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ABSTRACT. In this paper, we derive some consequences of Milin's inequality for the
logarithmic coefficients of a univalent function by exploiting a reformulation of
it.
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1. INTRODUCTION.

Let S denote the class of all functions f(z) which are analytic and
univalent in the unit disk U = {z:[z| < 1} and are normalized so that f(0) =0
and f’'(0) = 1. The logarithmic coefficients ¢, of f(z) are defined by the

relation

f(z)
log ——] =2 Z nzk.
z

k=1

In particular, the Koebe function k(z) = z(1 - z).2 has logarithmic coefficients
7 =1k (k =1,2,...).

In fundamental work published during the 1960's, I. M. Milin concerned himself
with logarithmic coefficients and their role in the theory of univalent functions.
Subsequent to a great deal of intense research, Milin conjectured the inequalities
stated in Theorem 1 below. These inequalities attracted much attention because
their truth would imply the the truth of the Robertson conjecture and the Bieberbach
conjecture, in addition to others. Then, in 1984, Louis de Branges [1, p. 146-150]
proved these inequalities using Loewner’'s parametric method and a special system of
strictly decreasing weight functions. An alternate treatment of these inequalities
was subsequently presented by Fitzgerald and Pommerenke (2, pp. 683-690]. Since
then, many authors have explored these inequalities. In this paper we shall also do

so, but first we restate de Branges' famous result.
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THEOREM 1. (de Branges) Let f € S, and let 9, (k = 1,2,...) denote the

logarithmic coefficients of f. Then, for every N = 1, we have

N
N+1-k
2
k(N + 1 - Kk)lyl™ = _— (1.1)
L s L
k=1 k=1

Equality holds if and only if f(z) = z/(1 - 22)%, Inl = 1.

It is our purpose here to derive further consequences of Theorem 1 by utilizing

the following equivalent reformulation of it.

THEOREM 1°. Let f € S, and let 9, (k = 1,2,...) denote the logarithmic
coefficients of f. Let P(k) (k = 1,2,...) be a non-negative, non-increasing
convex function. Assume further that the weight function P is eventually
identically zero; that is, that there exists an N for which P(k) = O whenever
k 2z N + 1. Then, for this value of N, we have

N
Z K P(k) |7,
k=1 ki

P(k)
_ (1.2)
k

<

o o=

2
|

1

Equality holds if and only if f(z) = z/(1 - nz)%, Inl = 1.

As it is pointed out in [1], Theorem 1’ follows from Theorem 1 by two Abel
summations (or summations by parts). Of course, Theorem 1 follows from Theorem 1’

by simply choosing the weight function

N+1-k, k=

|
—
=z

P(k) =

o, k = N+1,...

Thus, these theorems are equivalent, even though Theorem 1’ appears on the surface
to be more complex.

Several authors have concerned themselves with consequences of these
inequalities and with other inequalities which are similar in nature. Milin and
Grinshpan [3, pp.139-147] derived a necessary condition which must be satisfied by
the weights P(k) in Theorem 1’ 1if the Koebe function is to be extremal, and
explored some of its consequences. Andreev and Duren [3, pp. 721-728] reproved this
necessary condition in a different manner, and detailed its consequences.

Many choices for P yield interesting applications of this theorem. However,
for some desired choices, such as P(k) = K% (« > 0), or P(k) = r* (0 < r < 1),
the assumption that P is eventually identically zero could never be met. The
simple process of truncation produces a sequence {P(1),...,P(N),0,0,...} which is
eventually identically zero, but then the truncated sequence need not be convex,
thereby preventing the application of Theorem 1’.

In Section 2, we provide a simple method of circumventing this difficulty.

In Section 3, we take advantage of this method in a natural manner to obtain

several interesting consequences which extend and generalize known results.
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2. REDEFINING THE CONVEX WEIGHT FUNCTION P(k).

Let N = 2 be fixed, and P(k) (k = 1,2,...) be given. Assume that P is
non-negative, non-increasing, and convex. Assume further that the weight function
P(k) > 0 for all k z 1 (i.e., that P 1is not eventually identically zero), but
that P(k) » 0 as k 3 o.

If P(N - 1) > P(N), then there is a unique straight line which passes through
the points (N - 1, P(N - 1)) and (N, P(N)). The equation of this line is

y = [P(N) - P(N-1)] x + [NP(N-1) - (N - 1) P(N)],

and the x-intercept of this line is easily seen to be

P(N)

Xy =N+ —m8M |
" P(N - 1) - P(N)

We consider two cases.
CASE I: If

P(N) <
P(N - 1) - P(N)

or equivalently, if 2 P(N) s P(N - 1), then we define a new convex weight function
by

A P(k), k=1,...,N
P(k) =
0, k = N+1
A
In this case, P is a simple truncation of P, and it is geometrically evident that

A
P satisfies all preconditions necessary to apply Theorem 1'.
CASE II: If

P(N)
1< ——7m87 84— < 4o
P(N - 1) - P(N)

A
then we define a new convex weight function P by including a mid-range linear
section, the addition of which will facilitate the estimations to follow.

Specifically, we define

P(k), k=1,...,N

P(k) = {[P(N) = P(N-1)]k + [NP(N-1) - (N-1)P(N)], k = N+1,...[x]
o, k = [xy)+1,...

where [ ] denotes the greatest integer function. Since P has been redefined in
a linear fashion for mid-range and end-range values of k, it is again geometrically

A
clear that P satisfies all pre-conditions necessary in order to apply Theorem 1’
In so doing, we obtain
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N N+Np N NeNp A

A 2 P(k) P(k)
I ptlnt®+  § kg t®s § — ) —
k=1 k=N+1 k=1 =N+1

where we have set Np = [P(N)/(P(N - 1) - P(N))I].

This last inequality allows for convenient estimations. For example, if we set

A
P(k) = ak + b, where a = P(N) - P(N-1) and b =NP(N - 1) - (N - 1)P(N), then

NeNp A N+Np
P(k) ak + b N b1 Np
- = < a + n —1-
z X Z X P 1+ N
k=N+1 k=N+1
Hence, estimates of the form
. ") N
J kPin® < § +aNp+bilnfy 41
k=1 k=1 N

A
are possible, with no explicit reference to the values of P. Also, since we have

A
constructed P(k) = P(k), we obtain the inequalities

N N+Np
P(k)
T kP I? s X
k=1 k=1 k=1
so that
- o P(k)
2
I kP Inl* s § - (2.1)
k=1 =

which is significant whenever the series on the right converges.

The above observations were made under the assumption that P(N - 1) > P(N).
If P(N - 1) = P(N) > 0, then the convexity condition would require that P(k) =
P(N) for all k > N. But then P could never be red;fined as above to be
eventually identically zero. In addition, the infinite series on the right side of
(2.1) would diverge by comparison to the harmonic series. Such a choice for P
would be inadmissible.

Of course, every admissible choice of P yields a new inequality of the form

(2.1). In the next section, we present some of these choices.

3. RESULTS.
Andreev and Duren [3, p. 722] asked whether the partial sum inequality

z k |1k r* g

k=1

L

holds for any r > 0. Although they provide some supportive evidence that this
inequality should hold for r = 1/2, they also establish [3, p. 727] that for no
N 2 2 can it hold for all r < 1.
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In Theorem 2(a) below, we shall show that this inequality does indeed hold if
r s 1/2. It is not known whether the constant "1/2" 1is best possible. Within the
proof of Theorem 2(b), a method of estimating the left-hand side of the above
inequality when 1/2 < r < 1 1is provided. Although Theorem 2(b) has been obtained
elsewhere (see, for example, Milin and Grinshpan [3, p. 143]), our purpose here is
to show that it may be easily obtained from Theorem 1’.

THEOREM 2. Let f € S, and let 7, (k = 1,2,...) denote the logarithmic
coefficients of f.
(a) If O0=r = 1/2, then for every N = 1, we have

N
X k lw.,l2 s Z
k=1

k=1

r*. (3.1)

Eol

Equality holds if and only if f(z) = z/(1 - n2)%, Inl = 1.

(b) For each r, O0sr <1,

(]
J kimi®e* = §
k=1

k=1

Ll Bl
-
3
n
—
=
——
-
1] -
-
—_——

PROOF. For O =r s 1/2, the weight function defined by

1,...,N

]
~
n

0, k = N+1,...

is convex. Hence, inequality (3.1) follows immediately from Theorem 1’.
(b) If 1/2 < r < 1, then there exists a unique positive integer j such that
J/(3 +1) <r s (j+1)/(j +2). For this value of j and any N z 1, we define

k

r, k=1,...,N
PUO) = e - 2™ o )™ - (=10, k = N1, ... N+ J
o, k = N+j+1,...
Applying Theorem 1’, we now obtain
N N+ N k N+j A
A 2 r P(k)
Kl 2+ KP(K) Iy 1?2 s § — —. (3.2)
L xin ) O -
k=1 k=N+1 k=1 k=N+1

For 1/2 < r < 1, the left-hand side of (3.1) may now be estimated by ignoring

A
the second term on the left-hand side of (3.2), and substituting the values of P(k)
on the right. The calculations involved in this estimation may be eased by noting

A
that P(k) s r* for mid-range values of k.
The result of part (b) now follows by letting the index N 5 o in (3.2) I
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Theorem 3 to follow is a generalization of the result

n
I mi* s | — ==
2 6

k=1 k=1 K

which was previously established by Duren and Leung (S, pp. 36-43]. Of course, the
Koebe function is extremal for this inequality, since its coefficients are precisely

7w = 1/k (k = 1,2,...). In Corollary 3.1, we obtain an estimate on the N" partial
sums of this series, which is valid for N z 3.

THEOREM 3. Let f € S, and let n (k =1,2,...) be the logarithmic
coefficlents of f.

1
(a) If «a>0 and Ns1+ —— then
17a
2 -1
N N .
I & %® s § (3.3)
1+

k=1 k=1 K

Equality holds if and only if f(z) = z/(1 - nz)z, Inl = 1.
(b) If &« > 0, then

(- (]

F W%l s = Z(1+a),
1+

k=1 k=1 k

where ¢ denotes the Riemann Zeta Function.
PROOF. (a) For N and « in this range, the weight function defined by

0, k = N+1,...

is convex. Hence, (3.3) follows directly from Theorem 1’.

(6) If N> 1+ 1/(2"% - 1), then there exists a unique integer J such that

(N - 1"
J<—m = j + 1.
N - (v - 1)
For these values of N, J, and a, we define
K%, k=1,...,N
A
PO = 1N - (-D™)k + (NN-1D"™ = (N-1N), Kk = N+1,. .. ,N+J
0, k = N+j+1, ...
Applying Theorem 1', we now obtain
N Ne) N N+) S(k)
A 1
I 7% + 7 Pain®s | + —_—
1+Q k
k=1 k=N+1 k=1 K k=N+1
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A
Since P(k) s 1/ka. estimates of the form

N+j

2

1-a
I l™ =

k

o~ =

1+
k=1 k

L3
"
-

are now possible, where j 1is defined as above.
The conclusion of part (b) now follows by letting the index N 3 ® in the
inequality stated above. [ ]

In the following corollary, we consider the Duren-Leung conjecture which states
that

N N 1
z '7k|2 = z —
k=1 kz

k=1

for all N = 3. Both Milin and Grinshpan [4, p. 144] as well as Andreev and Duren
[3, p. 726] provide supportive evidence for this conjecture, although neither
provides a proof. In the event that this conjecture is false, it would be

advantageous to have an accurate estimate of the left-hand side.

COROLLARY 3.1. Let f € S, and let 19, (k = 1,2,...) be the logarithmic

coefficients of f. Then, for every N = 3, we have

Z |1k|2 =

k=1 k:

1 N -2
—_— e —
2 2N(N - 1)

~ o=

1 K

A
PROOF. For N = 3, we define P(k) as in the proof of Theorem 3(b) which,

after some simplification, becomes

1/k, k=1,...,N
2N -k - 1
P(k) —, k = N+1,...,2N-2
N(N - 1)
0, k = 2N-1,...

After applying Theorem 1', we obtain

N -2 2N-2
k(2N - k - 1) (2N - k - 1)

N
1
| |2 + SEER———— 2 s — 4 —_—
L in L oo ' ) 2 L oD
k=1 k=N+1 k=1 k=N+1

A
Since P(k) s 1/k for k = N+1,...2N-2 (this is geometrically clear), we may

continue our estimation to conclude that

N N 2N-2
i<l -+ [ .
k=1 k=1 ka k=N+1 kz

Finally, an integral estimate of the term on the right finishes the proof. l
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