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ABSTRACT. Existence of a weak solution is established for the initial-boundary value problem for
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1. INTRODUCTION.
Let @ be a bounded domain in RN with smooth boundary 8Q and T a positive number. In this
paper we shall be concerned with the following problem:

uy — div(8(u) V u) + o(u)a(u) Vu Vv =o(u)| Vo|%in Qp =2x(0,T), (1.1a)
div(o(u) Vv) =0 in Qp, (1.1b)

u=0on Sp=0dx(0,T), (1.1¢)

v=B(z,t) on S, (1.1d)

u(2,0) = Uy(z) in 2x {0}. (1.1e)

Here, 6(u),o(u), and a(u) are known functions of their argument and B,U are given data.

Problem (1.1) may be proposed as a model for the electrical heating of a conductor resulted
from Thomson’s effect and Joule’s heating; see [1]. In this situation, u is the temperature of the
conductor and v the effective potential. Equation (1.1b) represents the conservation of charge,
while (1.1a) says that there are two types of heat source involved in the heat conduction; the
convective term in (1.1a) corresponds to Thomson’s effect and the quadratic term in (1.1a) reflects
Joule’s heating.

If N=2,a=0, and o € C!(R) is such that

0<m50’(s)5w,s€R

for some M > m the existence of a weak solution is established for (1.1) in [2]. A result due to Shi,
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Shillor, and Xu [3] asserts that the assumption that N =2 and ¢ € CI(R) in [2] can be eliminated.
The associated stationary problem of (1.1) was first considered in [1] where ¢ and © are assumed to

obey the Wiedemann-Franz law, i.e.,

o(u)
O(u)

= § for some ¢ >0,

and o is assumed to be linear. Under these assumptions the stationary problem can be
reformulated as

div(A(u,v) Vu)=0) . Q
div(A(u,v) Vv) = 0} ’

u = ug,v =1y, 0N an.

Thus a uniform bound for the temperature can be obtained, thereby establishing an existence
assertion. See [1] for details.

Our main objective is to prove an existence theorem for (1.1) under rather general assumptions
on the data. Indeed, if the temperature is known to be bounded, our assumptions are much weaker
than those in [1]. Of course, our approach is also different and is based upon an approximation
scheme. We also consider the question of uniqueness, but we are only able to show that the
uniqueness holds when N =2 and 6(s) = 5.

The mathematical interest of our problem is due to the presence of quadratic gradient growth
in the nonlinearity. In general, nonlinearities of this nature render the classical regularity and
compactness results useless; see [4] for a detailed description in this regard. Our method makes full
use of the explicit nonlinear structure of our problem, which enables us to extract enough extra
information to obtain an existence assertion. We refer the reader to [4] for more related works in
this direction.

Finally, let us make some comments on notation. The letter ¢ will be used to denote the
generic constant. When distinction among different constants is needed, we add a subscript
i€{0,1,2,...} to c. Other notation conventions follow those employed in [5] and [6]. For example,

1
01, 0= nfn,,=([|f|%) /p
Q

for f e LP(Q).
2. EXISTENCE

In this section we first establish an existence assertion for the associated stationary problem.
Then a weak solution to (1.1) is obtained via the implicit discretization in time.

Let Q be a bounded domain in RV with smooth boundary Q. Consider the system

~div(I(u,0) V) + K(u+v) = J(u+v)| Vov|2+ H(z) | ,
—div(J(u+v)Vv)=0 } m Q (2.1a)

coupled with boundary conditions

u = ug on 82, v = vy on Q. (2.1b)

With respect to the data involved, we assume the following.
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(H1) 1(s,7),J(s), K(s) are all continuous;
(H2) There exist two positive numbers m < M such that

m<I(s,7)<Mm<J(s)<M

for all s,7 €R;
(H3) K is nondecreasing and satisfies

| K(s)| <c|s| for some ¢ > 0;

(H4) uye wh2(@),vy e WhEQ)N L), and H € LX(Q).
A weak solution to (2.1) is defined as a pair (u,v) such that

u,ve wh2(),

JI(u,v) VuVede + IK(u+u)€d:: = I(J(u+ v)| Vo|2+ H(z))édz
Q Q Q

for all ¢ e W) 2(@)n Lo(@Q),

J](u+v)Vqudz =0forallne W},'?(Q),
Q

u = ug,v =1, 0N on.

THEOREM 2.1. Let (H1) - (H4) be satisfied. Then there exists a weak solution to (2.1).

PROOF. For each k define

k if 12]2>k,
Pi(z) =
] .
lz|2 if |z|2<k,

ki K(s) >k,
Ki(s)={ K(s) if |K(s)| <K,
b ifK(s)< —k.

Denote by V the product space W1'2(Q)le'2(Q) and V* its topological dual.
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(2.2)

(2.3)

(2.4)
(2.5)

Set

E = {(uy,v)) € Viuy | g0 =y and v | o = v}. Clearly, E is a closed, convex subset of V. For each &

define an operator A;: E—~V* by

(Ap(wy),wy) = JI(ul,vl) Vu Vugdz + J{Kk(ul +v)) = J(u) +v)Pp(V vy)
Q Q

- H(z)}ugdz

+ I](ul +v]) Vv Vgdz,
Q

w) = (ug,v7) € E,wy = (ug,vy) €V,
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where (-,-) denotes the duality pairing between V* and V. By the definition of P, 4, is well-
defined. It is not difficult to verify that for each k, 4, satisfies the following conditions:
(i) A is bounded.
(i) A, is pseudomonotone.
(ili) (Ap(w),w—wp)/[|wlly—c0 as [jwl| —oo for w € E, where wg = (ug,v).
Now we are in a position to invoke an existence result in [7, p. 169] to conclude that for each &
there exists at least one vector-valued function wy = (u,v;) € E such that

(A(wp)w—w,) >0 forallweE.

This is easily seen to be equivalent to the following statements:

Ul o= Yo%l o0 =0 (2:6)
I I(up,v) Vu VEdz + JKk(uk +vp)édz = J (J(up +vp)P(V vp) + H(z))édz, (2.7)
Q Q Q
Il(uk+vb)Vkafdz =0, (2.8)
Q

for all € € W‘l)' 2(q). Equation (2.8) allows us to use the weak maximum principle to get

s:gn ()| Se(k =1,2,..). (2.9)

Set £ = v — vy in (2.8) to deduce
I Vopllg<elk=1,2,..). (2.10)

Let £ = up —uy in (2.7) to derive

II("k’ vp) | V| 24z + IKk(uk + v )y, — ug)dz
Q Q
= II(uk,vk) Vu, Vugdz + JJ(“L' + v )PV up) (u —ug)dz + I H(z)(up, — ug)dz. (2.11)
Q Q Q

We estimate, with the aid of (H3) and (2.9), that

IKk(uk +vp)(up — ug)dz
Q

= JKk(uk +vp)(uy +vp)dz — IKk(“k +vp)(v +ug)dz
Q Q

2 = | Kp(up+o)llgllop+ugllo
> —cyllugllg—co (2.12)

For each positive integer j define
jifs2j,
Li(s)= s if |s] <j,
—jifs> —j.
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We calculate, using (2.8), that

Il(uk +0p)Py(V vp)L (ut, — ug)dz
Q

- I Ty + 9 Py(V (L (g = ug)] ¥ = [L (o —ug)] ~ )

IA

I+ vp)PR( V)L — up)) ¥ dz

IN

J(up+vp) | Vo | 4L Hup—ug) Hdz

1]
Ve O O O— D

J(up+v ) Vo, v [['j(“lc —u)] +dz

Sell Vopllgll Viwg—ug)llg<eqll Vupllg+co

Send j to infinity to get

J"(“k + o )PV up)(u —ugldz < ey || Vugllg+eq.
Q

Use this and (2.12) in (2.11) to obtain

m[ | Vg | 2dz <oy ll Vugllg+eg llug ll o +egk = 1,2,..).
Q

According to Poincaré’s inequality,

lug—ugllg<cll V(ug—ug)llg<elll Vugllg+ Il Vugllg)
Consequently,
Hugllg < Nug—ugltg+ llugllg<eqll Vuglig+ey.
Combining (2.13) and (2.14) yields

Hugllg+ Il Vupllg <c(k=1,2,..)

T(up+0) Vo V (lL(u —ug)] +) = v V[L(u, —ug)] F Ydz
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(2.13)

(2.14)

(2.15)

In view of (2.9), (2.10), and (2.15), we may assume that there exists a subsequence of {k}, still

denoted by {k}, such that
v—v weakly in W1'2(Q) and strongly in 4@,
u,—u weakly in w1l 2(Q) and strongly in L%(®).
Then it immediately follows from (H1), (H2), and (H3) that

(g, vp)—1(u,0), K (g + vp)—K(u + )
and

J(up, +vp)—J (u + v) strongly in 4@).

(2.16)
(2.17)

(2.18)

(2.19)
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Set £ = v, — v in (2.8) to deduce

lir"gosup mJ | V(vk—v)]2dzSliT_‘%ngJ(uk-f—vk)l V(v -v) |2d.t
Q Q

=£ﬁnm— Jl(uk +v) VoV (v, —v)dz =0.
Q

This implies that

Py(Vv)—| V|2 strongly in L'(9). (2.20)

Then the theorem follows from taking k—oo in (2.7) and (2.8).
Let Q, H(z), ug, v, be given as before. Consider the following problem:

u—div(e(u) Vu).‘.o-(“),@’(u)vuvv = U('l)l Vv|2+H(z) .
div(o(u) Vv) =0 } n Q, (2.21a)

u| g0 =g v| 5q = vp- (2.21b)
We impose the following conditions on 6,0, 3:
(H5) ©,0,8 are continuous and satisfy

m<O(s) <M,m<o(s)<M,m<B(s) <M for some M >m >0

for all seR.
(H6) § is continuous and bounded.
A weak solution to (2.21) can be defined in the same manner as that to (2.1).
THEOREM 2.2. Under the above assumptions there is a weak solution to (2.21).
PROOF. Let

o(r)
Fe)= [ B
0

Then by (H35) there exists two positive constants cy,c, such that
0<e;<F(s)<cyforall seR. ‘ (2.22)

Denote by K the inverse of F. From (2.22), we have

¢y <K(s)<cgforall seR

for some ¢ > ¢, > 0. Thus K satisfies (H3). Now set

I(s,7) = o(K(s + T)B(K(s + 1)), (2.23)
J(s) = o(K(s)). (2.24)
Clearly, 1,J,K satisfy (H1)-(H3). By Theorem 2.1, there is a weak solution to the following

problem:

—div(I(a,b)Va)+ K(a+b)=J(a+b)] V5|2 + H(:)} wa 52.25;
—div(J(a+b)Vb) =0 o 2.26
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a| 50 = F(ug) —vp,b| 50 = vg.
Let u = K(a+b),v =5 We wish to show that (u,v) thus defined is a weak solution to (2.21). Clearly,
u,v€E W1'2(Q). and (2.21b) is satisfied. Note that
a=F(u)—b= F(u)—v.

We derive from (2.23), (2.24), and (2.25) that

- diu(a(u)ﬁ(u) V (F(u) - v))+ u
= —div(o(u)B(u)F (u) V u—o(u)B(u) Vv) +u
= —div(8(u) V u) + div(o(u)B(u) Vo) + u=o(u)| Vv| 24 H(z) in Q. (2.27)

We conclude from (2.24) and (2.26) that

—div(o(u) Vv)=0in Q. (2.28)

We calculate from (2.28) that for any ¢ € W(l)’z(ﬂ)n L),

Jd(u)ﬁ(u) VuVedz = Io’(u) v .( V (B(w)E) - €V B(w) iz
Q Q

= - Ia(u)ﬂ'(u) V uV védz.
Q
Thus

div(o(u)B(u) Vv) = o(u)f(u) Vu Vo (2.29)

in the sense of distributions. Use this in (2.7) to obtain the theorem.
REMARK. In fact, we only need to assume that g is bounded. Then we can always select a

number ¢ large enough so that

0<m<c+pB <M.

Also, if we know that u is bounded a priori, then there is no need to assume that ©,0,3 are bounded
above. In this sense, our hypotheses are much weaker than those in [1]. However, in the generality
considered here it does not seem likely that u can be bounded.

Now we are ready to prove an existence assertion for the following problem:

Ou . . 9
%5, —div(O(u) Vu)+o(u)f(u) VuVv=0c(u)| Vov|
at —
div(o(u) Vo) =0 }G Qr =Qz(0.T), (2.30a)
u=0,v=Bon S =00x(0,T), (2.30b)
u=1U;on Qx{0}. (2.30c¢)

THEOREM 2.3. Let 9,0,0,8 be given as before. Assume that B e L%(0,T: W' %)) nL%(Q7),
and Uy € wL2(Q). Then there exists a weak solution to (2.30), i.e., there is a pair (u,v) such that

u,ve L20,T:wh2(Q)), (2.31)

uv-Be L0, T;wh @), (2.32)



132 X. XU

_ I ut dzdt + [ O(u) VuV gdzdt + | o(u)f'(u) V u V védzdt (2.33)
Qr Qr Qr

= I o(u)| Vo|2edzdt + |Ug(2)é(z,0)dz
97 o
for all € € HY(0,T;W}2(@) N L°(Q) such that &(z,T) =0,

I o(u) V vV ndzdt = 0 for all 5 € L2(0,T; w},» 2@)). (2.34)
Qr
PROOF. We shall follow the approach presented in [3] using a discretization technique. Let
ne€{1,2,..}). Set 6=T/n. For k=1,2,..,n, denote by B( ) the integral % | B(z,r)dr. Subsequently,
- ])
we may generate a set of n pairs (u(l) (l (u&") u(")) via the followmg iteration formula:

EAET S S O C) I P OO
=o(ulP)) v 2in g, (2.35)
di o(uh v olP) = 0in 0, (2.36)
ul®) = 0 on 0,

o) = B on 0,

k=1,2,..n,
where
0
us' ) = Uo.
Define two function u,,v, by
=0 v, ift<o,
t,(z,t) =
" ul®) if (k-1)6 <t <ES(k =1,...,n),

o et) = W if t<s,
T o® i (k—1)6 < t < kb(k = 2,...,n).

We infer from (2.36) that

sup  |uy(z,?)| <c, (2.37)
(z,t)€QT
(RAY Y Qr <ec(n=12,..). (2.38)

Let L (8 be given as before. Note that

J o(@Na Wy v P v (B (u("))dz
Q
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= - I o(ul) 7 o) v 1 j(u{)ax
Q

<cll Vol |, vy, (2.39)

and that

ot 78122 ullhaz
Q

=- [.,(.,s,ﬂ)us.*) Vo) v 1z
Q

<ell Vol |, vl |y (2.40)

Multiply (2.35) by L (u(k)) and use (2.39) and (2.40) in the resulting equation to obtain

%I (k) _ (k- l))L (w$Fdz + Ie(u(")) vuPvi j(u$,"))dz
Q Q
<ell Vol o1 vulP . (2.41)
Observe that
o)t~ D)B) 5 LB L= Dy (2.42)

Send j to infinity in (2.41) and use (2.42) in the resulting equation to obtain

%I{%( D)2 _ Lk~ D)2hy, 4 m j| VP |2z <ol volP) 3.
B b

Pick up an ¢ from {1,...,n} and sum for k =1,...,¢ to deduce

1}
%]u?.(z,t&)d:+%l II Vun|2d:dt
Q 0Q

7
<e I IlVonlzdzdt
0

Q
+%IU%(z)dz <ep (2.43)
Q
Consequently,
T
sup Iu?,(z,t)dz+ I J | Vuy| 2dzdt < c. (2.44)
0st<T g 00

In view of (2.39) and (2.40), we may rewrite (2.35) to read
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B E=D)
moh di 0 v ul®)) 4 dit o(ulEH () v D) (2.45)
= dit(a(us,k))vs,k) v us,k)) in Q.
For each n define @;(z,t) by

"(’%' 18 o) 4 Bt E= 15 (k1) < t < k8, k=1,2,u00m.

(o) =
We deduce from (2.45) that

2 - div(O(u) V up) + div(o(1)B(ug) V )
= div(o(up)vp V vp) (2.46)

in L20,T;w ~ 1 2(@)).
In view of (2.44), (2.37) and (2.38), we obtain that {Zw;} is bounded in L%(0,T;w ~12,(@)). This

allows us to invoke Lions-Aubin’s theorem to conclude that

{u;} is precompact in L2(QT). (2.47)
Use u$,") - uﬁ,"‘ 1) as a test function in (2.45) to get
%I(us,k) - us,k - 1))2dz:
Q
= [(— o) vl + o(ulhpl) v o)
Q
- a(us,k))vsf) v us,h)) v [us,k) - us,k - 1)]d:nt
<ell Vullg+ 1 TN Tul i+ 1 vl =Dy, (248)
Note that
kS 1/2
Il Vugc) ly= 6_11/_2.( J J | Vuy,| 2dxdt) < 61”/2. (2.49)
(k=1)5 Q
Similarly,
oo, < e (2.50)

Use (2.49) and (2.50) in (2.48) and then sum for k = 1,...,n to derive

S

J(un(z, t) —up(z,t - 5))2dz < c6l/2.
Q
On the other hand,

T
I (4 — ) 2dzdt = %I J (42, 1) = (2, — 6))2dzdt
Qr 0Q
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< c61/2-»0 as n—oo0.
Thus {u,} is also precompact in L2(QT).
There exists a subsequence of {n}, still denoted by {n}, such that
u,—u strongly in L2(QT) and weakly in 220, T; w1 2(Q)), and
vu—v weakly in L2(0,T; w1 2(@)).
To pass to the limit in (2.46), we still need to show that
v,—v strongly in L2(QT) (2.51)

We infer from (2.36) that

J o(1n) V vy V €dzdt = 0 for all € € L2(0, T; W) 2(@). (2.52)
Qr
Let By(z,t) = B)(z) if (k- 1)6 <t <k6,k = 1,2,...n. It is easy to see that

B,—B strongly in L2(0, ;w1 %()). (2.53)

Set ¢ = v, —v— B, + B in (2.52) to deduce

I o(up) | V (v —v) | 2dzdt = [ o(up) V v, V (B,, - B)dzdt
Qr Qr
- I o(uy) VoV (v, —v)dzdt
Qr
—0 as n—oo.

Consequently, we have
vy, —v strongly in L2(o, T;Wl'z(ﬂ)).
Thus (2.51) follows. Now we can take n—oo in (2.46) to get

2 - div(O(u)) + div(a(w)B(u) V v) = div(o(u)o V v)
e 120, T;w — L 2(q)). (2.54)

Send n to infinity in (2.52) to get (2.34). Then it is easy to verify from (2.34) that

div(o(u)B(u) V v) = o(u)f(u) Vu Vv, (2.55)
div(o(u)v V v) = o(u) | Vv |2 (2.56)

in the sense of distributions. Use (2.55) and (2.56) in (2.54) to obtain (2.33). The proof is
complete.
3. UNIQUENESS.

In this section, a uniqueness assertion is established for (1.1) in some special cases.
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THEOREM 3.1. Let the assumptions of Theorem 2.3 hold. Assume that ©(s) = s and that ¢ is
Lipschitz continuous. Then there exists at most one solution to (1.1) in the space
L0, ;W 4(@)) x L0, T; W (@),

PROOF. Suppose that there exist two solutions (u;,v;) and (ug,vy) to (1.1). First note that
(2.54) is equivalent to (2.33) when (2.34) holds true. Set

u =ul-—u2,? =v) —vy.

We derive from (2.54) that

(%ﬁ - A% =div(o(u))vy Vv - o(ug)vg V vg) — div(o(u)B(uy) V vy - o(ug)B(uy) V vy)
in L2(0,T;w ~ 12(q)).

Thus,

t t
M@l o+ J' ] | V¥ | 2dzdr = J J(c(ul)vl Vv, - 0(ug)vy V vy) V¥ dzdr
00 00
t
+ j I(a(ul )B(uy) V v; — 0(ug)B(ug) V vy) VT dzdr
00

=1 +1, (3.1)

Recall from our assumptions that Vv;, Vv, € [L°°(QT)]N . I, and I, can be estimated as follows:

t
J Ja(u2)(vl - v9) Vv Vi dzdr
0Q

|11|S +

t
J I(d(ul) —o(ug))vy V vy Vi dedr
0Q

Ia(uz)v2( Vv - Vuy) Vi dzdr
00

¢ 12 (1 1/2
<ec { ( [ I(d(ul) - a(uz))2dzdr) +(I I(ul - '12)2dcdr)
0Q

Q

¢ 1/2) [ ¢ 1/2
+(”|vvl-vv212dzd¢) }([JIVﬂlzdzdr)
00 00

t t
< cl([ Iv 2dzdr + J v 2dzdr
00 00

t t
+” | V5 | 2dzdt +%II|V?: | 2dzdr.
00 00

Here we used the fact that ¢ is Lipschitz continuous. Similarly,

t t
N 5%” | Va |2dz+c(“v2dzdr
00 00
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I | Vo |2dzdr)
Q

+

= T

Clearly,

[ ——y

I o(u;) Vv; V &dz = 0 for all € € 120, W} %))
)

forall0<t<T and for i =1,2.
Thus we obtain

[ e——y

Ia(u2)| V7 | 2dzdr = -
Q

[ ——y

](a(ul) —0(ug)) Vv, VT dadr.
Q

Consequently,

(= T

I | VD |2dzd‘r < cj I’ﬁ2dzd1. (3.2)
Q 0

By Poincaré’s inequality,

O'——.n

t
F2dzdr < c[ I | VT | 2dzdr (3.3)
0Q

<

Oy

I 2d::d'r.
Q

This immediately implies

]
1]
)

y (3.3),

<
1]
=]

Thus u) = uy,v; =vy. This completes the proof.

The above theorem is not very satisfactory because it requires that Vv be bounded, which
cannot be guaranteed by the existence theorem. Thus it is interesting to investigate when Vv
becomes bounded. We summarize our results in the following theorem.

THEOREM 3.2. Let the hypothesis of Theorem 2.3 be satisfied. ‘Assume
(i) erco'x(ﬁ) for some 0 < A < 1;

(ii) 2B e L0, T;¢%(@)) for each i;

(iii) N= 2%

(iv) o is Lipschitz continuous.

Then there is a A, € (0,1) such that -2 £vel®0TiC OM@)) for i =1,2.

PROOF. Set

Yv=v-B.

Then for a.e. t € [0,T), we have
Ja(u(z, 1)) Vy(z,t) V {(z)dz = — Ia(u(z, t))V B(z,t) V £(z)dz (3.4)
Q Q

for all ¢ € W(l,’ 2(Q). That is to say, we view (2.34) as a family of elliptic equations. Then for a.e. t
in (0,T) we appeal to a result due to Meyers [8, p. 36] to conclude that there is a positive number ¢
depending only on m, M in (H5) and on € such that
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I V0l g<cll VBN, g<e

for some p >2. Thus ve L0, T;WHP(Q)). Since u satisfies (2.54) and p > N = 2, we may invoke the
classical regularity theory for linear parabolic equations [5, pp. 181-204] to get

we MY 2(Q_T) for some A > 0.

It immediately follows that ueL°°(0,T;C°"\(§ )). Recall that ¢ is Lipschitz continuous. Hence
o(u(z,t)) € C"X@) for all t€[0,T]. We are in a position to apply a result in [6, p. 210] to (3.4),
thereby establishing

|'1)(..t)|I’ASCI+c2|a(u(-,t)VB(-.t)|0"\
< ¢ for some 1 > A > 0 and for all t €[0,T).

The proof is complete.

Combining Theorems 3.1 and 3.2 yields the following:

THEOREM 3.3. Let the assumptions of Theorem 3.2 hold. Assume that ©(s) =s. Then there
exists a unique solution to (1.1).
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