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0. INTRODUCTION.

The set C(X) of all continuous real-valued functions on a Tychonoff space X has a number of
natural topologies. Two commonly used topologies are the compact-open topology and the topology
of uniform convergence. The latter topology has been used for more than a century as the proper
setting to study uniform convergence of sequences of functions. The compact-open topology made
its appearance in 1945 in a paper by Fox [3], and soon after was developed by Arens in [1] and
Arens and Dugundji in [2]. This topology was shown in [6] to be the proper setting to study
sequences of functions which converge uniformly on compact subsets. One of the distinguishing
features of this topology is that whenever X is locally compact the compact-open topology on C(X)
is the coarsest topology making the evaluation map e: X x C(X)—® continuous (where ¢(z, f) = f(z)).

The compact-open topology and the topology of uniform convergence are equal if and only if X
is compact. Because compactness is such a strong condition, there is a considerable gap between
these two topologies. This gap was especially felt in [8] while studying the completeness of a
normed linear space of continuous linear functionals on C(X) with the compact-open topology.
Because of this, a new class of topologies was introduced in [7] on C*(X) to bridge the gap, where
C*(X) is the set of bounded functions in C(X). This also generalized the o-compact-open topology



102 S. KUNDU AND R.A. McCOY

on C*(X) which was studied in [5]. The purpose of this present work is to extend these ideas to two
natural topologies on C(X), to study the properties of these topologies, and to relate these topologies
to the compact-open topology and the topology of uniform convergence.

Let C(X) and C,(X) denote C(X) with the compact-open topology and the topology of uniform
convergence, respectively. The definitions of the other two topologies that we study here are based
on the fact that Cy(X) can be viewed in two different ways. First we can view the compact-open

topology as a “set-open topology,” where a subbasic open set looks like

[K,VI={f e C(X):f(K)CV},

where K is a compact subset of X and V is an open subset of the reals. Note that V can always be
taken as a bounded open interval. The second way that we can view the compact-open topology is
as a “uniform topology.” This approach is developed in the next section.

Throughout the rest of the paper, we use the following conventions. All spaces are Tychonoff
spaces. If X and Y are any two spaces with the same underlying set, then we use X =Y, X <Y and
X <Y to indicate, respectively, that X and Y have the same topology, that the topology on Y is
finer than or equal to the topology on X, and that the topology on Y is strictly finer than the
topology on X. The symbols ® and N denote the spaces of real number and natural numbers,
respectively. Finally, the constant zero-function in C(X) is denoted by f,.

1. TOPOLOGIES OF UNIFORM CONVERGENCE.

In this first section we look at “uniform topologies” on C(X) in a general setting. This is done
in terms of certain pseudo-seminorms on C(X). By a pseudo-seminorm on a real linear space E is
meant a real-valued function p on E such that

(1) po)=0,

(2) p(z)=p(-z)for all z€ E, and

(3) pE+y)<p()+p(y)forallz yek.

Note that it immediately follows that p(z) >0 and | p(z) - p(y)| < p(z—y) for all z, y€ E.
A pseudo-seminorm p is called a seminorm if the following additional condition holds.
(4) p(tz)=|t|p(z)forall ze E and teR.
Of course a seminorm p is a norm if p(z) # 0 whenever z # 0.
Let a be any family of subsets of X satisfying the condition:

if A, B € o, then there exists a C € a such that AUBCC.
For each A€ a and ¢ >0, let
A, ={(f,9) €C(X)xC(X): | f(z)-9(z)| < ¢ for all z € A}.

Then it can be easily verified that the collection {4,:4 € e, £ >0} is a base for some uniformity on
C(x). We denote the space C(X) with the topology induced by this uniformity be C, ,(X). This
topology is called the topology of uniform convergence on a. For each f € C(X),A€ a and £ >0, let

<f, A > ={geC(X): | f(z)~g(z)| < ¢ for all z € A}.

Then for each f € C(X), the collection {< f, 4, e >:A4€a, ¢> 0} forms a neighborhood base at f in
Cq,u(X). Since the topology comes from a uniformity, then C, ,(X) is completely regular. If o
covers X, then Co,u (X) is a Tychonoff space. When a ={X}, we get the topology of uniform
convergence, denoted by C(X). It is clear that for any o,C, ,(X) < C(X).
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Now for each 4 € o, define the pseudo-seminorm p, on C(X) by

p4(f) = min{l, sup{| f(z)|:z € A}}.
Also for each A€a and € >0, let
Va,e={f€C(X):py(f) <e}
Let
Y= (V4 A€ae>0)

It can be easily shown that for each f € C(X),f+¥ ={f +V:V € ¥} forms a neighborhood base at f.
We say that this topology is generated by the collection of pseudo-seminorms {p,: A € a}. Note that
if we choose 0 < ¢ < 1, then for each f € C(X), we have

f+VA,¢§ <f,A'€>
and
<[ A§>Cf+V,.

for all A €a. This shows that the topology of uniform convergence on a is the same as the topology
generated by the collection of pseudo-seminorms {p,:4 € a}. We see from this point of view that
C,,4(X) is a topological group with respect to addition.

Observe that for C*(X) we can actually use the seminorms p, defined by

p4(f) = sup{| f(z)]:z € A}.

Consequently, C% ,(X) is a locally convex topological vector space. One might wonder when
C,,u(X) is a topological vector space. This is answered by the following theorem. In this theorem
the term “bounded” refers to a subset of a space such that each restriction of a continuous real-
valued function on the space to this subset is a bounded function.

THEOREM 1.1. The space C, ,(X) is a linear topological space if and only if every element of
a is bounded.

PROOF. If every element of « is bounded, then as in the case of C}, ,(X), we can actually use
seminorms for p, when A € a.

For the converse, suppose that there is an A4 € a which is not bounded. Then there is an
feC(X) and {z,:n€N}C A such that f(z,)>n for each n. To show that scalar multiplication
cannot be continuous in C, ,(X), let T be the scalar multiplication operator defined by T(t,9)) = tg
for te® and ge C, ,(X). We show that T is not continuous at (0, f). Let v Ae be a neighborhood of
fo=T((0,f)) in C, ,(X), where A€a and 0<e<1. Then for any neighborhood U of 0 in R, there
exists an n €N such that € U. But 4f(z,) >1>¢, so that T((5,f) =kf ¢V 4 .-

As a consequence of Theorem 1.1, if every element of a is pseudocompact (a space is
pseudocompact if every continuous real-valued function on the space is bounded), then C, ,(X) is a
locally convex topological vector space. Conversely, if every element of o is C-embedded in X (that
is, every continuous real-valued function on the subspace has a continuous extension to X) and if
C,,4(X) is a topological vector space, then every element of a is pseudocompact.

For the rest of the paper, we are interested in the particular topology where a is the set of o-
compact (countable union of compact) subsets of X. In this case, we denote the space C, ,(X) by
C,,u(X). This is called the topology of uniform convergence on o-compact sets. Note that we get the
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same topology if we take the members of a to be the closures of the s-compact subsets of X.
2. THE +-COMPACT-OPEN TOPOLOGY.
For any subset A of X and any open subset V of ®, define

[A,V]={f € C(X):F(A) C V}.

This agrees with the usual “set-open” terminology for the compact-open topology because 4 is
compact in this case. Now let ¢(X) be the set of s-compact subsets of X, and let B be the set of
bounded open intervals in ®. For the g-compact-open topology on C(X), we take as subbase, the
family

{[A,B)}: A € 0(X),B € B};

and we denote this space by C,(X). Note that the same topology is obtained by using [4, B], where
A€o(X) and BeB. This is because for each f € C(X), f(4)C f(A); so that f(A)=f(4). The fact
that C,(X) is a Tychonoff space can be proved in a manner similar to the proof of Lemma 5.1 in [9].

It is useful to relate basic open sets in C,(X) to basic open sets in C, ,(X), which is done in the
following two lemmas.

LEMMA 2.1. Let W= n}_,[4,,V,] be a basic neighborhood of f in C_(X). Then there exists
an € >0 such that < f,4,U---U4,e> CW.

PROOF. For each i, since f(4,) is compact, there is an ¢; > 0 such that the ¢;-neighborhood of
f(A,) is contained in V,. The conclusion now follows by taking & = min{e,,....,.}.

LEMMA 2.2. Let A € o(X), and let f € C(X) be such that f(A) is bounded. Then for each ¢ >0,
there exists a basic open set W in C(X) such that feW C < f,4,e>.

PROOF. Since f(4) is bounded, there are open intervals V,,..,V, of length § such that
f(A) c up_ Vv, Foreachi,let A;=A4nf~Y(V,), and let W; be the $neighborhood of V; in ®. Then
each 4;€0(X), and each W, is an open interval of length ¢. So define W = n™_,[4,,W,], which is
basic neighborhood of f in C (X). It is straightforward to check that W C < f,A4,e >.

Lemma 2.1 tells us that the o-compact-open topology is coarser than or equal to the topology
of uniform convergence on os-compact sets. On the other hand, it is clear from definitions that the
o-compact-open topology is finer than or equal to the compact-open topology. Therefore we have
the following general comparisons.

THEOREM 2.3. For every space X,Ci(X) £ C,(X) < C, ,(X) < C (X).

It is well-known that C*(X) is dense in Ci(X). The same is true for ‘C,(X), as we see in the
next result.

THEOREM 2.4. For every space X,C*(X) is dense in C,(X).

PROOF. If n?.,[A,,V,]is a basic open set in C,(X) containing f, then U?_,V, is contained in
some interval (a,b). Then if ¢ is defined by g(z) = f(z) if a < f(z) < b,9(z) = a if f(z) <a and g(z) =b if
b < f(z), we have that

g€ C‘(x)n(n:‘= l[AvVi])

as desired.

Even though C*(X) is dense in C,(X), the members of C*(X) play a special role in C,(X) in the
following sense. For each feC(X), let T;:C,(X)-C,(X) be the translation operator defined by
Ty(g9) = f +g for all g€ C(X).

THEOREM 2.5. Let f e C(X). Then T;:C,(X)—-C,(X) is continuous if and only if f € C*(X).
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PROOF. For the sufficiency, suppose that f € C*(X) and that [4,V] is a subbasic neighborhood
of T y(g) in C,(X) for some g € C,(X). Then by Lemma 2.1, there exists an ¢ > 0 such that

< T](y)vA'e > g [A! V]

Now (f+g)(A) =T,(¢g)(A) is bounded. Since fe€ C*(X), g(4) = (f+g)(A) - f(A) is bounded. So by
Lemma 2.2, there exists a basic open set W in C,(X) such that ge W C < g,4,6 >. We see that

TI(W) <_: Tj( < y,A,e > ) g < T](y)aA15 > g [Avvlv

and thus T, must be continuous at .

For the necessity, suppose that f¢ C*(X). Then f is unbounded on some A€o(X). Now
[4,(-1,1)] is a neighborhood of fo = T,(- f) in C,(X). Suppose, by way of contradiction, that T, is
continuous at —f. Then there would be a basic neighborhood n?_,[A4,V;] of —f in C,(X) such
that

T]( n :.= l[AuV;]) g [Av( - 1; l)]‘

Since —f would be bounded on uU?_;4, so would f. Therefore there would exist some
z€ A\UT_A,. Then let ¢ € C(X) be such that ¢(z) =1 and ¢(y) =0 for all ye UT_,4,, and define
h=¢~f. Clearly he NP_4[4,V,], so that f+h=T(h)€[A,(~1,1)]. But then 1=(f+h)z)e(-11),
which is a contradiction. Therefore T s is not continuous at — f.

COROLLARY 2.6. The following are equivalent.

(1) C,(X) is a topological vector space.

(2) C,(X) is a topological semigroup under addition.

(3) C,(X)=Cy(X).

(4) X is pseudocompact.

When studying function spaces, it is sometimes useful to use induced functions. That is, if
$:X—Y is a continuous function, define ¢*:C(Y)—C(X) by ¢*(9)=go¢ for all geC(Y). We can
establish the following theorem much like the corresponding theorem for the compact-open topology
(cf. [10]). In this theorem, the definition of ¢: X—Y being a o-compact-covering map is that each o-
compact subset of Y is contained in the image of some o-compact subset of X under ¢.

THEOREM 2.7. If ¢: XY is continuous, then ¢*:C,(¥)—C,(X) is continuous. Furthermore, if
¢ is a o-compact-covering map, then ¢* is an embedding.

3. COMPARISON OF TOPOLOGIES.
We have already seen that
CUX) S C(X) < C, (X) < Cy(X).

In this section we determine when then inequalities are equalities and give examples to illustrate
the differences.
THEOREM 3.1. For every space X,Ci(X)=C,(X) if and only if the closure of each o-compact
subset of X is compact.
PROOF. The sufficiency is straightforward. For the necessity, suppose that C(X)=C,(X)
and let 4 € o(X). Then there exist a compact set K in X and an open set V in R such that
fo €K, V]C[AR\{1}].

Suppose, by way of contradiction, that there exists an z € 4\K. Then there would be some f € C(X)
such that f(z) =1 and f(y) =0 for all y € K. But then
f €K, VN\[A,R\{1}],

which is a contradiction. Therefore 4 C K, so that 4 is compact.
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COROLLARY 3.2. If C,(X)=C,(X), then X is countably compact.

THEOREM 3.3. For every space X,C,(X)=C, ,(X) if and only if X is pseudocompact.

PROOF. If X is pseudocompact, then for each Ae€o(X) and feC(X), f(A) is bounded.
Therefore by Lemma 2.2, we have that C,(X) = C, ,(X).

For the converse, suppose that X is not pseudocompact. Then there is some f € C(X) and
A € o(X) such that f(A) is unbounded. Now for any € >0, < f,A,e > cannot be a neighborhood of f
in C,(X). This is because for arbitrary open W in C,(X) there is some g € WnC*(X) by Theorem
2.4; but g¢ < f,A4,e>. It follows that C,(X) < C, ,(X).

COROLLARY 3.4. If every o-compact subset of X has compact closure, then Ci(X) = C,, ,(X).

THEOREM 3.5. For every space X,C, ,(X)=C,(X) if and only if X contains a dense o-
compact subset.

PROOF. Suppose that X contains an A € o(X) which is dense. Then for each fe€ C(X) and
£>0,

<f,A,%> c<f, X, e>.

Thus < f,X,e> is a neighborhood of f in C, (X), so that C, ,(X)=C(X).
Conversely, let C, ,(X)=C,(X), and consider < f,X,c> where 0 <e<1. Then there exists an
A €o(X) and 6 >0 such that

<f0,A,6> c <fo»x,5>v

Suppose, by way of contradiction, that there is an z€ X\A. Then there would be some f e C(X)
with f(z)=1 and f(y) =0 for all ye 4. But this would mean that

fe <f0,A,6 > \ <fo,X,€ >
which is a contradiction. It follows that X = 4.
COROLLARY 3.6. If X is separable, then C, ,(X)=C(X).
We end this section by looking at some examples which illustrate all possible inequalities

between these function spaces.
EXAMPLE 3.7. If X is any compact space, then

Ci(X) =C(X) =C,’u(X) = Cy(X).
EXAMPLE 3.8. If X is an uncountable discrete space, then

CiX) < Co(X) < €, (X) < Cy(X).
EXAMPLE 3.9. If X =Nor X =R, then

Ci(X) < C\(X) < C, (X) = Cy(X).

EXAMPLE 3.10. Let X be the space of countable ordinals with the order topology. Then each
o-compact subset of X has compact closure, but X does not contain a dense o-compact subset.
Therefore

CulX) = Co(X) = €, (X) < Cy(X).

EXAMPLE 3.11. Let N* = gN\N, where gN is the Stone-Cech compactification of N. Let p be a
point of N* which is not a P-point (cf. [11]). Define X to be N*\{p}. Then X is countably compact,
but does not have a dense o-compact subset (since points are not G4-sets). Also since p is not a
P-point, there is some o-compact subset of X which has non-compact closure. Therefore

C(X) < Ch(X)=C, (X) < Cy(X).
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EXAMPLE 3.12. Let X =N\{p}, where peN* (see Example 3.11). Then X is countably

compact and separable, but not compact. Therefore

Ci(X) < C(X) =C, (X) = Cy(X).

Note that this shows that the converse of Corollary 3.2 is not true. An example of a space which is
not countably compact but which has these same function space relations is the space ¥ in 5I of [4].
4. ADDITIONAL PROPERTIES.

Theorem 3.5 can be expanded to include some additional properties of the spaces C,(X) and
Co, u(X)-

THEOREM 4.1. The following are equivalent.

(1) ¢,,.X)is (completely) metrizable.

(2) ¢, (X) is first countable.

(3) {fo}is a Ggset in C, (X).

(4) C,(X) is submetrizable.

(5) C,(X) is first countable.

(6) {fo} is a Gsset in C (X).

(7) X contains a dense o-compact subset.

PROOF. That (7) implies (1) follows from Theorem 3.5 since C,(X) is always completely
metrizable.

To prove that (3) implies (7), suppose that X does not contain a dense s-compact subset. Now
a Gg-set is a subset which can be written as a countable intersection of open subsets. So for each
neN, let < fy,A,¢c,> be any basic neighborhood of f, in C, ,(X). We know that there is some
z€ X\UP_14,. Let f € C(X) be such that f(z) =1 and f(y) =0 for all ye UZ_4,. Then

feNPo1<foAne,>-
But since f # fo, we see that {fo} is not a G-set in C, ,(X).

Since (6) implies (3), it remains only to show that (7) implies (4) and (5). Suppose that X
contains a dense s-compact subset D. Let f be any element of C,(X). We need to demonstrate
that f has a countable base in C,(X). We may take for B the family of bounded open intervals in ®
with rational endpoints. Also let € be the closures of the members of . Then define

A={f"YC)nD:C€C).
Since D is o-compact, A is a countable subfamily of ¢(X). Since % is also countable, it now suffices
to show that for each subbasic neighborhood [S,V] of f in C,(X), there is an A € 4 and B € B such
that f € [4,B]C[S,V]
If £ €[S,V], then f(S)Cc V. Hence since f(5) is compact, there exist C € € and B € B such that
fS)cintccccBCV.

Therefore if we define A = f ~}(C)Nn D, then we have

FAC K O)nf(DYCcCenF(D)C B.

This means that fe[4,B]. To show that [4,B]C[S,V], let g€[A,B] and let teg(S). If W is a
neighborhood of ¢, then ¢~} (W)nS #£0. Since

SCrMAS)c £ int ©),
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then ¢~ }(W)n f ~Y(int C) # 0. But then
g~ YW)nf~Yint C)ND #0.

so that g~ '(W)nA#0. Therefore Wng(A)#0, and thus t € g(A)C B. It follows that g €[S,V], so
that f € [4,B)C[S,V]. We can now conclude that f has a countable base in C,(X).

Finally, to show that (7) implies (4), write the dense set D= u_,A4,, where each 4, is a
compact subset of X. A submetrizable space is one which can be mapped into a metric space by a
continuous injection. (Note that singleton sets are Gs-sets in a submetrizable space.) Define Y to
be the disjoint topological sum Y %_,4,, and let ¢:Y—X be the natural map. Then the induced
function ¢*:C,(X)—C,(Y) is continuous by Theorem 2.7. Since ¢(Y) is dense in X,¢* is an injection.

Now the sum map

S: Ca( E :o= lAn)_’ n?: lca(An) = :°= lck(An)

is a continuous bijection, since it is a homeomorphism when defined on C (¥ P-,4,) (cf. [6]).
Therefore So¢* is a continuous injection from C,(X) into the metrizable space []_ Ci(A,), which
makes C(X) submetrizable.

For our last topic, we consider the separability of C,(X), and the weaker property of having the
countable chain condition (i.e., every pairwise disjoint family of nonempty open subsets is
countable). We see from the following theorem and Theorem 3.3 that C, ,(X) is separable (has
ccc) if and only if C,(X) is separable (has ccc).

THEOREM 4.2. If C,(X) has the countable chain condition, then X is pseudocompact.

PROOF. Suppose that X is not pseudocompact. Then there is a closed C-embedding ¢:N—X.
So by Theorem 2.7, the induced function ¢*:C_(X)—C,(N) is continuous. Since the embedding is a
C-embedding, ¢* is a surjection.

We show that C,(N) does not have the countable chain condition. Then since ¢* is a
continuous surjection, C,(X) will also not have the countable chain condition. Let U =(0,1) and
V =(1,2), and for each A in the power set P(N) of N, define

S, =[A4,U]N[N\A,V].

Then S, is a nonempty basic open set in C,(N). Suppose that A4,B € P(N) with 4 # B. Without loss
of generality, say there is some z € A\B. If f € S,, then f(z) €U; but if f € Sp, then f(z)e V. Since
Unv=9, S$,nSg=0. Therefore {S,:4€P(N)} is an uncountable pairwise disjoint family of
nonempty open subsets of C(N).

To complete the characterization of C,(X) being separable, we need the following lemma. It is
a consequence of Theorem 8.17 in [4]; however, we give a simple direct proof.

LEMMA 4.3. Every pseudocompact submetrizable (Tychonoff) space is compact and
metrizable.

PROOF. Suppose topological space (X,r) is pseudocompact and has a metric d which
generates a strictly coarser topology 7, on X. Then there exists an z € U € 7\, and sequence (z,) of
distinct points of X\U such that (z,) converges to z in r;. For each n, let B, be an open
neighborhood of z, in r; having diameter less than L and such that B,NB;=0 for i #j. Now let
V € 7 be a neighborhood of = whose closure, V, in r is contained in U. For each n, define vV, = B,\V,
which is a neighborhood of z, in 7. Note that {V :n€N} is a discrete family in r. For each n,
choose £, € C(X) such that f,(z,)=n and f(y) =0 for all y € X\V,,. Define f € C(X) by f(y) = f,.(v) if
y€eV, and f(y) =0 otherwise. Since f is unbounded, this contradicts (X, ) being pseudocompact.

THEOREM 4.4. The space C,(X) is separable if and only if X is compact and metrizable.
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PROOF. If C,(X) is separable, then the smaller space Ci(X) is separable. This means that X

is submetrizable. The result now follows from Theorem 4.2 and Lemma 4.3.

QUESTION 4.5. When is C,(X) metrizable? In particular, is C,(N) metrizable or even

normal?
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