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ABSTRACT. Some new coincidence point and fixed point theorems for multivalued mappings in complete
metric space are proved. The results presented in this paper enrich and extend the corresponding results

in [5-16, 20-25, 29].
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1. INTRODUUHON AND PRELIMINARIES.
In recent years, the existence and uniqueness of coincidence points and fixed points for commuting

mappings, weakly commuting mappings and compatible mappings have been consideredby several authors

(see [2, 3, 6, 8, 17-28]). The purpose of this paper is to study the existence of coincidence points and fixed

point for multivalued mappings in complete metric space from different aspects. The results presented in

this paper enrich and extend the corresponding results in [5-16, 20-25, 29].
Throughout this paper, letR [0, +oo) and (X,d) a complete metric space. For any nonempty subsets

A and B ofX, we denote

d(x,A )- inf{d(x,a): a .A }(x _X),

d(A,B inf{d(a,b ): a _A, b _B,
H(A,B)-max[suPocA d(a,b), su d(b,A)},
CC(X)-{A: A is a nonempty compact subset of X},

CB(X)-{A: A is a nonempty closed and bounded subset of X}.
and H(., .) is called the Hausdorff metric on CB(X).
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LEMMA 1 [4, Lemma 2.2]. Let (X,d) be a metric space, A CX a nonempty compact subset and

B CX a closed subset. Ifd(A,B)-O, thenA CIB

REMARK 1. Even ira andB are both bounded closed subsets, the conclusion of Lemma 1 need not

hold. This can be seen from the following

EXAMPLE 1. LetX R and d the Euclidean metric on R2. Letting

p(., .) min { 1, d(., .)},

it is easy to verify that p(.,.) is a metric onRz. Therefore (R2,p) is also a metric space, and it is bounded.

Now we consider the following subsets of (R z, p):
A (x,y).R’: y --, x

ThenA and B are both bounded and closed and d(A,B) 0, butA t3B O.

LEMMA 2 [5, Theorem 1]. Let : R R be an increasing function such that

tI)(t +)<t for all t>0

and

(I.I)

ytl,’(t) is finite for all t>0. (1.2)

Then there exists a strictly increasing function : R R such that

tIt) < t) for all > 0 (1.3)

and

"(t) is finite for > 0. (1.4)

LEMMA 3 [5]. (i) If: R R is strictly increasing and satisfies (1.2), then satisfies (1.1).

(ii) Let : R R be increasing and satisfies (1.1). If ZtlY’(tl) is convergent for some tl > 0.

Then (1.2) holds.

(iii) Let : R -R be increasing and satisfies (1.1). If O(t) then 0.

2. MAIN RESULTS
Recently, Kaneko and Sessa [6] extended the definition of compatibility to include multivalued

mappings and proved the following theorem:

THEOREM 1. Let f: X X and T: X CB(X) be compatible continuous mapping such that

T(X) Cf(X) and

H(Tx, Ty) max d(fx,fy), d,Tx), d(fy, Ty), -(d(fx, Ty) + d(fy,Tx))

for all x, y in X, where 0 h < 1. Then there exists a point x. (EX such that fx. E Txo.

As an improvement and generalization of Theorem 1, we have the following

THEOREM 2. Let F: X CC(X), $, T: X CB(X) be three multivalued mappings such that

S(X) U T(X) C F(X), F(X) is closed and

H(Sx, Ty @(max ld(Fx,Fy), d(Fx,Sx), d(Fy, Ty ), 1/2(d(Fx, Ty + d(Fy,Sx))[ )
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for all x, y in X, where O: R R is an increasing function satisfying conditions (1.1) and (1.2). Then

there exists a point z EX such that

Fz NSz CI Tz # .
PROOF. By Lemma 2, there exists a strictly increasing function : R R satisfying conditions

(1.3) and (’1.4). For any x, y in X let us denote

(,y) ma (F,Fyl, d(F,Sx), a(Fy, ry), g(d(F, ry) / a(Fy,s)).

Then (2.1) can be reduced as follows:

(s,ry) (,y)).

For any xo EX, sinceS(X) C F(X), there exists anx EX such that Tx CIS , 0. Let y Fx f3Sxo,

then we have

d(Yl, TX,l) : H(Sxo, Tx) (since y, Sxo)

(a) IfA(xo,x)-O, thend(Fxo,Sxo)- 0. By Lemma 1,Fxof’lSxo , O. Takingz EFxo f3Sx then we

have

H(a, Txo) H(Sxo, Txu) (xo,Xo)

" (max {O, O, d(z, Txo), 1/2d(z, rxo)})
d(z, rxo)).

By mma 3 (iii) d(z,T)- O. Sin T clo z T. erefore is e nclusion of

eorem 2 proved.

) A(x) > 0, en, by (1.3) we ve

nquently, wen find an y Tx such Sat

d@,,y (x,)). (2.2)

Since T(X) CF(X), fory Tx CF(X), Sere exism a int X such Sat yF. is implies Sat

wen find an y F Tx such at (2.2) holds.

One other han by e aption we have

d(Y9 H(rx,) (x,)).

ff A(x)- O, by e me way stated e f of (a) we n prove at e nclusion of

eorem 2 e. ffA()> 0, reating e me way mentioned above, we n findxX and

y F such at

d@Y9 ffi (x,)).

duaively, we defineo quenee {x. }, {y.} CX such at

F.
n -0,, (2.3)
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and

/1, y2. /2)-: A(x,
d(y2/3 y/2).:(A(x/2, x/1))

n-0,1,2

Now we prove that {y. } is a Cauchy sequence in X. In fact, for any positive integer n we have

A(x2. x2,,/l)-max {d(Fx2., Fx/l), d(Fx, Sx2.), d(Fx2./l Tx/l),

(2.4)

(d(Fx2., Tx2. t) + d Fx2.

max {d(Y2., Y2./1), d(y,, Y2./1), d(Y,/I,

1

max {d(y2., Y2,/1, d(y2./1, Y2,/2)}.
By the same way we can prove that

A(x2./z, x2./1)’:max{d(Y,/1, Y2./2), d(Y2./2, Y2./3)}-
Consequently, in general, we have

(max {d(y., Y./t), d(Y./t, Y./2)}), n- 1,2,... (2.5)

If d(y. i, Y. +2) > d(y., y. i) 0, then, by (2.5) and Lemma 3 we have

d(Y, l, Y, +) d(Y, t, Y,+))<d(Y,+t,
a contradiction. Therefore we have d(y, 1, Y, +_) d(y,, y, 1)- Hence we have

a(y., y./).(a(y._, y.))....

. -afy, yg). n ,z (z.6)

If d(yl, Y2) "0, i.e. Yl Y2, denoting z Yt Y, then z Yt - Fxt fqS z Y2 - Fx2 CI Tx. Hence
z . Fxt tq Tx. Similarly using the proof in (a) we can prove z Sxl. Hence the conclusion of Theorem 2
is proved.

If d(y, Y2) > 0, in view of condition (1.4), we know that :E-td(yl, Y2)) is convergent. It follows

from (2.6) that Y_,d(y,, y, t) is convergent too. This implies that {y, } is a Cauchy sequence in X. Let it
converge to some point y. in X. Since y,

_
Fx, CF(X) and F(X) is closed, this shows that y. F(X).

Hence there exists z X such that y. _Fz. By (2.1) and (2.3) we have
aty.,S) afy., y./)+d(y./, Sz)

d(y., Y2, 2) +H(Tx2, t,Sz) (since Y2, Tx t)

<_ a(u., u2. + 2) + (a(z, x2,, +

-: d(y., Y2, 2) + tD(max {d(Fz, Fx t), d(Fz,Sz),

1
d(Fx l, Tx l), "(d(Fz, Tx2, l) + d(Fx, t,Sz))}

d(y,,y2, +2)+ tl(max {d(d(yo,Y2,/l),d(y.,Sz),

1
d(y2, l, Y2, 2), (d(y., Y2, 2) + d(y2, t, Sz))} ).

Letting n oo, we have
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d(y.,Sz) qnax O,d(y.,Sz), O,-d(y.,Sz) q)d(y.,Sz)).

By Lemma 3 (iii) we have d(yo,SZ) O. Since Sz is closed, so that y. Sz.

Similarly, we can prove that y. Tz. Therefore we have y. Fz fSz f Tz.

This completes the proof.
REMARK 2. (i) Theorem 1 is a special case of Theorem 2 with F being a single-valued mapping,

S=T and O(t) h t, where 0 h < 1 and R/.

(ii) Even if the mapping F in Theorem 2 is assumed to satisfy the condition "F(X) is closed",

Theorem 2 still weakens the continuity and compatibility conditions on T in Theorem I. This can be seen

from the following Example:

EXAMPLE 2. LetX R andfand g be two functions from R" into R defined by

if x < I,
f(x)

1, if x 1,
g(x) x(x + 1)-1.

It is easy to see that f(X) is closed, fand g are continuous, but they are not compatible (see [8, Example

2.5]).
(iii) Theorem 2 extends and improves also the corresponding results of [7, 8, 20-25].

As a consequence of Theorem 2 we have the following result:

COROLLARY 1. Let T: X CB(X)(i 1,2, ...) and

H(Trr, Ty),:tl)(max[d(x,y), d(x, Trr), d(y,TY), 1/2(d(x, Tiy)+d(y,Tx))), i,j (2.7)

for all x, y in X, where : R R is an increasing function satisfying conditions (1.1) and (1.2). Then

the fixed point set {x: x T.,x}, 1, 2, are nonempty and equal to each other. Moreover, ff at least

one of {T} is continuous, then they are all closed.

PROOF. For the sake of convenience we prove the conclusions of Corollary only for the case of i=

andj=2.

By Theorem 2, there exists an zX such that z Tz Tz.

How we prove that the fixed point sets of T1 and T are equal to each other. In fact, if u is a fixed

point of T, i.e. u Tzu, then we have

d(u,T_u)’H(Tlu,T_u)

m. d(.,I, d(.,rI, (.,r.I, g(d(.,rl/(d(.,r,.llt

-(max{0, 0, d(u,T2u ), 1/2d(u,T2u)})
q)(d(u,T u )).

By Lemma 3 (iii), we have d(u,T u) O. Since Tz u is closed, u T u.

By the same way we can prove that ifw is a fixed point of T2 then w is also a fixed point of TI. Hence

we have {x .X: x . Tx} {x .X: x . Tx}.
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Next, we prove that ifT (or T2) is continuous, then the set offixed points {x X: x Tx} is a closed

set. In fact, let {x,} (7_ {x .X: x _Tx} andx, --,,x asn oo. Sincex, Tx, and Tx, Tx ash

we have

d(x T,x s d(x,x,, + d(x,, Tx
d(x,x,)+H(Tx,,Tx)--O as n

i.e. d(x, Tx) O. Therefore x . Tx.
This completes the proof.

REMARK 3. If all the mapping T, 1, 2 in Corollary I are single-valued, then T, 1, 2

have a unique common fixed point in X.

In fact, let u, v X be two common fixed points of T, 1,2 then we have

d(u,) d(r,u, Tf
I(max {d(u,v), d(u,Tu), d(v, Tf),

l
(d(u,,) + d(v, ))})2

-qp(max{d(u,v), O, O, d(u,v)})

qP(d(u, v)), for all i, j, ,j.

Hence we have d(u, v) O, i.e. u v.

REMARK 4. The results of [5, Theorem 9], [9, 10, 11, 12, 13, Theorem 1], [14, Theorem] and [15,
Theorem 1, 3, 4] are all the special cases of Corollary.

DEFINITION. A function (tx, t.z, ts, t4,ts): R /s R is called to satisfy the condition (q0, if it is

nondecreasing in each variable and there exists an increasing function O(t): R -- R satisfying the

conditions (1.1) and (1.2) such that

(t,t,t, at, bt) l(t), Vt O, a + b 3, a, b 1,2.

THEOREM 3. Let F: X CC(X), $, T: X CB(X) be three multivalued mappings such that

S(X)U T(X)(7. F(X), F(X) is closed and satisfies the following conditions:

H(Sx, Ty),,P(d(Fx,Fy), d(Fx,Sx), d(Fy, ry), d(Fx, Ty), d(Fy,Sx)) (2.8)

for allx, y inX, where P(tx, tt,t4,t): R/s R satisfies condition (xp). Ten there exists a point z

such that Fz CISz CI Tz # J.
PROOF. Let

t" max [d(Fx,Fy), d(Fx,Sx), d(Fy, Ty ), 1/2(d(Fx, Ty + d(Fy,Sx))}.
Without loss ofgenerality we can assume that d(Fx, Ty) d(Fy,Sx) (otherwise, it can be proved similarly).

Then we have

t" max {d(Fx,Fy), d(Fx,Sx), d(Fy, Ty)},

l(d(Fx, Ty) + d(Fy,Sx)) d(Fy,Sx)

2t" d(Fx, Ty + d(Fy,Sx d(Fx Ty
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Using condition () and (2.8) we have

H(Sx, Ty) tP(t’,t’,t’,2t’,t’) (t’)

Therefore, F, S, T satisfies all conditions of Theorem 2. The conclusion of Theorem 3 follows from

Theorem 2 immediately.
From Theorem 3 we can obtain the following

COROY 2. Let T: X CB(X), 1,2, satisfy the following condition

H(Tx,T y)(d(x,y), d(x, rrr), d(y, Tiy), d(x,Ty), d(y,Trx)), Vi, y, i,j

for all x, y in X, where (t,t.z, ts, ts, ts): R /s R satisfies condition Q). Then the: fixed point sets

{x X: x T.,x}, 1, 2,... are nonempty and equal to each other. Moreover, if one of T, 1,2,
is continuous, then they are closed.

REMARK $. Corollary 2 generalizes the corresponding result of [29].
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