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ABSTRACT. In this paper, we derlve some consequences of Hllln’s Inequallty for the
logarlthmlc coefflclents of a univalent functlon by exploltln a reformulatlon of
It.
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I. INTRODUCTION.

Let S denote the class of all functlons f(z) which are analytlc and

unlvalent In the unlt dlsk U {z: Izl < I} and are normalized so that f(O) 0

and f’ (0) I. The logarlthmlc coefflclents k of f(z) are deflned by the

relat lon

log 2 ykzk.
k=l

In partlcular, the Koebe function k(z) z(l z) -2
has logarithmic coefficients

k I/k (k 1,2 }.

In fundamental work published during the 1960’s, I. M. Milln concerned hlmself

with logarlthmlc coefflclents and thelr role in the theory of univalent functions.

Subsequent to a great deal of intense research, Mllln conjectured the inequalities

stated in Theorem below. These Inequalltles attracted much attentlon because

their truth would imply the the truth of the Robertson conjecture and the Bleberbach

conjecture, in addltlon to others. Then, in 1984, Louis de Branges [I, p. 146-150]

proved these Inequalltles using Loewner’s parametric method and a special system of

strictly decreasing weight functions. An alternate treatment of these Inequalltles

was subsequently presented by Fitzgerald and Pommerenke [2, pp. 683-690]. Since

then, many authors have explored these Inequalltles. In thls paper we shall also do

so, but flrst we restate de Branges’ famous result.
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THEOREM 1. (de Branges) Let f S, and let k (k 1,2 denote the

logarithmic coefficients of f. Then, for every N z 1, we have

[ k{N + k)lkl2 -< I
k=1 k=1

N+l-k
{1.1)

Equality holds if and only if f(z) z/(l nz)
a

Inl

It is our purpose here to derive further consequences of Theorem by utilizing

the following equivalent reformulation of it.

THEOREM I’. Let f S, and let Ik (k 1,2 denote the logarlthmlc

coefficients of f. Let P(k) (k 1,2 be a non-negatlve, non-lncreaslng

convex function. Assume further that the weight functlon P Is eventually

identically zero; that is, that there exists an N for which P(k} 0 whenever

k z N + I. Then, for thls value of N, we have

P(k)

I k P(k)lkl
a [ k

k=l k=l

{1.2}

Equality holds if and only if f(z) z/(1 nz)
a

Inl

As it Is pointed out in [I], Theorem 1’ follows from Theorem by two Abel

summations (or summations by parts). Of course, Theorem follows from Theorem I’

by slmply choosing the welght function

P(k) IN + k, k N

O, k N+I

Thus, these theorems are equivalent, even though Theorem 1’ appears on the surface

to be more complex.

Several authors have concerned themselves with consequences of these

inequalities and with other inequalities which are similar in nature. Milln and

Grinshpan [3, pp.139-147] derived a necessary condition which must be satisfied by

the weights P(k) in Theorem I’ if the Koebe function is to be extremal, and

explored some of its consequences. Andreev and Duren [3, pp. 721-728] reproved this

necessary condition in a different manner, and detailed its consequences.

Many choices for P yield interesting applications of this theorem. However,

for some desired choices, such as P(k) k- { > 0), or P{k} r
k (0 < r < I),

the assumption that P is eventually identically zero could never be met. The

simple process of truncation produces a sequence {P(I} P(N),O,O which is

eventually identically zero, but then the truncated sequence need not be convex,

thereby preventing the application of Theorem I’.

In Section 2, we provide a simple method of circumventing this difficulty.

In Section 3, we take advantage of this method in a natural manner to obtain

several interesting consequences which extend and generalize known results.
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2. REDEFINING THE CONVEX WEIGHT FUNCTION P(k).

Let N 2 be fixed, and P(k) (k 1,2 be given. Assume that P Is

non-negatlve, non-lncreaslng, and convex. Assume further that the weight function

P(k} > 0 for all k {i.e., that P is not eventually identically zero), but

that P{k) 0 as k (R).

If P(N I} > P{N}, then there Is a unlque stralght llne which passes through

the points {N I, P{N I}} and (N, P(N}}. The equation of this llne is

y [P(N) -P(N- 1)] x + IN P(N- 1) (N- 1} P(N}],

and the x-intercept of this line Is easlly seen to be

xN=N+
P(N)

P(N 1) P(N)

We conslder two cases.

CASE I: If

P(N)
O< 1,

P(N 1} P(N)

or equlvalently, if 2 P(N} P(N I}, then we define a new convex weight function

by

A {P(k}, k N
P(k t 0 k N+I

A
In this case, P is a simple truncatlon of P, and it is geometrically evident that

P̂ satlsfles all precondltlons necessary to apply Theorem 1’.

CASE II: If

P(N}

P{N I} P{N}

^then we define a new convex weight function P by including a mld-range llnear

section, the addltlon of which will facilitate the estlmatlons to follow.

Speclflcally, we define

P{k}, k N

P(k} [P{N) -P{N-I}]k + [NP{N-I) {N-I)P{N)], k N+I Ixu]

O, k [xu]+1

where denotes the greatest integer function. Since P has been redefined in

a linear fashion for mld-range and end-range values of k, it is again geometrically

^clear that P satisfies all pre-condltlons necessary in order to apply Theorem I’.
In so doing, we obtain
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where we have set Np [P(N)/(P(N I) P(N))].

This last inequality allows for convenient estimations. For example, if we set
A
P(k) ak + b, where a P(N) P(N I) and b NP(N I) (N I)P(N), then

N+Np ^ N+Np
P(k) ak + b

k=N+l k:N+l

< a Np + b In It +

Hence, estimates of the form

N N

k:l k=l

+ a Np + b in If + ]
A

are possible, with no explicit reference to the values of P. Also, since we have

^constructed P(k) -< P(k), we obtain the inequalities

N N+Np

k
k:l k=l k=l

P(k}

so that

k=l k=l

P(k)
(2.1)

which is significant whenever the series on the right converges.

The above observations were made under the assumption that P(N I} > P{N}.

If P(N I) P(N} > O, then the convexity condition would require that P(k}

P{N) for all k > N. But then P could never be redefined as above to be

eventually identically zero. In addition, the infinite series on the right side of

(2.1} would diverge by comparison to the harmonic series. Such a choice for P

would be inadmissible.

Of course, every admissible choice of P yields a new inequality of the form

{2.1). In the next section, we present some of these choices.

3. RESULTS.

Andreev and Duren [3, p. 722] asked whether the partial sum inequality

N N

[ k {k{2 r
k <- [ k-r

k
k:! k=l

holds for any r > O. Although they provide some supportive evidence that this

inequality should hold for r s I/2, they also establish [3, p. 727] that for no

N z 2 can it hold for all r < I.
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In Theorem 2(a) below, we shall show that this Inequallty does Indeed hold if

r s 1/2. It Is not known whether the constant "1/2" Is best posslble. Wlthln the

proof of Theorem 2(b), a method of estlmatlng the left-hand slde of the above

Inequallty when I/2 < r < Is provlded. Although Theorem 2(b) has been obtalned

elsewhere (see, for example, Mllln and Grlnshpan [3, p. 143]), our purpose here Is

to show that It may be easlly obtalned from Theorem 1’.

THEOREM 2. Let f S, and let k (k 1,2 denote the logarlthmlc

coefflcients of f.

If 0 r I/2, then for every N I, we have

N N

k=l k--I

(3.1)

Equality holds if and only if f(z) z/(1 }z) z I}[

(b) For each r, 0 r < 1,

k .kl
2

r
k In

k r
k=l k=1

PROOF. For 0 r I/2, the weight function defined by

A |rk, k N
P(k}

0 k N+I

is convex. Hence, Inequallty (3.1} follows Immedlately from Theorem 1’.

{b) If 1/2 < r < 1, then there exists a unlque posltlve Integer J such that

J/{j + I} < r (j + 1)/{j + 2}. For thls value of J and any N I, we define

k
r, k=l N

^ N -I Nr-IP(k)
(r r )k + (N-llr), k N+I N+J

O, k N+J+I

Applylng Theorem I’, we now obtain

(3.2)

For 1/2 < r < 1, the left-hand side of (3. I} may now be estlmated by Ignorlng

the second term on the left-hand side of {3.2}, and substltutlng the values of P{k}

on the rlght. The calculations Involved in thls estlmatlon may be eased by noting

^ r
k

that P(k} for mld-range values of k.

The result of part (b) now follows by letting the index N
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Theorem 3 to follow Is a generallzatlon of the result

=! =!

whlch was prevlously establlshed by Duren and Leung [5, pp. 36-43|. Of course, the

Koebe functlon Is extremal for thls Inequallty, slnce Its coefflcients are preclsely

k I/k (k 1,2 ). In Corollary 3.1, we obtaln an estlmate on the Nth partlal

sums of thls serles, whlch Is valld for N 3.

THEOREM 3. Let f S, and let k (k 1,2 be the logarlthmlc

coefflclents of f.

(a) If = > 0 and N +, then

2-N N

I kl-lk I s I k1/k=l k=l

(3.3)

Equality holds if and only if f(z} z/(1 }z) 2
ll

(b} If e > O, then

I kX-lkl- s

k
1/

k--I

(1+e},

where denotes the Rlemann Zeta Function.

PROOF. (a) For N and in this range, the welght function defined by

^ k=1 N
P(k}

k N+I

Is convex. Hence, (3.3) follows directly from Theorem I’.

(b} If N > + I/{2
I/=

I}, then there exists a unlque Integer J such that

(N 1)
c

j< J+l.
Nc (N 1}c

For these values of N, j, and , we define

P(k}

k k=1 N

(N-- (N-1)-}k + (N(N-I)- (N-1)N-), k N+I

O, k N+J+I

Applylng Theorem 1’, we now obtaln

N N+J N N+J

k1-lkl a + kP{k} lkl +

k/ k
k--1 k=N+l k=t k=N+l
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A
Slnce P(k) sllk= estlmates of the form

are now posslble, where j is defined as above.

The conclusion of part (b) now follows by lettlng the Index N d in the

inequality stated above.

In the following corollary, we consider the Duren-Leung conjecture which states

that

N N

k=l k=l

for all N 3. Both Mllln and Grlnshpan [4, p. 144] as well as Andreev and Duren

[3, p. 726] provlde supportive evidence for thls conjecture, although neither

provides a proof. In the event that this conjecture is false, it would be

advantageous to have an accurate estimate of the left-hand slde.

COROLLARY 3.1. Let f S, and let k (k 1,2 be the logarithmic

coefficients of f. Then, for every N 3, we have

N N

k=l k=l

N- 2

2N(N 1)

^PROOF. For N - 3, we define P(k) as In the proof of Theorem 3(b} which,

after some slmpllflcatlon, becomes

l/k,

A _-k-IP{k)
(N 1)

O,

k= N

k N+I 2N-2

k 2N-I

After applying Theorem I’, we obtain

N 2N-2 N 2N-2
k(2N k 1) (2N k 1)

N(N 1) kN(N 1)
k--1 k--N+1 k=l k=N+l

A
Since P(k) I/k for k N+I 2N-2 (this is geometrically clear}, we may

continue our estimation to conclude that

N N 2N-2

k=l k=l k=N+l ..2

Flnally, an integral estimate of the term on the right flnlshes the proof.



318 S.M. ZEMYAN

ACKNOWLEDGEMENT

The author wlshes to recognlze the referee for several helpful comments In his

revlew of thls artlcle.

REFERENCES

I. DE BRANGES, L. A Proof of the Bleberbach Conjecture, A__cta Math.__. 128(1985), 137-
152.

2. FITZGERD, C. and POMMERENKE, Ch. The de Branges Theorem on Unlvalent Functlons,
Trans. A, Math. Soc. 90(2)(1985), 683-690.

3. ANDREEV, V.V. and DUREN, P.L. Inequalitles for Logarithmic Coefficients of
Univalent Functions and their Derivatives, Indiana Univ. Math. J. 37(4)1988, 721-
733.

4. MILIN, I.M. and GRINSHPAN, A.Z. Logarlthmlc Coefficient Means of Univalent
Functions, Complex Variables Theory Appl. Z(1986), 139-147.

5. DUREN, P.L. and LEUNG, Y.J. Logarithmic Coefficients of Univalent Functions, J_
d’ Analyse Math. 3_6 1979), 36-43.


