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ABSTRACT. The well known Bernsteln Inequallty states that If D Is a dlsk

centered at the origin wlth radlus R and If p(z) Is a polynomlal of
n Azndgree n, then max IP’ (z)l max Ip(z)l wlth equallty iff p(z)

zD zD
However It Is true that we have the followlng better inequallty:

n
max Ip’Cz)l -< max IRe pCz)
zD zD

with equality iff p(z) AZn.
Thls is a consequence of a general equality that appears in Zygmund [?]

(and which is due to Bernstein and Szeg): For any polynomial p(z) of

degree n and for any s p < we have

where Ap ,/2 F( p + 1)
AZnwlth equallty Iff p(z)

P F( p + 3)
In this note we generalize the last result to domalns different from

Euclidean disks by showing the following: If g(eix) is dtfferentlable and

if p(z) Is a polynomial of degree n then for any s p < we have

Ig(el)p (g(ele))lPde A n max
P "0

with equality tff p(z) Azn.
Re{p(ei/g(eie))} pde}

1/p

We then obtain some concluslons for Schllcht Functlons.
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1. INTROICTION.

The classical result of Bernstein as it appears in [2] is Bernstein

Inequality If D is a Euclidean disk and P is a polynomial of degree n

over C then
n (1)liP D tr(D) IIPlID

where llfllD sup If(z)l and tr(D) is the transfinite diameter of D (which
D

is the disk’s radius in this case).

This result was generalized to various directions. The following theorem

appears in [I] Let 0 s k s and let E be a closed k-quasldlsk, then

THEOREm. For any polynomial P of degree n we have

and

P(Zl)-P(Z2)
Zl-Z2

l+k
n- Cl tr(E)IlPllv., Zl’Z2 E (2)

l+k
lip’ lie c2

n
rCE) IIPlIE C3)

ewhere c 2-ke( + and c
2

2
-k

Another direction of generalization arises naturally in the following:

Let # be the class of all analytic functions f(z) akzk in
k=O

Izl < such that 0 < If(z)l < A problem posed by Krzyz [4] is to

determine A max a n -> [3].The conjecture (which is still unsolved)
n n

2
is that A and that it is attained only by rotations of

n e

gn(Z) exp [- zn-1
zn/l

Let f(z) be an extremal function for ^n
IIC’I’II. If(O) l and equality holds onIy for otations of gn
there hich Indicates that this cnJecture ay be true

THEOREI [5]. If n 2p + and if a a
3 a2p_l 0, then

2
la01 _< 1 Equality sign occurs iff lanl

The proof of this uses the following generalization of (1): Let

S(0,1} {z C Iz[ < I} and let p be any polynomial of degree n

over C then

llp’ liD(0, I)
s nRe PlID(0, 1)

This follows from an inequality of Zygmund [7]

TI{EORE. For any polynomial p of degree n and for any s p <

we have

(4)
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where

IP’ (eiX)IPdx}
I/p

IRe p(eiX) Pdx}
I/p

Ap
P

/2 r(1/2 p + 1)

+r(1/2 p

and equality occurs in (5) iff p(z) Azn

In this note we indicate a way to generalize (5) to domains E other

than

where

(5)

(6)

D(0,1) by using the same ideas as in Zygmund’s proof applied to

g is a quite general mapping D(O,I) E.

pog

2. RESULTS.

THEOI 1. Let g be a complex valued function of

Suppose that {arg g(eiX)10 s x s 2} [0,2=/n] and that
dx

then for any non-negative, non- decreasing convex function for any

and for any polynomial P of degree n over C we have

O(n-lllm{elg(eie)p’(g(eie))}l]de max(X(IRe{p(elg(ele))}II de}
0

equality occurs in (7) iff p(z) Az

We remark that the consequences of Theorem hold true even if the

condition

(arg g(eiX)lo x 2} 2 [0,2/n]

is dropped.

We will indicate at the end of Section 4 how to prove that.

With the notations of Theorem we have

e ix, 0
_

x
_

2I.

dg(eiX)
exists,

(7)

THEOItEN 2. If p < m, then

Ig(eiB)p’(g(eie))IPd8 - A n max IRe{p(eig(eie))}IPd8 (8)
P ’0

with equality iff p(z) Azn.
As a consequence we derive an analogous theorem to (I),

THEOREN 3. If E is a simply connected domain such that

G D(0,1) E is a Riemann mapping normalized by G(O) O,

p < and every 0 s r < we have

{0 }I/p 4 A n C ie /P
IP’(G(reie))IP de P max IRe{P(eiG(re

riG’(O)

This last inequality is not sharp.

0 E, and if

then for every

))}1 p de} (9)
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Returning to the function g of Theorem we add

COROLLARY.

max max (10)

Ig(elO)lPdo -< A max IRe{eiBg(eiO)}lPdo
0 P

1/p

(11)

The last corollary can be seen directly, but, it shows that we cannot drop

"max" on the right hand of the above inequalities since it is easy to find a- while lira ,,llgl]pg such that [[Re g]Ip

3. PREPARATIONS.

Let p(z) co + ClZ + + CnZ be a polynomial of degree n where

c
O R We denote

S(z) (p(z) + p(z)) g(z) y(p(z) p(z))

ix
Let g be a complex valued function of e x R such that

{arg g(eiX) lo x Z=) m [o,Z-] and such that (e ix)- - exists. We denote

(12)

g(e ix) R(x)ei#(x), R(x) Ig(eiX)l #(x) arg g(e ix) (13)

n
S(x,t) C

0
+ RP(x)(av cos ut + by sin
u=l

n
(x,t) RU(x)(a sin vt b cos ut)

u=l

(14)

where cO,al,...,an,b1,...,bn E

where the coefficients a,b are such that

S(x,@(x)) S(g(eiX)) (x,@(x)) (g(eiX)) (15)

As in Zygmund we denote the modified Dirichlet kernel and it’s conjugate

kernel by D (u), D (u) respectiveiy. Thus
n n

n-1
sin nuD (u) cos uu + cos nu

n
v=l 2 tan u

~, n-I

Dn(U) sin u + sin nu (1 cos nu) cot u
=1

(16)

We will also need the zeros of cos nt
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2n t

u (2v-1)x/2n v 1,2,...,2n

will be a step function which has jumps at the points u

(3.6), (3.21) on pages 10, 11 [7] we have

(17)

By

TliEOBEM (Zyglmmd)

S(x u) anRn(x) cos nu + (S(x, t )Dn( t-u)d2n( to
(18)

Rn(x)_ sin nu + f2jox(x u) a
n S(x,t)Dn(t-u)d#2n(t)

Thus for any real number c we have

S(g(eiX))cos (g(elX))sln a Rn(x)cos[n#(x)+] +
n

(19)

OX { sln[n(#(x)-t)+=]-sln }+ S(x, t) d#2n(t)" 2 tan (#(x) t)

4. A PROOF OF TIIEOBEM 1.

As in Zygmund, let x
0

be a root of sln[n#(x) + ] such that

cos[n#(Xo) + ] We differentiate {19) with respect to x and

substitute x x
0

By (12) we have

-(g(etX), -I.{eiXg (elx,p (20)

(g(etX)) Re{eiXg’ (etX)p’ [g(eiX)/}
This takes care of the left hand side of (19) On the right hand side we

first differentiate R(x) and use:

R’(x) { elXg’ elX) }R(x) -Is
g(elx)

n
O__ {(x,t)} uRU(x)(aucos ut + b sin ut)

=I

t=C(x)
Re{g(eiX)p’ {g(eiX)} }
Ig(elX)p’ (g(eiX)} }

g(eix), } Re{g(etX)p [g(eiX)}} cos x-Im{g(etX)p [g(etx)})sin (21)
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We now dlfferentlate

page 12 [7] we get

on the right hand side of (19). Using (3.22) on

lXo lXo)}Ree g’(e 2n )u+l
IXo

(-1 + sin

g(e u=l 4 sln
2

(#(Xo)-Up)

IXo iXo).}where we have used @, (Xo} Re{e g’ (e

g(eIxO)

S(x0
(22)

Combining (20}, (21), (22) with (19) gives

ix Ix
0-I et(Xo+)g’(e O)p’[g(e )Jl

Ix
0

-I g(e ) Re{eig(eiXO)p, [g(eiXO)) } +

g(elXO} )

ix ix_

{ Og’(e u)}+ Re e

g(e

2n P+. C-I + sin

((Xo)P=l 4 sin
2 S(xo, up)

We now use the identity Im(A.B) Re(A)Im(B) + Im(A)Re(B) with

Ix
0

ix
0 elCg(eiXO)p, Ix

0A e g’ (e B [g(e )J and get finallyix
0

g(e )

Ielg(eiXO IXo 2n v+l!-I)_ / sin .
1

P=l 4 sln
2

(#(Xo)-Up)
S(xo, up)

This is a generalization of (3.22) on page 12 of [7]. Let

then

(-1)P+1 + sin
P 1,2,...,2n

4 sin
2

((Xo)-Uu)

2
#1 + 2 + + #2n n

i(#(e)+#(x)-#(xo))
We use (23) with R(e + x- XO)e
(see (13)) and get

in place of g(eTM)

2n

Re{P le
I(Uv-(Xo))g(eie)} }Im(ei’g(eie;P Ig(eie;}} " plp

Usln the assumptions on X. (25) and applying Jensen’s inequailty we get

(23)

(24)

(25)
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Intesratlon wlth respect to e gives (?) The equallty assertion follows

from Zygmund. Thls completes the proof of Theorem I. o

To prove that the consequence of Theorem hold true even If we drop the

condltlon

{arg g(eiX)lo x 2} [0,2/n]

we can use (3,23) In [7] wlth the followlng

n
S(8) co + (av cos v8 + bv sin vB)Rv where x

0 .n

Then for R z O, 0 8, ec 2 we get

2n

where the p are Independent of R,e. From that we proceed as In the proof

of Theorem I.

A lOOF OF TIIEOREM 2.

Let x(t) tp in (7) We get

Let g(eLS)p’ [g(el))} ACO) + IB(O) then we have

fO IBCe)cs ec + ACS}sin ecl p d6 np Re P el"gee18) Pd8
As in Zygmund we integrate this with respect to ec over 0 s ec s 21 chane
the order of Integratlon on the left hand slde and use

(a2+b2)P/2 0x
a cos + b sin ecl P dec Isln ecl p dec

to get

this proves (8) and completes the proof of Theorem 2. o

P }l/pde
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6. PlOOl OF T}IEOREI 3 AND TIIECOROLLARY.

By the normalization G(O) 0 we can use Theorem 2 with

g{eTM) G{relX). We apply Koebe’s -theorem [6] to get

riG’{O}[ [G{relS)l Thls bounds the left hand slde of (8) from below
4

and proves (9}. o

(10) follows from (7) with p(z) z applled to g and to ig.

(II) follows from (8) with p(z) z. o

REFERENCES

[I] Anderson, J.M., Gehrlng, F.W., Hlnkkanen, A.: Polynomial
Approxlmatlon In Quasldlsks, in "Dlfferentlal Geometry and Complex
Analysls", edlted by Chavel, I. and Farkas, H.M., Sprlnger-Verlag,
19BS. pp. ?S-86.

[2] Cheney, E.W.: Introduction to approximation theory, McGraw-Hill,
New York, 1966, p. 92.

[3] Hummel, J.A., Schelnberg, S., Zalcman, L.: A coefficient problem for
bounded nonvanlshlng functlons, Journal D’Analyse Math. Vol. 34
{1977}, pp. 169-190.

[4] Krzyz, J.: Coefficient problem for bounded nonvanlshing functions,
Ann. Po]on. Math. 20 {1968), p. 314.

[S] Peretz, R.: Some properties of extremal functions for Krzyz problem,
accepted by J. of Complex Variables Theory and Applications.

[6] Pommerenke, Chr.: Univalent functions, Vandenhoeck and Ruprecht,
Gottlngen, 197S, p. 22.

[7] Zygmund, A.: Trigonometric Series, Cambrldge Press, 1959, Vol. If,
Chapter X.


