space. This paper can be considered as a complement of our

paper [13].
2. DEFINITION OF PROBLEM AND PRELIMINARIES.

Let < E, E* > be a dual system of Banach spaces. Denote by K a pointed convex cone in E,

that is, a subset of E satisfying the following properties:

I)K+Kc_K T):c_K, forallRand3")Kn(-K)={0}.
The closed convex cone K* {y C* < z,y > _> 0; for all z K} is called the dual of K.
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Given a subset D C E and the mappings S: D-,K and T: D---,E*, the Implict Complementarity

Problem associated to T,S and K is

ICP(T,S,K):

find zo E D such that

T(zo) E K* and

< S(Xo), T(xo) > O.

We find applications and examples of this problem in [2], [3], [4], [6], [7], [18], [19], [20], [21].
When D=K and S(z)= z, for all EK, the problem ICP(T,S,K) is exactly the nonlinear

complementarity problem, which has interesting applications in: Optimization, Game Theory,

Economics, Mechanics, etc. [1], [5], [8-15].
If the problem ICP(T,S,K) is defined, we consider the following special variational

inequality:

SVI(T,S,K):[ find zo D such that

< z- S(zo), T(zo) > _> 0; Vx e K.

PROPOSITION 1. The problem SVI(T,S,K) is equivalent to the problem ICP(T,S,K).

PROOF. Indeed, if ro is a solution of the problem SVI(T,S,K) then S(Zo) e K and we have

(1): <z-S(xo), T(Xo)> >_0; VzEK

Let u E K be an arbitrary element. If we put z u + S(zo) in (1) we obtain < u,T(zo) > >_ O,

for every u e K, that is, we have T(zo) E K*.
If we put z 0 in (1) we have < S(zo), T(zo) > _< 0 and since < S(Zo), T(zo) > _> 0 we deduce

< S(zo),T(zo) > O.

Conversely, let o be a solution of the problem ICP(T,S,K). We have, S(Xo)E K, T(%)E K*
and < S(zo), T(to) > 0 which imply < - S(%), T(ro) > _> 0, for every z e K.

Given a nonempty subset D C E and the mappings T:D--,E* and S:D-K we consider the

following problem

SVI(T,S,D):[ find o E D such that

<z-S(zo), T(zo)> _>0; VzED

To solve the problem SVI(T,S,D) we use the following classical result.

THEOREM 1. A mapping To:D--,2D, where D C X, have a fixed point if the following

conditions are satisfied:

1): X is a locally convex space and the set D is nonempty, compact, and convex,

2): the set To(X) is nonempty and convex for all e D and the preimages TO- l(y)
{z E D ly E To(z)} are relatively open with respect to D, for all V E D.

PROOF. The proof is in [25][Proposition 9.9, p. 453].
THEOREM 2. Let D C E be a nonempty compact convex set, T:D---,E* and S:D.--,K two

continuous mappings.
If for every z D we have < S(z), T(z)> _< < , T(x)>, then the problem SVI(T,S,D) has a

solution.

PROOF. If the problem SVI(T,S,D) does not have a solution then,

(2):(V= E D)(3u E D)( < u- S(z), T(z) > < O)



EXISTENCE THEOREMS FOR THE IMPLICIT COMPLEMENTARITY PROBLEM 69

Let To:D-,D be the point-to-set mapping defined by, To(x {u D < u-S(x), T(=)> < 0},

for every r fi D.

We remark that To(r) is nonempty and convex for every r D.

Since T and S are continuous, the mapping v--< r-S(v), T(v)> is continuous too and we

have that To’- l(y) {z D ly To(z)} {z D < y-S(z),T(z) > < 0} is relatively open with

respect to D.

Hence, by Theorem 1 there is an element r, D such that r, To(z,), that is, < r, S(z,),

T(z,)> <0, which is impossible since for every zD we have (by assumption) <S(z),

T(x) > <_ < , T(z) >.

Let K be a pointed convex cone in E. We say that a subset B of K is a base, if B is convex

and for every rK\{0} there is a unique br B and a unique number Ar R+ \{0} such that

A closed pointed convex cone K C E is locally compact if and only if, it has a compact base

[Klee’s Theorem].
If r R + \{0} we denote Kr-< {r K z < r} and Kr<
We say that a convex cone K C E is a Gnlerkin cone [10] if there exists a countable family of

convex subcones {Kn}n N of K such that:

i) Kn is locally compact for every n N,

ii) if n _< m then Kn _C Krn
iii) KONKn

A Galerkin cone will be denoted by K(Kn)n N"
We recall that if D C E is a closed convex set, we say that a continuous operator (not

necessary linear) P: E-,E is a projection onto D if P(E) O and P(r) for every D.

By the same proof as in our paper [12] we can prove that if K(Kn)n N is a Galerkin cone in

a Banach space, then for every n N there exists a projection Pn onto Kn such that for every

z K we have lrnooPn(r) r.

Given two Banach spaces (E, and (F, we say that an operator (not necessary linear)
T:E---,F is strongly continuous if for every sequence {rn}n N C E, weakly convergent to , we

have that {T(rn)}n N is norm convergent to T(,).
This class of operators is very important and was intensively studied by Vainberg [24] and

Lipkin [17].
3. PRINCIPAL RESULTS.

The principal aim of this paper is to give some existence theorems for the problem

ICP(T,S,K).
In this sense, we suppose given a dual system < E,E*> of Banach spaces. We consider on

E* the strong topology.
THEOREM 3. Let K CE be a pointed locally compact cone and $:K.--,E, T:K-,E*

continuous mappings. If the following assumptions are satisfied:

1") there is a number ,- > 0 such that S(Kr--- C_ K,

2") there is an element uo K such that S(Uo) K, II S(Uo)II < r and < r- S(uo), T(r) > > O,

for all r K satisfying r < z -< mar(r, ro) where ro is a number such that

3 < S(), T() > _< < , r(x) > VrKr-,
then the problem ICP(T,S,K) has a solution r. Kr<- such that
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PROOF. Since K is locally compact we have that Kr--< is a convex compact set. Applying
Theorem 2 with D Kr-< we obtain an element z, gr-< such that

(3): < z- S(,), T(z,) > > 0; Kr-

We have that S(**) K. Two cases are possible:

I) S(,)][ < r. If K is an arbitrary element then there is a sufficiently small A ]0,1[ such

that w . + (1 A)S(**) Kr---. If in (3) we put z w we have, < z S(z.),r(z.) > >_ 0, that is,

< z-S(z.),T(z.)> >_ 0 for all z K and by Proposition 1 we obtain that z. is a solution of the

problem ICP(T,S < K).

II) (.)II > . In this case we have r _< S(z,)I[ -< rnaz(t, r0) and by assumption 2) we obtain,

(4): < S(z,)- S(Uo), T(z,) > >_ O,

and since for every t /Kr-< we have

(): < - s(,), T(,) > > 0

we deduce (using (4) and (5)),<-S(%), T(.)> <-S(.)+S(.)-S(%), T(z.)>
< z S(z,), T(z,) > + < S(,)- S(uo),T(,) > _> 0, that is, we have

(): < .- s(%), T(**) > > 0; W e ,<-.
If zK is an arbitrary element then there is a sufficiently small A ]0,1[ such that

v Xz + (I )S(uo) Kr-< Now, if we put z v in (6) we obtain,

(7): < z- S(Uo) T(z,) > _> 0; Vz K.

Since S(uo)II < r we can put z S(uo) in (3) and we deduce,

(8): < S(uo)- S(u,), T(a:,) > > 0.

From (7) and (8) we obtain

(9): < a:- S(z,), T(a:,) > > 0; Ya: K.

Since s(x,) K, from (9) and Proposition 1 we obtain that z, is a solution of the problem
ICP(T,S,K) and the proof is finished.

Theorem 3 can be extended to Galerkin cones. To obtain this extension we need to

introduce a new concept.
We say that S:K-E is subordinate to the approximation (Kn)n N if there exists no N such

that for every n _> no we have S(Kn)C_ Kn.

In [13] we indicated some examples of mappings with this property.
Independent of us in [16] is defined the concept of F-mapping which is similar to our

concept.
In [16] we showed that every DC-mapping can be approximated by an F-mapping while the

class of DC-mappings is very reach.

We say that S:K-E is r-subordinate to the approximation (Kn)n N if there exist r > 0 and

no N such that for every n >_ no we have S(gr C Kn, where Kiln {z gnl 11 z II -< r}.
REMARK. If S:K--.E is continuous and r-subordinate to the approximation (Kn)n N then

S(K c .
Indeed, if Kr-< then we have two cases:
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a) t < r. Since K is a Galerkin cone there is a sequence {tn}n (5 N such that t timn_.oot.,, and
for every n E N, tn E Kn.

There exists e N such that n- < r- I1 II, for every n n 1, which implies,

n n + < -Since, for every n maz(no, nl) we have S(n)Kn CK, we obtMn by continuity that S(z) e K.

b) r. If for every n e N, zn e Kn zn z d r < n then considering the sequence

Un II , *n Xn, where 0 < en < , II; Vn N d en 0 we have that Yn Kn, Vn <
d

tim,v.,. z, which imply that S(z) S(Vn) K.

THEOREM 4. Let (E, II) be a reflexive Bh space and K(Kn)n N a GMerkin cone in

E. Let S:KE d T:KE* be strongly continuous mappings.
If the following sumptions e satisfied:

10) S is r-subordinate to the approximation K(Kn)n e N,

2) there exist m e N d uo Km such that S(Uo)II < , S(Uo) Km d < z- S(Uo),
T(z)> 0, for M1 zKn satisfying r Ileal mat(r, rn) where rn is a number such that

p{ S()II u K nd for every n mar(no, m),
3) < S(),T() > < ,,T(,) > W ,

then the problem ICP(T,S,K) h a solution r. such that . r.

PROOF. We remark that for every n ma(no, m the all sumptions of Threm 3 e

satisfied for every problem ICP(T,S, Kn) d hence we have a solutionr for each of these

problems.
Since for ever t (with nmar(no, m)) we have I111 r we have that {Zn}neN is a

bounded sequence.

Because E is reflexive {t}n e N h a wetly convergent subsequence {zk}k e N" We denote

agMn this subsequence by {Z}ne N d we put z. (w)-z. We have that . e K d. r, since K is closed d convex. Hence S(r.) e K.

Let r e K be bitry element. For every n mat(no, m we have,

(0): < P.()- s(.;), r() > _> 0,

where {Pn}n 6 N iS a sequence of projections. Since S and T are strongly continuous, computing
the limit in (10) we obtain,

(11): <t-S(t.), T(t,) > >0; for all tK.

The proof is finished since from (11) by Proposition 1 we have that t. is a solution of the
problem ICP(T,S,K).

We consider now the case when S(K)c_ K.

THEOREM 5. Let (E, be a Banach space, K C E a pointed locally compact convex cone

and S:K-,K, T:K-E* continuous mappings.
If the following assumptions are satisfied:

10) < S(t), T(z) > < < t, T(t) > Yt K,

2*) there is r > 0 such that for every t e K with r < t there is an element v E K such that

vt < r and < S(t)-vt, T(t)> > 0, then the problem ICP(T,S,K) has a solution z. such that

PROOF. We denote Dn {t 6 KIll t _< n}. Since K is locally compact we have that for
every n N, Dn is & convex compact set.

We apply Theorem 2 with D Dn and we obtain a solution tr for the problem SVI(T,S, Dn).
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So we have:

for every n e N there is Xn e D such that
(12):

<S(zt)-v, T(x)> <0; VvCDn

The sequence {X}n N is bounded.

> O)(3n N)( x, _> ).

Indeed, supposing the contrary we have

*If k > then there is a natural number n such that, n > [I Xn _> _> r.

assumption 2) there is an element vx.n fi K such that v.n < r and,

* byFor this n,

(13): < S(x) T(x) > > 0.I/.
?1

But, since V+.n < < +n _< n, from (12) we have < $(r+) vz.n, T(z) > _< 0, which is a

contradiction of (13).
Hence, {zr}n e/v is bounded and because K is locally compact the sequence {zr}n e/v has a

Ix*norm convergent subsequence nk k N"
Let x. =/mzrk.

We show now that z, is a solution of the problem ICP(T,S,K).
Indeed, if v K is an arbitrary element, then there is m N such that for every n > m we

have, v Dn and for every nk > m, v Dnk and < S(zk v, T(zk > < O.

Using the continuity of S and T we obtain,

< S(x,)-v, T(z.)> < 0, YveK, that is z. is a solution of the problem SVI(T,S,K) which, by
Proposition 1 is equivMent to the problem ICP(T,S,K). Obviously, by assumption 2*) we must

have x. < r.

From Theorem 5 we deduce two important corollaries.

COROLLARY 1. Let K C E be a pointed locally compact cone and S:K-K, T:K-,E*

continuous mappings. If the following assumptions are satisfied:

1) < S(,),T() > >_ < ,T() > W e K,

2*) there is a number r>0 such that for every xK with r< IIll we have

< S(,),T() > > 0,

then the problem ICP(T,S,K) has a solution , such that . _< r.

PROOF. We apply Theorem 5 with v, 0 for every K satisfying >-
COROLLARY 2. Let K C E be a pointed locally compact cone and S:K---,K,

continuous mappings. If the following assumptions are satisfied:

) < S(),T() > _< < , T(x) > V K,

2*) there is a number ro > 0 and uo K such that for every z K with r < we have

< S(x)- uo, T(x) > > O.

then the problem ICP(T,S,K) has a solution . such that . < + maz(ro, Uo )-
PROOF. If we denote, r max(ro, Uo I1) + we have r > ro and r > uo II-
Now, we can apply Theorem 5 since assumption 2*) of this theorem is satisfied with vx uo,

for every z K with >- r.

REMARK. Condition 2) of Corollary 2 is satisfied if T is semicoercive with respect to S in

the following sense:

(quK)( lim
<S(x)-u’T(z)>
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If S(z)= z, for every z K, this notion is similar to the semicoercivity used by Stampacchia

and Lions [22], [23].
Obviously, condition 2 is satisfied if there is a number a>0 such that <S(x),

T(x) > > a 2, for every z e K.

Finally, we give an extension of Theorem 5 to Galerkin cone.

THEOREM 6. Let (E, II) be a reflexive Banach space and K(Kn)n N a Galerkin cone in

E. Let S:K--.K and T:KE* be strongly continuous mappings.

If the following assumptions are satisfied:

) S is subordinate to the approximation (K)n n e N’
2 <S(z), T(z)> _< <z, T(z)>; VzEK,

3) there is a number r > 0 such that for every n >_ no and every z Kn with _< z there is

an element v. E Kn such that vr < r and < S(.) vr, T(r > > O,

then the problem ICP(T,S,K) has a solution ** such that r. -< r.

PROOF. Since, for every n >_ no we have S(Kn)c_ Kn and the all assumptions of Theorem 5

are satisfied, we have that for every n >_ no the problem ICP(T,S, Kr, has a solution zn-
Because for every n >_ no we have z < r and E is reflexive the sequence {z}n 6 N has a

weakly convergent subsequence denoted again by {z}n N" We put

Now, as in the proof of Theorem 4 we conclude that . is a solution of the problem

t.CP(T,S,K). Obviously, . _< r.
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