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ABSTRACT. A proof of completeness of the Green-Lamé type solution for the unified governing field
equations of conventional and generalized thermoelasticity theories is given.

KEY WORDS AND PHRASES. Thermoelasticity, Generalized Thermoelasticity, Green-Lamé solution,
completeness of solution.
1980 AMS SUBJECT CLASSIFICATION CODE. 73U.

1. INTRODUCTION

In [1], the author presented three complete solutions for the following system of coupled partial
differential equations which may be interpreted as a unified system of governing field equations of the
conventional and generalized models of the linear thermoelasticity theory of homogeneous and isotropic
materials:
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The notation employed in these equations and those to follow are as explained in [1].
One of the three solutions of the system (1.1) presented in [1] is analogous to the Green-Lamé
solution in classical elastodynamics [2]; this solution is described by the following relations:

(1.1 a,b)

u=(l+a—a—)(V¢+curI V) (1.2)
0=D¢-f (1.3)
D¢=D3f—(1+y£-)h (1.4)
5 ot
Dyy=¢g (1.5)
F=~{1+a-t%)(Vf+curlg) (1.6)

That is, if the known function f is represented by the relation (1.6) (by virtue of the Helmholtz resolution
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of a vector field), then a solution {u, 6} for the system (1.1) is given by the representations (1.2) and
(1.3) where ¢ and y are arbitrary scalar and vector functions (respectively) obeying the partial differential
equations (1.4) and (1.5). Here Dy, Dy, D5 and Djs are partial differential operators defined by [1]:
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It was also shown in [1] that the solution described above is complete in the sense that if the
known function f is represented as in (1.6), then every solution {IL, 9} of the system (1.1) admits a
representation given by the relations (1.2) and (1.3) with ¢ and y obeying the equations (1.4) and (1.5).

The proof of completeness suggested in [1] was an e;tension of the proof given in [2] in the
context of classical elastodynamics. This proof makes the hypothesis that in the representation (1.6) for F
the function 8 is divergence-free (that is, div 8= 0) and infers that v also has to be divergence-free. -

The object of the present Note is to give a proof of the completencss of the Green-Lamé type
solution that does not make the hypothesis that div 8= 0 and consequently does not infer that div ,'f,’ =0.
This proof is motivated by the work of Long [3] in classical elastodynamics and is analogous to that given
in [4] in the context of the theory of elastic materials with voids.

2. PROOF OF COMPLETENESS
Consider any solution {li, 6} of the system (1.1). By virtue of the Helmholtz representation of a

vector field, 4 may be expressed as

= (1 + a%}Vp +curl q) Q.1

for some scalar field p and a vector field g.
Substituting for u from (2.1) into equation (1.1a), we get the equation

(1 + a-‘-%)V{Dlp-(0+f)}+curl{02£1v—£}] (2.2)

Here, we have made use of the representation (1.6) for f and the relations (1.7) and (1.8).
For a =0, equation (2.2) gives
V{Dip~(6+ )} = curl{g - Doq} 2.3)

For a # 0, equation (2.2) yields equation (2.3) provided

[V{Dip— (8 + f)} +curt{Dyq - 2} =0
This condition may be taken to be valid when uand @ obey homogeneous initial conditions.
Taking the divergence of both sides of (2.3) and noting that div V = V2 and div curl is the zero
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operator, we get the equation
v¥{Dip-(6+f)}=0. @4

This equation implies that [4, Appendix]

P=90+¢g (2.5)

where
Di¢=0+f (2.6)
V2¢0 =0. 2.7

Taking the curl curl of both sides of (2.3) and noting that curl V is the zero operator and

curl curl = Vdiv — V2, we obtain the equation

V2 curl(D,q - )=0. (2.8)
This equation implies that [4, Appendix]
4=Vo+ ¥ 2.9)
where
V¥(curl yy)=0 (2.10)
D, vi=g (2.11)

Substituting for p and ¢ from (2.5) and (2.9) into the expression (2.3) and using (2.6) and (2.11)
we obtain the relation

V(Dygo) +curl(D;yo) =0.
Using the relations (1.7), (1.8), (2.7) and (2.10), this yields
32
—a—P—{V% +curl !{0}_=2

from which it follows that
Vo +curlyy=ty, +y; (2.12)
where y, and y; are independent of 1. - -7
’:I‘aking :he divergence of (2.12) and using (2.7), we get
tdivy, +divy; =0.
Since this holds for any ¢, we should have div EEz =0 an:l div V3= 0 from which it follows that
yy=curlé,, ys=curlés (2.13)
for some &,, &;. - -7 -
Taking the Laplacian of (2.12) and using (2.7) and (2.10), we get
1 V2y, +v21/3 =0

which on using (2.13) yields
e curl(V2Ey) + curl(V2g) = 0.
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Since this holds for any t, we should have curI(Vzéz) =0and curI(V2§3) =0 from which it follows that

V=V, V5=V, (2.14)
for some ¢, and ¢;.
We now define the function ¥ = y(P, t) by

1 d(0,t-R/
V=V’1+("52+§3)+Z;V ———(Q——R—c—)dv (2.15)

D

where
P=19,+¢; 2.16)
and R is the distance from the field point P to a point Q, the integration (over D) being w.r.t. Q.
From (2.15) we get
curl y=curl(y, +1&, +&3). 2.17)
Substituting for p and q from (2.;) and (2.;) in t]'le ri;ht-hand side of (2.1) and using (2.12),
(2.13) and (2.17), we obtain

= (1 + agt-)(w +curl Z)'

This is the desired representation (1.2) for u. The desired representation (1.3) for @ is given by (2.6).
Substituting for u and 0 from (1.2) and (1.3) into equation (1.1b) and using (1.9) and (1.10), we
obtain the equation

D5¢—D3f+(l+ y%)h:O.

This is precisely the desired governing equation (1.4) for ¢.
With the aid of the identity [1]

/Vz -1 /‘D(Q t—R/c) 47
c? at

and the relations (1.8), (2.14) and (2.16), expression (2.15) yields D,y =D,y,. Using the relation

(2.11), we now find that y obeys the equation D, ¥ = g, which is the desired ggvcming equation (1.5)

for y. - -

- Thus, we have shown that, given any solution {’11, 8} for the system (1.1), one can construct
functions ¢ and |4 such that u and 6 can be represented by the relations (1.2) and (1.3) with ¢ and y
obeying the equations (1.4) and (1.5). -

This completes the proof of completeness of the Green-Lamé type solution for the system (1.1).
Note that no where in the proof it has been assumed that div 8= 0 and inferred that div y has to be zero.
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