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ABSTRACT. The well known Bernstein inequality states that if D 1is a disk
centered at the origin with radius R and if p(z) 1is a polynomial of

degree n, then max |p’(z)| s % max |p(z)| with equality iff p(2z) = AZ".
zeD z2eD
However it is true that we have the following better inequality:
max |p’(z)| = g max |Re p(z)|
zeD zeD

with equality iff p(z) = AZ".
This is a consequence of a general equality that appears in Zygmund (7]
(and which is due to Bernstein and Szegd): For any polynomial p(z) of

degree n and for any 1 = p < » we have

14 1/p n 1/p
1 (1% (P ix, p
{ Ji Ip’ (e )] dx} = Apn { jj |Re p(e™ )| dx}

, TGP +1) n
with equality iff p(z) = AZ".

In this note we generalize the last result to domains different from
Euclidean disks by showing the following: If g(eix) is differentiable and
if p(z) 1is a polynomial of degree n then for any 1 = p < w we have

n 1/p n 1/p
{Ji a3 (ate" )| Pas} s A -;x{f) [Rep(ePg(e')} Pao)

with equality iff p(z) = AZ".

We then obtain some conclusions for Schlicht Functions.
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1. INTRODUCTION.
The classical result of Bernstein as it appears in [2] is Bernstein
Inequality. If D 1is a Euclidean disk and P is a polynomial of degree n

over C , then

’ n
IPlp = &=y IPlp (0

where nf“D = sup |f(z)| and tr(D) is the transfinite diameter of D (which
D
is the disk’s radius in this case).

This result was generalized to various directions. The following theorem

appears in [1] . Let 0 =k =1 and let E be a closed k-quasidisk, then
THEOREM. For any polynomial P of degree n we have

1+k
n

tr(E)

P(2,)-P(2,)
z

s c, Ielg » z,.2, € E (2)

2

1722

and
nl#k
1P’ lg = <, &y IPlg (3)
K

P . -
where ¢y = 2 e( it 1) and c, = 2 e .

Another direction of generalization arises naturally in the following:
-]
Let B be the class of all analytic functions f(z) =} akzk in
k=0
|z] <1 such that 0 < |f(z)| < 1 . A problem posed by Krzyz [4] is to

determine An = max |an|, nzi1 [3].The conjecture (which is still unsolved)

is that An = % and that it is attained only by rotations of

zn-l
g (z) = exp [— ]
n 241

Let f(z) be an extremal function for An .

CONJECTURE. |f(0)]| = é and equality holds only for rotations of g, -

A theorem which indicates that this conjecture may be true is:

THEOREM [5]. If n=2p +1 and if a, = a, = *** = a = 0, then

1 3 2p-1
1 2
|ao| = 7 . Equality sign occurs iff |an| =3
The proof of this uses the following generalization of (1): Let
D(0,1) = {z € €| |z| < 1} and let p be any polynomial of degree n
over C , then
’
IP"Ipc0,1) = ™IRe Plp(o,1) @
This follows from an inequality of Zygmund [7]

THEOREM. For any polynomial p of degree n and for any 1 s p < o

we have
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b4 ix 1/p n ix 1/p
{ o |p’ (e )|pdx} =< Apn { |Re p(e )|pdx} (5)
0

1
vz FGp+1)

P 1 1
r(i p+ §)

where

(6)

and equality occurs in (5) iff p(z) = AZ"

In this note we indicate a way to generalize (5) to domains E other
than D(0,1) by using the same ideas as in Zygmund’s proof applied to p - g
where g 1is a quite general mapping D(0,1) - E.

2. RESULTS.
THEOREM 1. Let g be a complex valued function of eix, 0 = x = 2m.

ix
Suppose that {arg g(eix)lo = x = 2n} 2 [0,2n/n] and that §§§§__) exists,
then for any non-negative, non- decreasing convex function x , for any a« € R

and for any polynomial P of degree n over C we have

Iznx[n-1|Im{elag(eie)p'(g(eie))}|]de = mgx{fznx[|Re{p(eiﬁg(eie))}|] de} (7)

equality occurs in (7) iff p(z) = Az .
We remark that the consequences of Theorem 1 hold true even if the
condition
{arg g(eix)lo = x = 2m) 2 [0,2n/n]
is dropped.
We will indicate at the end of Section 4 how to prove that.

With the notations of Theorem 1 we have

THEOREM 2. If 1 =<p < », then

L4 1/p L4 \1/p
{Iz Iz(e“’)p'(g(e“))l"de} sAn m;x{jz IRe(p(eiBg(eie)»l"de} (8)

with equality iff p(z) = AZ".

As a consequence we derive an analogous theorem to (1),

THEOREM 3. If E 1is a simply connected domain such that O € E, and if
G : D(0,1) » E is a Riemann mapping normalized by G(0) = 0, then for every

1 sp<w and every O =1 <1 we have

T 1/p 4 A n 4 1/p
{JZ |P'(G(reie))|p de} <P max{‘[2 IRe(P(eiBG(reie)))lp de} (9)
0 r|G'(0)| B VYo

This last inequality is not sharp.
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Returning to the function g of Theorem 1 we add

COROLLARY.
2n . n . .
max {J x[llm{elag(eie))l]de} = max {IZ x[,Re(elﬁg(elﬁ))l]de} (10)
a (0] B 0
- ) 1/p x 1/p
Jz ]g(e19)|pd9 = A_ max Iz |Re{eiﬁg(eie)}[pde (11)
0 P g 0

The last corollary can be seen directly, but, it shows that we cannot drop
"max" on the right hand of the above inequalities since it is easy to find a

g such that |Re g"p =1 while lim “g“p = .
pow

3. PREPARATIONS.

Let p(z) = CO + clz + eee + cnzn be a polynomial of degree n , where

c0 € R . We denote

S(z) = Xp(z) + p(@)) , §(2) = 1(p(2) - (D)) (12)
Let g be a complex valued function of e , x € R such that
{arg g(eix)|0 = x =2m) 2 [0,%5] and such that g%(elx) exists. We denote

ge'®) = R R(x) = |g(e?¥)] | $(x) = arg g(e!¥) (13)

n
S(x,t) =C, + Y} RV(x)(a. cos vt + b_ sin vt) (14)
0 vt v v

n
S(x,t) = Y Rv(x)(av sin vt - b cos vt)

v=1
where co,al,“-,an,bl,--',bn € R
where the coefficients a,b are such that
ix = & ix
S(x,¢(x)) = S(gle™™)) , S(x,¢(x)) = S(gle™™)) . (15)

As in Zygmund we denote the modified Dirichlet kernel and it’s conjugate

* ~%
kernel by Dn(u), Dn(u) respectively. Thus

n-1

. s
D (u) = 1 Y cos vu + 1 cos nu = =2 (16)
n 2 & 2 1
v=1 2 tan 3 u
2

~* ot 1 1 1
D (u) =Y sinvu+ 5 sinnu=(1-cos nu) 5 cot 5u.

n =1 2 2 2

We will also need the zeros of cos nt
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u, = (2v-1)n/2n , v = 1,2,--+,2n

¢2n(t) will be a step function which has jumps E at the points wu,

(3.6), (3.21) on pages 10, 11 [7] we have

THEOREM (Zygmund)

L4
n 1 *
S(x,u) a R (x) cos nu + Jj S(x,t)Dn(t-u)d¢2n(t)

[}
Al

14
S(x,u) anR“(x) sin nu + jz S(x,t)ﬁ;(t-u)dc)'»zh(t)

Thus for any real number o we have

S(g(eix))cos a - §(g(e1x))s1n a

1 2" sin[n(¢(x)-t)+a]-sin «
+ = Iz S(x,t) { 1 } d¢2n(t)
0 2 tan 5 (¢(x) - t)

aan(x)cos[n¢(x)+a] +

4. A PROOF OF THEOREM 1.

As in Zygmund, let X be a root of sin[ng(x) + «] such that
cos[n¢(xo) +a)l =1 . We differentiate (19) with respect to x and
By (12) we have

Seae™) = -1nfee ™ (5]}

substitute x = x0 .

gg(g(eix)) = Re{eixg’(eix)p’[g(eix)]}

293

(17)

By

(18)

(19)

(20)

This takes care of the left hand side of (19) . On the right hand side we

first differentiate R(x) and use:

R’ (x) - -In { eixg,(eixl } ‘

R(x) g(eix)
O Ex,t)y =% w0 t +b_sin vt
3 {S(x,t)} -v§1 VR (x (avcos v , sin v ) .
g‘f' - Re{g(eix)p’ [s(eix)]} .

t=¢(x)
= = mofae™ " (2]}

t=¢(x)

_1.{91:;:;’()} {Re{g(eix)p’ [g(eix)]} cos « -Im{g(eix)p' [g(eix)]} sin a} (21)
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We now differentiate ¢(x) on the right hand side of (19). Using (3.22) on

page 12 [7] we get

ix ix
Re{e ° g’ (e o) 1 %n -1)"*! + sin a S(xu )
% D=1 4 sin® L (¢(x )-u ) 0w
gle ) 2 0" v
ixo , 1x0
where we have used ¢'(xo) = Re{e gx i )} .
0
g(e )

Combining (20), (21), (22) with (19) gives

1(x, +a) ix ix
- I»{e * e O fate °)]}=
ix ix
o , 0 ix ix
-1 %} Re{ems(e %’ [s(e 0)]} +
0
g(e

v+l
+ sin a

ix ix
o ,,. "o 2n
+Rel € g'(e )1 T (-1) S(x..,u_)
ix0 m oyt sin2 1 (¢(x.)-u ) 0w
gle ) 2 0" v

We now use the identity Im(A*B) = Re(A)Im(B) + Im(A)Re(B) with

1x0 , ixo ix

e ) , B = eiag(e 0

lxo
)’ [s(e )] and get finally

ix ix 2n v+l
Im{eiag(e O)p'[g(e 0)]}= _ % T ( 1; - + sin « S(xp+u,)
v=1 4 sin” 5 (¢(xo)-uv)

This is a generalization of (3.22) on page 12 of [7]. Let

(-I)V+1 + sin «

4 sin® 1 (o(x)-u)

B =

| , v=12,:++,2n
v

then
_ .2
31 + BZ + + BZ =n

l(¢(e)+¢(x)-¢(x0)) ix
We use (23) with R(6 + x - xo)e in place of g(e ")

(see (13)) and get
1(u -¢(x,.))
)

2n
ja , 16, , ie 1
IIm{e g(e )p [s(e )]} =+ LB,
Using the assumptions on x, (25) and applying Jensen’'s inequailty we get

v=1

(22)

(23)

(24)

(25)
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ot ) 2 e

Integration with respect to © gives (7) . The equality assertion follows
from Zygmund. This completes the proof of Theorem 1. o

To prove that the consequence of Theorem 1 hold true even if we drop the

condition
{arg g(elx)lo s x = 2n) 2 [0,2n/n]

we can use (3,23) in [7] with the following
n v 1
S(e) = o + § (av cos v@ + bv sin ve)R where Xg =~ g -
Then for R20, 0 =0, a =2t we get
1 2n
S5 LB,
1
0.

From that we proceed as in the proof

l Im[eiaReiep, (Reie)) i (e*“k*g)]

where the Bv are independent of R,

Re p[Re

of Theorem 1.

S. A PROOF OF THEOREM 2.

Let x(t) = tP in (7) . wWe get

I: " Ilm{elag(eie)P' [g(eie)]}lp de s nP m;x {Jj " IRe{P[ewg(em)]}lpdo}

Let 8(910)9' {8('319)] = A(8) + iB(8) then we have

n " P
Jz |B(@)cos a + A(8)sin “lp de = np.ax{r IRe{P[emg(eie))}l de}
0 g "0

As in Zygmund we integrate this with respect to « over 0 = a s 2r , change
the order of integration on the left hand side and use

L L4
J‘2 |a cos « + b sin alp da = (32+b2)P/2 IZ |sin a]p da
o] 0

to get

in

g(e Op’ [s(e“’)] [p de}l/p

1/p - p 1/p
s { —uﬁ'_ } n nax{IZ 'Re{P(eiBS(ew)]}I de}
J'Z |sina|Pda g L0
0

this proves (8) and completes the proof of Theorem 2. o
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6. PROOFS OF THEOREM 3 AND THE COROLLARY.

By the normalization G(0) = O we can use Theorem 2 with

g(eix) = G(reix). We apply Koebe's % -theorem [6] to get

L 64(0) s |G(reie)| . This bounds the left hand side of (8) from below
and proves (9). o

(10) follows from (7) with p(z) = z applied to g and to ig.

(11) follows from (8) with p(z)

n
N

o
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