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ABSTRACT.

The classical Lucas’ theorem on critical points of complex-valued polynomials has been generalized
(cf. [1]) to vector-valued polynomials defined on K-inner product spaces. In the present paper, we obtain
a generalization of Lucas’ theorem to vector-valued abstract polynomials defined on vector spaces, in
general, which includes the above result of the author [1] in K-inner product spaces. Our main theorem
also deduces a well-known result due to Marden on linear combinations of polynomial and its derivative.
At the end, we discuss some examples in support of certain claims.
KEY WORDS AND PHRASES: Abstract polynomials and their pseudo-derivatives, (supergeneralized)
circular regions, K-inner product spaces.
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1. INTRODUCTION.

Throughout, unless mentioned otherwise, E and V denote vector spaces over an algebraically closed
field of characteristic zero and 2" denotes the family of all nonconstant polynomials P: E — V. The concept
of Lucas-sets for the family #°, when E is a K-inner product space, was introduced in [1] and it was shown
that every memberA of the family D (E,, ) of all generalized circular regions of E,,, withw & A, is a Lucas-set
for 2". This fact naturally raises two questions: Firstly, does D(E,, ) exhaust all Lucas-sets in E,, when E
is a K-inner product space? Secondly, does there exist an analogous family of Lucas-sets for p whenE is,
in general, a vector space? In this paper, we introduce the family D"(E, ) of supergeneralized circular
regions of E,, which answers the first question negatively and the second question affirmatively. We employ
this family to generalize (to vector-valued abstract polynomials in vector spaces) the classical Lucas’
theorem on the zeros of the derivative of a polynomial and a theorem due to Marden on linear combinations
of a polynomial and its derivative.

2. PRELIMINARIES.

Walsh [2] has shown that the well-known Lucas’ theorem (cf. [3] or [4, Theorem (6,1)]) is equivalent
to the following result [4, Theorem (6.2)], namely: Any convex circular region which contains all the zeros
of a complex-valued nonconstant polynomial falso contains all the zeros of the derivative f of f. In terms
of the terminology of Lucas-sets (cf. [1, p. 832]) this result equivalently states that convex circular regions
in the complex plane are Lucas-sets for the family of all nonconstant polynomials. Our aim in this paper
is to generalize the said Lucas’ theorem and to investigate possible Lucas-sets for the family 2 of all
vector-valued abstract polynomials (cf. [1],{5]-{7]) defined on vector spaces E of arbitrary dimension. A
detailed analogous study of this problem, in the special case when E is a K-inner product space, has already

been made in a paper due to the author (cf. [1, pp. 845-847] for a precise statement about Lucas-sets for
2.
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The details in the remainder of this section can all be found in [1, pp. 833-835, 839-843}, apart from
other alternate sources cited for completeness. E and V denote vector spaces of arbitrary dimension over
an algebraically closed field K of characteristic zero. We write E,= E U{w} and K, = K U{o}, where @
(resp. ) is an element having the properties of vector (resp. scalar) infinity (cf. also [8, pp. 352, 372] or
[9, p. 116]); K, denotes a maximal ordered subfield of K with K, as the set of all non-negative elements
of Ky, so that (cf. [10, pp. 38-40], [11, p. 56], or [12, pp. 248-255]) K = K(i) = {a +ib | a,b € K}, where
—-i? = 1. Consequently, if K, = R (the field of reals) then K = C (the field of complex numbers). Forz €K,
the definitions of z, Rez, Imz and |z | are defined as in C. Similarly, the concept of K-inner product
spaces (briefly written K-i.p.s.) (E,(.,.)) and the notions of K;-convexity and K,-normed vector spaces
(E.| *|) are defined likewise in C (cf. [13, pp. 120-121]). If (E,(.,.)) is a K-i.p.s. then the K;-norm on
E, given by || x| = (x,x)'? for x EE, defines for each b € E the mapping

Y,(x)=(x-b)/|x-b|* V x€EE (2.1)
(with the tacit assumption that x / || x|| 2 equals w or 0 according as x is 0 or w) which, in turn, defines the

family D(E,,) of all generalized circular regions (briefly g.c.r.) of E,, [1, pp. 834-835]. The empty set ¢,
E, E,, and the singletons {x} (and E,—{x}) for x EE are trivial members of D(E,, ), whereas the family
B,(E,) of all generalized balls is rich in nontrivial members of D(E,, ).

The concept of abstract homogeneous polynomials is well known (see [4]-[7],[9],[11],[14])-[17]). In
what follows we briefly describe abstract polynomials and their pseudo-derivatives. A mappingP :E —V
is called an abstract polynomial (briefly, a.p.) of degree n if for every x,y EE,

Pa+py)- S ANV pEK, @2)

wherein A,(x,y) € V are independent of p and A,(x,y) # 0. The class of all nth degree a.p.’s is denoted
by 2, (or 2,, if V = K) and, for P € 2, given by (2.2), we write
F(P)={h €EE|h =0,A,(0,h) =0} . (2.3)
It is known that F(P) = ¢. Given P € ?, (via (2.2)) and h € F(P), we define for each k = 1,2,...,n, the
kth pseudo-derivative P® of P by
PO(x)=k!A(x,h) V xEE,
with first few being written as Py, P, etc. It is known (cf. [1, Proposition 2.3 and Remark 2.4 (T)]) that
PY € P, , and h € F(P®) for all k, and that
PEVx) = (PY), (x) VxEE, lsksn-1. (2.9)
REMARK 2.1 [1, Remark 2.4 (TIN)]. If fis an (ordinary) polynomial of degree n from K to K, then
fis an a.p. of degree n from K to K, F(f) =K - {0}, and
Px)=r'x) Y x€E, heK-{0}, (2.5
where f* denotes the kth formal derivative of f (see [18, p. 528], [17, p. 553], or [1, p. 842]). In particular,
for h = 1, we see that f*) = f* and the two notions coincide. Furthermore, if K = C, then f* becomes
precisely the kth derivative f* of fas defined via calculus. For k = 1, we have f; = f.
3. SUPERGENERALIZED CIRCULAR REGIONS
The study in [1] has revealed that the g.c.r.’s of E,, and the pseudo-derivatives of a.p.’s from E to V,

respectively, are natural analogues of (classical) circular regions and derivatives of (ordinary) polynomials
in the complex plane, needed to formulate Lucas’ theorem in a K-i.p.s. In order to achieve such a break-
through for vector spaces E, in general, one needs to develop an analogous concept of circular regions in
a vector space E. To this end we introduce in this section the concept of supergeneralized circular regions
and establish some general properties and examples for later use. First, we recall the definition of the
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family D (K_) of all generalized circular regions of K, as originally introduced by Zervos [8, p. 353]. We
say that a subset A of K, belongs to D(K,,) if and only if either A is one of the sets ¢, K, K, or A satisfies
the following two conditions: (i) 6(A) is K;-convex for all { EK - A, where 6/z)=(z -t)™! for every
z EK,; (ii) ©» €A if A is not Ky-convex. Fuller details about D(K.,) can be found in [18, p. 527-528].

REMARK 3.1. IfE =K is taken as a 1-dimensional natural K-i.p.s. (cf. [1, Remarks 1.1 and 1.6]),
then the family D(E,, ) in Section 2 (cf. [1, Definition 1.2]) here coincides with the above family D(K,) as
introduced by Zervos [8, p. 353]. Thus w and ® can be used interchangeably when E = K. That is, D(K.)
and D(K,,) are equivalent notations.

DEFINITION 3.2. GivenS CE,_, we write

Gyx,y)={pEK. |x+py €S} V x,y€EE. (3.1)
We say that S €D’(E,) if Gs(x,y) E D(K.) for every x,y EE. Members of D'(E,) are called super-

generalized circular regions (briefly, sg.c.r.) of E,. Clearly, ¢, E, E,, are in D"(E,,) and are called trivial
sg.c.r.’s of E,. Properties of wand o (cf. [1, p. 834]) imply that (since Gs(x, 0) = K or ¢ according asx €S
orx &S)

o & Gx,00ED(K,) V xES (3.2
and that
©EGsx,y) VxEE, y€E-{0} iff wES. (3.3)
Therefore
SED'(E,) iff Gsx,y)EDK.) V x,y EE(y=0). (34

DEFINITION 3.3 [19, p. 48]. Given an element (a,)) of E x (K - {0}), we define the mapping
h.’). H E‘.—’ Em by
h(z)=a+)2 YV z€E€E, 3.5)

and call it a homothetic transformation of E,,. Clearly, h, , is one-one and onto, and its inverse, k;’ L is
also a homothetic transformation of E,, given by
h,"lx(z) Y Y

PROPOSITION 3.4. Every homothetic transformation of E,, permutes the family D (E,, ).

PROOF. Let S €D'(E,) and h,, be given by (3.5), so that h, ,(S)=a +AS =S’ (say). For any
(x,y) € E?, we notice that

x+py €ES iff x,+py,ES,

where x, = (x —a)/\ and y, = y/h. Therefore, since S €ED’(E,),

Gs(x,y) = g5(% ) ED(K) V (x,y) EE>.
This implies that S = h, ,(s) ED"(E, ). Thatis,
h,\(D(E,)CD'E,). (3-6)
Conversely, to show the reverse containment in (3.6), we take S' € D"(E,,) and put S = hJ3(S). Since

h.}, is also a homothetic transformation of E,,, (3.6) implies that S € D*(E,, ). But, then h, ,(S) =S’ (since
h, , is one-one and onto) and so
D'(E,)Ch,D'E,)). (3.7
Now (3.6) and (3.7) complete the proof.
Thus, homothetic transformations play the same role in respect to D (E,,) as do homographic trans-
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formations of K, (= K..) (cf. [8, p. 353]) in respect to D(K, ) = D(K.). Our next two results say that the
family D (E,) is a natural and coherent extension (to vector spaces) of the family D(E,,) in K-i.p.s.’s.
PROPOSITION 3.5. Let E be a K-i.p.s. Then

() DE.CD(E,)

®) D(E,)=D'(E,)ifdimE =1,
(¢) D(K,)=D'(K,), if E =K is taken as a 1-dimensional natural K-i.p.s., where D(D,) = D(K.,)
as in Remark 3.1. Hence D"(C,,) coincides with the family D(C, ) of all g.c.r.’s of C,,.

PROOF. Given S €D(E,), consider G = Gs(x, y) for any (x,y) € EX(y = 0) in view of (3.4)) as
defined in (3.1). To show thatS € D'(E,,), we show that G €D (K.,). To this end, we first show that
6,(G) is K;-convex V [EK-G. (3.8

Choose any ¢ € K - G (if this is not possible then G € D(K.,) by definition of D(K.)). Thenb =x +ty &S

andy,(S) is Ky-convex by definition of D(E,, ) (see (2.1) and [1, p. 834]) such that w & y,(S) (since b & S).
Let p,€EG and ,EK,, with f,+5+...+1, =1 for i =1,2,....n, so that o =0,(p,) E6(G) and
z;=x+p;y €ES. Sincez;—b =(p, - L)y =0 for all i, we get (cf. (2.1))

@ =Y, (z) = 8p,) W) EW,(S),
where Y(y) =y / | y]? =0 (since y =0, w). Since ,(S) is K,-convex, it implies that

0= 3 10,) - owy) €wGS),
where
°'.~$ﬁm {::’iff wES. 9)
That is, oW(y) = P, () for some z, ES. Since ,(z) = w if and only if z = Y(w) + b (cf. [1, Relation (1.6)]),
the properties of Y in [1, p. 834] give
zy=P(oy(y))+b, where o=0 iff wES,
=(1/o)y +b=x +(G+1/o)y €S,

so that
t+ljo=p, (say) €G.

Note that we can take z, = €S in case 0 =0 and in that case py = © € G due to (3.3). Therefore, in all
cases, we have
o= ‘,21 t8/p;) = 1Ap, -T) E64G).

This establishes our claim in (3.8).
Next, we prove that
©wEG if G isnot Kj-convex. (3.10)
For, if o & G then & S (cf. (3.3)) and S is K;-convex as in [1, Definition (1.2)]. Consequently, G must

be K;-convex by (3.1) and (3.10). Now (3.8) and (3.10) establish that G € D(K.,) for all x, y € E(y = 0).
Now the proof of Part (a) is complete in view of (3.4).

(b) The proof of Part (b) follows from that of Part (a) if we letS € D*(E,,) and show that S ED(E,)).
Since dimE = 1, there exists an element x, € E - {0} such that E = {A\x,| A €K} and
G (say) =G(0,%) = {pEK. | px, ES} ED(K.).
Therefore, x = px, €S if and only if p EG. If b = Lxy & S (so that L & G) then 6,(G) is K,-convex and
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Y,(8) = {(p-E /| (P-T)x) *| P EG}
1 Xo
-y O —— EG N
{(p—m Tl | ° }
= {8:p) * W(x,) | pEG},
=6G) * Y(x,) - G.11)

Hence Kj-convexity of y,(S) follows from the Ky-convexity of 6(G) by using Equation (3.11). Next, if

P,(S) is not Ky-convex, then again by (3.11) 8(G) is not Kj-convex and so @ € 8,(G) due to the fact that
D(K.) is invariant under homographic transformations (cf. [18, Proposition 1.1] or [8, p. 353]). This,
together with (3.11) and the fact that Y(x,) = w, implies that w € ,(S). This would then mean thatb €S,
which is a contradiction. This goes to establish thatS € D(E,,). Part (b) is now established.
() IfE =K istaken as a 1-dimensional natural K-i.p.s., then D(E,, ) coincides with D(K,,) = D(K..)
by Remark 3.1. Therefore, D(K,,) = D"(K,,) by Part (b), and the proof of Part (c) is complete.
PROPOSITION 3.6. If E is a K-i.p.s. with dimE =2, then

D(E,)CD(E,).

PROOF. Let L(# 0) be a linear functional from E to K. Then
S = {x EE|L(x)=0} gE .

We show that S €D°(E, )-D(E,, ) as follows:
(i) We claim that S €ED'(E,). Forx,y EE,

{-L&x)L(y)} if L(y)=0,
Gs(x,y)={ K if L(y)=0=L(x),
) if L(y)=0=L(x).

Hence, Gs(x,y) ED(K.) for allx,y EE and S ED"(E,).
(ii) We show that S € D(E,). Let us first note that S is Ky-convex and w € S. Choose any element

b €E - S (possible) so that L(b) = 0. Since S is a maximal subspace of dimension at least one, we can
choose distinct elements x;,x, €S, so that L(x,) = L(x,) = 0 and y,(x;) and 1, (x,) are distinct elements of
P,(S). Next, choose

N=|x-b|¥D for i=1,2,

where
D =|x,-b|*+|x,-b|?=0, o,

so that A, A, €K, with A, + A, = 1. Therefore,
M, (x,) + A, () = (x, +x, - 2b)D =z (say).
We claim thatz & 1,(S). For, otherwise, y,(x) =z = 0, » for some x €S and hence x =z / Iz] 2¢bES.

But
z X, +x,-2b D? b
—~—4b= . +b,
I=? D %, +x;-2b| 2
X, +x,-2b
-M_)Z[D],,b’
| %1 +x,~ 2|

because D = 0,  and x, +x, - 2b = 0, w. Therefore,
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0=L(x)=L(b+z/|2})=L®b)+L)/|2|*
D
'L(b)+m{L(xl)+L(xz)-2L(b)} :

Since L(x,) = L(x;) = 0 = L(b), we have
Ixi+x,=2b) % = 2|2, = b * + | 1, = b *) = | x, 42, - 2B * + | x, - x| *

by parallelogram law. Thatis, | x, - x| > = 0, which implies thatx, = x,. This contradicts the original choice
of x, andx,. Hence, z = A, (x;) + A, (x) & ,(S) and so,(S) is not Ky-convex forb € E —S. Therefore
S &D(E,). Now (i) and (ii) complete the proof.

REMARK 3.7. () Above proposition shows that the family D(E,) is a natural generalization to
vector spaces of the concept of g.c.r.’s (cf. [1, Remark 1.6]) in the complex plane and that it offers a richer
class when E is a K-i.p.s.

(D) Proposition 3.6 also establishes that all maximal subspaces and hence (cf. Proposition 3.4) their
translations are members of D(E,,) in a vector space but are not members of D(E,, ) when E is a K-i.p.s.

(i) IfS €D(E, ) then E,,-S may not belong to D°(E,,). This is born out by the following example:

take E = K = C and let
S={z|Imz>0}U{z|-1sz<1}.
Then [1, Remark 1.6] S €D(C,) = D'(C,,) by Proposition 3.5, but E,-S ¢ D(C,)=D"(C,).

(IV) There are sets in D°(E, ) whose complements in E,, are also in D*(E,)). For example, maximal
subspaces and their translations. For, if M is a maximal subspace, then there exists a nontrivial linear
functional L :E —K such that M = {x|L(x)=0}. We claim that S =E,-M ED'(E,). Let
x,y EE(y =0) be arbitrarily chosen. Then x +py €S if and only if L(x) + pL(y) = 0 provided p = c.
Hence

Gs(x,y) =K -{-L(x)L(y)} €ED(K.).
This implies by (3.4) thatS € D(E,,). This shows that complements of maximal subspaces are in D*(E,,).

The rest is established by Proposition 3.4.
(V) Thus, Remarks (IT) and (III) above say that all hyperplanes and their complements in E, are

members of D°(E,,).

4. LUCAS’ THEOREM IN VECTOR SPACES.

In this section we prove the following main theorem on the location of the null-sets of pseudo-
derivatives of abstract polynomials P : E — K, which generalizes to vector spaces the classical Lucas’
theorem in the complex plane as well as a result due to the author [1, Theorem 3.1]. As an appliation of
the main theorem we also generalize to vector spaces Marden’s theorem [4, Corollary (18,1)] on linear
combinations of a polynomial and its derivatives. If P € ?,, we shall write

Z(P)={x EE |P(x)=0}.
THEOREM 4.1. If P €2, and S €ED°(E,)) such that o € S and Z(P) C S, then
Z(P,)CS V hEFP).
PROOF. Let h EF(P) and x EZ(P,). If P,(x)=0=P(x) then x €S and we are done. In case

Py(x) = 0 = P(x) we still claim that x €S. On the contrary letx &€S. Suppose P €%, is given by (2.2).
Since & € F(P) and K is algebraically closed, we can write
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* }
P(x +ph)-k2°A,(x,h)p V p€EK,

-An(x,h)-jllll[p—pj(x,h)] V p€EK,

where A,(x,h) and p;(x, ) belong to K and are independent of p such that A, (x,h) = A,(0,h)=0. In the
case under consideration, if we write p; = p;(x,h), we see that p; = 0 for all j and

P(x)=Ayx,h) = (-1YA,(x,h) * A(n,n),

P(x)=A,(x,h) = (-1 T'A,(x,h) « An = 1,m),
where A(k,n) denotes the sum of all possible products of p,,p,, ..., p, taken k at a time. Therefore
Py(x)
P(x)
Since P(x + p;k) = 0 for all j, we see thatx + p;s €EZ(P) C S and so p; € Gs(x,h) = G (say) for all j. Since
S ED"(E,)andh = 0, we observe thatG € D(K.,) such that0, & G (because w, x & S)andsop; =0, .

Now consider the mapping 6 (cf. beginning of Section 2) with T = 0. Then 8(G) is K,-convex such that
0, & 6,(G). Since 8(p;) = 1/p; € 6(G), we see that

- -él 1/p; = 0. @.1)

(Un) 3, 1/p; €B(C).
i<
This implies that
3 1/p, %0,
i

which contradicts (4.1). This completes the proof.

In view of Proposition 3.6, the above theorem deduces a more general version of our earlier result [1,
Theorem 3.1] when E is a K-i.p.s. with dimE = 2.

COROLLARY 4.2 (Zervos [8, Theorem 4, p. 360]). Let f : K — K be an nth degree polynomial and
f the formal derivative of f(cf. Remarks 2.1 and 3.1). FA €D(K,,) such that 0 &€ A and Z(f) CA, then
Z(f)CA.

PROOF. By Remark 2.1 f €2, (withE = K), F(f) =K - {0} and Z(f, ) = Z(f ) for allh EK - {0}.
Now Theorem 4.1, along with Remark 3.1 and Proposition 3.5, immediately furnish the corollary.

For K = C, Corollary 4.2 is essentially an improved version of the (classical) Lucas’ theorem (see
Section 2), improvement being in the sense that we use the family D(C,,) of all g.c.r.’s of C,, instead of
the classical c.r.’s asused in Lucas’ theorem. Using the terminology of Lucas-sets [1, Remark 3.3}, Theorem
4.1 says that every sg.c.r. A of E,(w & A) is a Lucas-set for a.p.’s in vector spaces. In particular when E

is a K-i.p.s., the family D*(E, ) D D(E,,) does not exhaust all Lucas-sets. This answers the two questions
>

posed in the introduction.
Repeated applications of Theorem 4.1, together with the observations immediately preceding Remark
2.1, give the following theorem on successive pseudo-derivatives.

THEOREM 4.3. If P €2, and S €D’(E,)) such that ® & S and Z(P) C S, then
Z(P™CS VYV hEFP), 1sksn-1.
In order to extend the above theorem to the class ®,, we briefly describe the following notions and

concepts, whose details can be found in [1, pp. 845-847). A subset M of V is called supportable if, for each

E EV - M, there exists a lienar form L(# 0) on Vsuch that L(E) =0 but L(v) =0 forallv EM. fP E P,

is given by (2.2) and if M is a supportable subset of V, we write
E(P)=E(P ,M)={x EE|P(x)&EM},

F'(P)=F'(P,M)={h EE|A,0,h)EM}. 4-2)
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Since 0 & M, we observe that
F'(P)CF(P) ¥V Pe?,. 4.3)

Now we give the following more general vector-valued formulation of Theorem 4.3.

THEOREM 4.4. If P €2,,S €D’(E,) with w & S, and if M is a supportable subset of V such that
F'(P)=¢and E(P)CS, then

EPPPCS V hEF((P), 1sksn-1.

PROOF. The proof is exactly the same as that of Theorem 3.9 in [1] except that the role of Theorem
3.4 in [1] is replaced by that of Theorem 4.3 of this paper.

Let us note that the hypothesis "F (P) = ¢" in the above theorem is not vacuous (cf. [1, Remark 3.8]).

ForV = K and M = K - {0} the above theorem deduces Theorem 4.3 (cf. [1, Remark 3.6)) and, hence,
Theorem 4.4 is a more general formulation of Lucas’ theorem to vector spaces. However, Theorem 4.1 is
actually the basic result employed in Theorems 4.3 and 4.4. In terms of our previous terminology [1,
Remark 3.3), we see that sg.c.r.’s of E,, are indeed the Lucas-sets for vector-valued a.p.’s from E to V.
Finally, we also note that Theorems 4.1, 3.4 and 3.9 in [1] are, respectively, special cases of the present
Theorems 4.1, 4.3 and 4.4 when E is a K-i.p.s. (cf. Proposition 3.5 (a)). Since the above-referred theorems
in [1] cannot be generalized to vector spaces over nonalgebraically closed fields of characteristic zero (cf.
[1, Example 4.1]), the same is true for our present theorems.

In the remainder of this section we discuss some interesting examples to suport the validity of
hypotheses of our theorems here. In case E is a K-i.p.s. and S ED(E, ) C D*(E,), this claim is supported
by a number of examples discussed in [1, Section 4]. We therefore discuss examples for sg.c.r.’s in vector

spaces only.
EXAMPLE 4.5. Let E be an arbitrary vector space of finite or infinite dimension, with dimE = 2,

and consider any hyperplane S = a + M, where a € E and M, is a maximal subspace of E. ThenS €D'(E,))
by Remark 3.7 (Il) and w & S. Given any fixed element v ¢ M, (possible), every element x € E has the
unique representation (cf. 1, p. 80])

x=u+tv forsome u€M,, t€K. 4.9

With this representation, let
a=u,+tv for u,€EM, and ({HEK. (4.5)

Observe that x €S (resp. x €M,) if and only if £ = ¢, (resp. ¢ = 0). If we define

P(x)=(t-¢t) V x=u+tvEE, n=123,..., (4.6)
we see that P,(x) =0 if and only if x €S. Forh =u +tv EE, we see that (for each n)

P(x+ph)=(t+pf -1,),
- ioA,(x,h)p" V xh€E,
k=
where the coefficients A,(x,h)=C(n,k)t*(t -1,y * are independent of p such that
A,(x,h)mA,(0,h)= t” = 0. This means that P, €2, such thatZ(P,) €S for all n and
F(,)={h€E|h=0, A0h)=() =0,
=E-M,=¢ (since h EM, iff £ =0).

We have thus shown that for every hyperplane (a member of D*(E,,)), there exists (via (4.6)) infinitely

many a.p.’s P, E2,(n = 1,2,3,...) satisfying the hypotheses of Theorems 4.1 and 4.3.
EXAMPLE 4.6. Let E, Vbe vector spaces of finite or infinite dimension, with dimE = 2. Consider
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the set S = a + M, of Example 4.5 with the same representations as given by (4.4) and (4.5). Now let B be
the Hamel basis for V and let &, € B be arbitrarily selected. Denote by B, the maximal subspace of V
spanned by the nonempty set B — {E,} and put M = V - B,. Then M is a supportable subset of V such that
E, EM (cf. [1, Proposition 3.5]). Since &, & By, every element £ € V can be uniquely written as

E=n+sE, forsome mEB,, s€EK, 4.7
so that E € B, if and only if s = 0. We now choose an arbitrary (but fixed) element n, € B, and, for each
n=1,2,3,..., define (cf. (4.4) and (4.5))

P(x)=(-t,)E+ny, V x=u+tv€E€E, (4.8)
where u €M, and t EK. Recall that x ES (resp. E € B,) if and only if ¢ = ¢, (resp. s = 0). Obviously,
P,(x) €M if and only if # = 4. That is (cf. (4.2) and (4.4)), x € E(P,) if and only if x €S. Therefore,

E(P)CS V n=123,..., 4.9

where S €D'(E, ) such that w & S. Further, ifh =u’ +¢'v for some u' € Myand ' € K, we have (cf. (4.4))
P(x+ph)=(t+pt —-1)E,+my V pEK, x,hEE,
3 k
S A hpt,
where A(x, h) = (t ~1of'& + Mg and A,(x,h) = C(n - k)Y (t 1,y *E V 1sksn.
Since all these coefficients A,(x,h) € V and are independent of p such thatA,(x, k) = A,(0,h) = (£')"E, # 0,

it follows from the definition of a.p.’s (cf. (2.2)) that

PEP VY n (4.10)
and that (cf. (4.2))

F'(P)=|h€E|h =0, A,0,h)=()E, &B,), since M=V-B,,
={h EE|h=u +tv, t =0} (dueto(4.7),
=E-M, (dueto(4.4),
0. (4.11)
Consequently, in view of (4.4), (4.5), (4.7)-(4.11), we see that for every hyperplane (a member of D*(E,, ))

there exist vector-valued a.p.’s P, € 7,(n = 1,2,3,...) via (4.8) which satisfy the hypotheses of Theorem
4.4). ‘

Finally, we apply Theorem (4.1) in a different direction to generalize to vector spaces a result due to
Marden [4, Corollary (18,1)] on linear combinations of a polynomial and its derivative. In what follows,
S +a denotes the set {s +a |s €S} where S CE anda EE.

THEOREM 4.7. Given P €2, and A €K, define R (x) = P(x) - AP, (x) forh € F(P). IfS ED"(E,,),

W ¢&S, such that Z(P) C S, then Z(R) C S U(S +nhh).

PROOF. The proof is obvious for A = 0. Therefore, we assume that A= 0 and R(x)=0. Ifx €S,
we are done. If x €S then by Theorem 4.1 P,(x) = 0 and P(x) = O (since Z(P) CS). Therefore (cf. the
first equation in (4.1)),

Px) s
~P(—x)-—j§1 1/pl- 1”.#0, o, (4.12)

Using the notations and steps of the proof of Theorem 4.1, with T = 0, we see that
il 04p;)=-1/A, wherethe p;=0, . (4.13)
I
Since 0 € Gs(x,h) = G and p; € G, we see that, for all j, 1/p; = 8,(p;) € 8,(G ), where 8(G) is Ky-convex
(since G €D(K,,)). This implies that
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(1) 3 1/p, €8,G).
p

That is (cf. (4.12) and (4.13)),

il/p,--n/t--lﬂ» forsome LEG.
j=1

Now then x + th €S (by definition of D'(E,,)), where £ = —nA. In other words, x —nAh €S, and hence

x €S +nM. This completes the proof.

COROLLARY 4.8. Given an nth degree ordinary polynomial f: K — K and A € X, define

8@)=fla)-M ().

IfA €D(K,), w €A, such that Z(f) CA, then Z(g) CA U(A +n)).

4.1.

PROOF. The proof immediately follows from Theorem 4.7 as does Corollary 4.2 from Theorem

For K = C, the above corollary is precisely the result due to Marden [4, Corollary (18,1)].
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