Internat. J. Math. & Math. Sci. 209
VOL. 16 NO. 2 (1993) 209-224

A CENTER OF A POLYTOPE: AN EXPOSITORY REVIEW AND
A PARALLEL IMPLEMENTATION
S.K. SEN, HONGWEI DU, and D.W. FAUSETT

Department of Applied Mathematics
Florida Institute of Technology
Melbourne, FL 32901

(Received March 1992)

ABSTRACT. The solution space of the rectangular linear system Az =», subject to >0,
is called a polytope. An attempt is made to provide a deeper geometric insight, with
numerical examples, into the condensed paper by Lord, et al. [1], that presents an algorithm to
compute a center of a polytope. The algorithm is readily adopted for either sequential or
parallel computer implementation. The computed center provides an initial feasible solution

(interior point) of a linear programming problem.

KEY WORDS AND PHRASES. Center of a polytope, consistency check, Euclidean distance,
initial feasible solution, linear programming, Moore-Penrose inverse, nonnegative solution,

parallel computation.

1991 AMS SUBJECT CLASSIFICATION CODES. 15A06, 15A09, 65F05, 65F20, 65K05.

1. INTRODUCTION.

The solution space w of a linear system Az = b, where A is an m x n matrix of rank r,
will
(i) be empty if and only if (iff) the system is inconsistent, i.e., iff r # rank (A,b),
(%) have a unique point (solution) iff r = rank(A,b) =m =n, and
(%) have infinite points (solutions) or, equivalently, an n — r parameter solution space iff
r = rank(A,b) < m when m < n or r =rank(A,b) <n whenm>n.

A linear system, unlike a nonlinear system, cannot have a solution space having just
two solutions or any other finite number of solutions except one. In Case (), the corresponding
polytope (defined here by Az = b, z > 0) is nonexistent, while in Case (i) the polytope will be
the (0-dimensional) unique point iff the point z satisfies the condition £>0. In both these
cases the proposed centering algorithm achieves the same result as that accomplished by an
efficient linear equation solving algorithm. In Case (i), the algorithm computes a center of
the polytope iff such a center exists. It is readily seen that the polytope is convex. The paper
by Lord, et al. [1] suggests a new definition of a ‘center’ of a convex polytope in Euclidean
space - a point is a center of a convex polytope in Euclidean space if it is the center of a sphere
that lies within the polytope and it touches a set of bounding hyperplanes that have no

common intersection. In general, a center of a polytope in ¢ = n —r dimensional space will be

210 S.K. SEN, H.DU & D.W. FAUSETT

the center of a sphere touching ¢+ 1 or more bounding hyperplanes. Degenerate cases
correspond to fewer than ¢+ 1 hyperplanes ‘meeting at infinity’. A polytope does not, in
general, have a unique center according to the foregoing definition. Even if a uniqueness is
defined in some sense, i.e., by imposing certain conditions and thereby increasing complexity,
such a uniqueness may introduce nonlinearity, and may not achieve much in practice if one is
going to solve linear programming (Ip) problems using this unique center. In fact, the centering
algorithm has sacrificed uniqueness in favor of preserving linearity and computational
simplicity. A center of a polytope always exists if the polytope is a finite (bounded) region of
the solution space; and in most applications, uniqueness is not needed. As an example, any
‘center’, as defined in paper [1], is a good interior (starting) point to solve an lp problem.
However, a center is usually defined uniquely as the extremum of a potential function that
vanishes on the boundary [2,3,4]. Such a definition adopts a nonlinear concept into what is
essentially a linear system. Further, it does not readily adapt itself to computation; in practice,
methods based on this definition focus on obtaining just an approximation to the center. The
method of finding a center as described here not only encounters no such difficulty but also is
simple and straightforward to implement. It provides a very easy means of obtaining an initial
feasible solution for an Ip problem without enhancing the dimension of the problem, i.e.,
without introducing artificial variables to check consistency. The intersection of the
hyperplanes represented by Az = b is an n — r dimensional space. It is a point if n —r=0. It
is a line if n—r=1. It is a 2-dimensional plane if n—r =2, while it is a g-dimensional
hyperspace if n —r = q.

In Section 2 we describe the centering algorithm, while in Section 3 we discuss the
geometry of the algorithm considering the more basic linear inequality problem, and justify its
validity through the properties of n-dimensional Euclidean space. Section 4 presents two
examples with comments primarily aimed as an aid for easy computer implementation.
Section 5 discusses considerations for parallel implementation of the algorithm, while Section 6
consists of concluding remarks.

2. THE CENTERING ALGORITHM

Consider the linear equations and inequalities
Az=0b,22>0, (1)

where A =[a;;] is an m xn matrix of rank r, b€ R, z€ R,. We write
¢ ot

A=[al a ... a‘_I,b:[bl b, ... b,,,]‘,z:[.tl z ... zf,
where @} = [a; @; ... a;,]is the ith row of A and t indicates the transpose. Observe that
a!z = b; represents the ith hyperplane of the linear system (1). The steps of the centering
algorithm are then as follows.
S1 Compute z = A+d, P=(I—- A*A), and r by Algorithm 1.
S2 Set ¢=n-—r; if any diagonal elements of P =|[p;;] vanish, then remove the zero
rows and zero columns of P and the corresponding coordinates (viz., the

corresponding hyperplanes) from the problem Az =b.
S$3 Normalize: D = diag(1/\/p;;); S = DP; é = Daz.

CENTER OF A POLYTOPE 211

S4 Apply Algorithm 2.
2.1 Algorithm 1 (Computing z, P, and r from the given eqn. Az = b):

The algorithm [5] is an O(mn?) direct algorithm to compute the minimum-norm least
squares solution = A*b of a system of m linear equations, Az = b, with n variables, where
m and n can be any positive (finite) integers, the vector b can be zero or nonzero, and A*
denotes the Moore-Penrose inverse of A. It is concise and matrix-inversion-free. It provides a
built-in consistency check, and also produces the rank r of the matrix A. Further, if necessary,
it can prune the redundant rows of A and convert A into a full row-rank matrix, thus
preserving the complete information of the system. In addition, the algorithm produces the
unique projection operator, P=1,— A% A, that projects the real n-dimensional space
orthogonally onto the null space of A and that provides a means of computing a relative error-
bound for the solution vector [6,7] and any other solution of the system. The general solution
of Az="bis £ = A*b— Pz, where z is an arbitrary vector. Observe that if b = 0 (zero column

vector) then z = Pz.

The algorithm involves no taking of square-roots and a finite number of arithmetic
operations; so, it can be readily implemented by error-free (residue) arithmetic [7] to compute
z, P and r exactly. In addition, a parallel implementation is easily achieved since the
algorithm involves mainly vector operations. In fact, a parallel version of this algorithm has

been implemented on an Intel 1860 computer.

Consider the equation Az =b of relations (1). A pseudocode for the algorithm is as
follows.
{*Algorithm 1x}
begin
P:=1I,;z:=0;r:=0;
for j=1tomdo
STEP(a,,b;,P,z,ind); r:= r+ind;
end-do
end

procedure STEP (a,b,P,z,ind);

begin
ind:=0;v:= Pa; y:= ||v||?;b:= b—a'z;
if (y # 0) then

P:=P — w/ly;z:=z+bvfy;ind:=1;

212 S.K. SEN, H. DU & D.W. FAUSETT

else
if b # 0 then
terminate ; {error message : = “inconsistent equations”}
end-if
end-if
end
The procedure STEP computes a normal to the hyperplane represented by the equation
a'z=>b. After m successive executions of STEP, the resulting vector z will be normal to the
common intersection of the m hyperplanes represented by a}z=b; and consequently a

solution.

The outputs of Algorithm 1 are a particular solution z= A*b, known as the minimum-
norm least squares solution, of Az =5, the rank r (of A), and the projection operator
P=1I,-A%*A. No explicit computation for the Moore-Penrose inverse [8], denoted by A*, is
required for computing z and P. The solution z, in general, does not satisfy the nonnegativity

constraint z > 0.

Whenever y =0 and b = 0 occur in the procedure STEP, the current row of A and the
current element (row) of b can be deleted, the following rows of A and b can be popped up, and
the number of rows m can be reduced by 1 if A is to be converted to a full row-rank matrix.
However, the column-order n of P remains unchanged. To obtain a solution of homogeneous
equations Az =0, i.e., when b =0, execute Algorithm 1 and then compute z = Pz, choosing

any arbitrary zero or nonzero vector z.

Algorithm | combines the desirable stability properties of an orthogonal transformations
approach with a computational scheme that is well-suited for error-free computation, since the
‘intermediate number growth’ to any finite extent has no effect on an error-free arithmetic
[6,7). The computationally sensitive steps in the algorithm are those involving division by
llv]|2. Although a test is made to guarantee that ||v] #0, it is possible for ||v] to be
arbitrarily small. When | v]|| is small, it indicates that the current vector v is almost linearly
dependent on its predecessors. Such ill-conditioning can cause a severe loss of accuracy in the
computed solution, if error-free arithmetic is not used. A thorough discussion of computational

issues in solving least-squares problems is presented in Golub and Van Loan [9].

In case of an ill-conditioned system, it may be worth the additional computational effort
to modify Algorithm 1 to incorporate row pivoting, so that ||v| is maximized over the

remaining rows at each step. Also the test for ||v|| =0 could be modified to a tolerance test

CENTER OF A POLYTOPE 213

of the form || v|| < tol, where tol is a machine dependent parameter based on the precision of
arithmetic operations on a particular computer. For extremely ill-conditioned systems, this

method of detecting near rank-deficiency is not always sufficient.

Another alternative in extreme cases is to use some method other than Algorithm 1 to
computer z, 7, and P before preceding to Algorithm 2. The most widely used method for
treating nearly rank-deficient cases is based on the singular value decomposition, or SVD [9].
Rank-revealing methods of orthogonal decomposition is a general area of active research at

present [10, 11, 12].

The computational costs of the various approaches described to computing the inputs to
Algorithm 2 are presented below.
Solving Az =bfor z=Atb, P =I— A% A, and r = rank (4).

Method Floating Point Operations
Algorithm 1 m(4n? + Tn)
Modified Algorithm 1 with row pivoting m(m + 3)n(n+1)
SVD 8mn(m +n) + 9n®

2.2 Algorithm 2 (Computing a center from given S and §):

Having obtained P and the particular solution z? = z from Algorithm 1, the role of the
original matrix A and original vector b in Az=0b is over. We no longer need A and b to
compute a center. The inputs of Algorithm £ are the particular solution z” = A*b, the
normalized projection matrix S = DP, and the vector of Euclidean distances § = DzP, where
D= diag(l/ \/p_,,) is a diagonal matrix, p,, being the (i,7)-th element of P. Observe that P is
(symmetric) idempotent, i.e., P2= P, and p, >0. Algebraically, the general solution z9 of
Az =b may be given by z9=zP - Pz, where z is an arbitrary vector; observe that this
equation is essentially an identity since it is valid for whatever value we may substitute for the
vector z. It can be seen that the equation Az =1b is equivalent to the foregoing equation
(identity) which has preserved all the information of Az=5b. Let e={1 1 ... 1] be an n-
vector and S =[s} si ... s.]f, where s! is the ith row vector of 5. We set Dz? = — e so that
the foregoing identity turns out to be an equation in the unknown variable (vector) z. Thus,
we have the equation Sz~ 8§ =e. Geometrically, since | s,|| =1, the component §; of § is the
Euclidean distance of the point z” from the ith hyperplane sfz=1 of the system of n
hyperplanes represented by Sz =e. (See Property 2 in Section 3). With this background it is

easier to appreciate Algorithm 2 which is as follows.

214 S.K. SEN, H. DU & D.W, FAUSETT

{+Algorithm 2¢}
begin

B: =min{i: §; =min{§;}};J: = {B};;:

Q: =1I1,;z: =0;ind: = 1;
while (j # g+1andind = 1)do
STEP(S'B, 1,Q, z,ind);
if ind = 1 then
LAMDA ;
ifind = 1 then
Jj: =341,
end-if
end-if
end-do
end
procedure LAMDA ;
ind:=0;a:= D z;
fori € Jdo
ifa,-;éaﬂthen
Ai=(6:-8p)/(ag—a;);
if A; 2> 0 then
if ind = 0 then
k:=1i;imd:=1;
else
if A; <), then
k:=1;
end-if
end-if
end-if
end-if
end-do
if ind = 1 then
B:=k;A:= Aﬂ;6:= 6+)a;
z:=z+xz ; J:= JU{B};
end-if

CENTER OF A POLYTOPE 215

end
The procedure LAMDA computes) so that z + Az will be equidistant from the current j
hyperplanes and one more. Algorithm 2 provides a center which is an initial feasible solution
for an Ip problem. Observe that this center is not a Chebyshev point nor is it, in general,

unique.

3. GEOMETRY OF THE CENTERING ALGORITHM

Normalized inequalities Sz>e (z>0), where now S is an m xn matrix of rank r,
z€R,, and e € R,, specify a convex polytope in n dimensional Euclidean space or, simply, n-
space bounded by m hyperplanes; some of these hyperplanes may be redundant. The
components &, of §: = SzP — e are then the Euclidean distances of the given point z? from each
hyperplane, provided the sign convention is adopted that §; is negative if the ith hyperplane
separates the point z” from the polytope.

Let the point z, be in the polytope (§ > 0). Then the following procedure will find a
center provided the polytope is bounded. Let o = m:fn{&,} be the least distance of z, from j
hyperplanes. If these j hyperplanes do not have a common intersection then z, is a center.
Otherwise, a line through z, perpendicular to the common intersection is a line such that every
point of the line is equidistant from the j hyperplanes. Start from z, and move along this line
in the direction of increasing o until a point is reached, which is equidistant from j+1
hyperplanes, i.e., until the inscribed sphere has been expanded so as to touch one more
bounding hyperplane. This must happen if the polytope is bounded. A center is obtained by
iterating this procedure until the set of encountered hyperplanes fails to have a common

intersection, or j=q+1=n—r+1.

The validity of the centering algorithm is based on the following properties [1].
Property 1: The vector s is normal to the hyperplane s'z = u and is directed into the region

sz>u.

A tangent v to the hyperplane has the form v = z, — z;, where 2, and z, are points on
the hyperplane. Therefore s'v = 0; so s is normal. If z, is on the hyperplane and A > 0, then
z =z, + s satisfies sz =u+ A || 5|2 > u; so the direction of s is as stated.

Property 2: If ||s|]| =1 then the Euclidean distance of an arbitrary point y from the

hyperplane s'z = u is § = s'y— u (§ is taken to be negative if s'y < u).

Let z be the orthogonal projection of y on the hyperplane. By Property 1, y =z +6s,

216 S.K. SEN, H. DUE & D.W. FAUSETT
where é is the signed distance. Hence s'y = s’z + §s's =u + 6.

Property 3: If N is a matrix whose rows are the j unit normals to j given hyperplanes
then the particular solution (vector) z= N*e of the equation Nz=e is normal to their

intersection, where e is as defined before.

If v is tangential to all the j hyperplanes (i.e., if v is a tangent to the intersection of
these j hyperplanes) then Nv=0. Therefore, v'z=v'N*te=v'N'(NN')"e=
(Nv)(NN*)~e=0, where A~ is a generalized inverse of A; A~ satisfies the condition
AA"A=A.

Property 4: If a point z is equidistant from j hyperplanes Nz = w then so is ' =z +)z,

where z = N *e and) is arbitrary.

By Property 2, if z is at a distance o from each of the j hyperplanes then Nz — w = oe,
and the distances of from the hyperplanes are given by the components of § = Nz —w.
Since Nz =e, § = (0 + A)e; so, Z is at the same distance o + A from all of the j hyperplanes.

Algorithm 2, the centering algorithm, now follows from these properties. Upon
completion of the ‘jth iteration (in Algorithm 2) we obtain a jx ¢ matrix N whose rows are
the unit normals s! (i € J) to the encountered hyperplanes. The successive applications of the
procedure STEP (in Algorithm 2) build up N row by row and produce z= N *e. Thus, by
Property 39, the vector z is normal to the j hyperplanes already encountered; or, equivalently, z
is normal to the intersection of these j hyperplanes. While building up the matrix N, the
particular point (solution) z which was initially at the intersection of these hyperplanes, i.e.,
which was initially equidistant (distance is 0) from these hyperplanes, continues to move along
the line whose every point is equidistant from the j hyperplanes. In fact, as soon as the
construction of one row of N via STEP is over, the point z moves along the foregoing line by
an amount Az, where X is a value computed by the procedure LAMDA. Since z is a point
equidistant from these j hyperplanes, by Property 4, the point z+ Az is also equidistant from
these j hyperplanes for any A. Just after building up each row of N, LAMDA computes) so
that z+ Az will be equidistant from the j hyperplanes and one more. By Property 2, the
distances of the point z from the n hyperplanes are the components of § = Sz — u and those of
the point z+ Az are § — S(z + A\z) — u = § + Aa, where a@ = Sz. We have §; = §5 (constant) for
i€J and ao;=ag=1 for i€J (since Nz=e). Therefore, §3=65+ Xy (1€J) and
8, =6,+xa, (y¢J). For the point z+ Az to be equidistant from the j hyperplanes and one
more, we should have 6, = §, for some y¢J. Thus, we have A = (65—6,)/(a, — ap). The

procedure LAMDA is actually choosing, out of several A’s, a smallest positive A such that

CENTER OF A POLYTOPE 217

z + Az will be equidistant from the j encountered hyperplanes plus one more.

4. EXAMPLES

ample 1: Consider the equation Az =105, >0, where A=[1 1], b=[2],
m=1 n=2.

S1 Findz=A%b, P, r by Algorithm 1:

InitializeP:[(l) 9],::[0 of,r=0;
j=1.
STEPa,, b,, P, z, ind)

ind=0,v=Pa,=[1 1], y=|lv|?=20b,=b,~az=2.

05 —05 ,
P=[_0‘5 05 :l, z=[1 lr, ind = 1.

z=A"%b> 0 (already).
r=r+ind=1.
S2 g=n—-r=1.

B2 A R VIV RS VIVE R R
53 D—[f ﬁ}’s'[-u\/ﬁ | }s_[\/i\/i]‘.

1 0
S4 Apply Algorithm 2: 65=m§n{6,} =v2;,J = {1}; Q=‘: 0 1], z=[00 r,

j=1
STEP(sy, 1, Q, z, ind)

ind=0;v= 1/V2 —1/\/5]',y=1,b=1,Q=[1g ig}
z=[V2 -1VZ[, ind=1.

LAMDA
ind=1 a=Dz=[1 —1f; \, = (6,— 6)/(—) = 0; A=), = O;
B=26=[Vavaz=[1 1];7={1,2}
j=2. jis now ¢+1; so, the center is [11]. It may be seen that this center
serves as a good initial feasible solution for the related Ip problem.

Geometry The following figure (Fig. I) depicts the geometry of the foregoing polytope

and its center.

218 S.K. SEN, H. DU & D.W. FAUSETT

t center found
s,= [-7,.7]
1,1

’

h 1 =
A yperplane x2 0
0 (2,0 =
) X
/\ . 1
s =07, -7]

Fig. 1 Geometry of the polytope[11]z =2

The finite line AB is the polytope x. The line AB extended infinitely on both sides is the
solution space w. 6, = v/2 is the Euclidean distance of the center [11]‘ from the hyperplane
z,=0in w. §, =2 is that of the center from the hyperplane z, =0 in w. It can be noticed
that the hyperplane z; =0 in w is the point B, i.e., [0 2 r, and the hyperplane 2z, =0 in w is
the point A, i.e., [2 0 r The vector s} is normal to the hyperplane r; =0 in w (i.e., the
point B) while the vector s} is normal to the hyperplane z, = 0 in w (i.e., the point A). sfisa
row vector whose position with invariant direction can be imagined to be present at any other
place besides the origin 0. Thus, the row vector s} from B is directed into the polytope BA
and s} from A into AB.

Ezample 2: Consider the equation Az = b, > 0, where

a7 L0 |8 m=2 n=4,
1101 6

S.1 Find z, P, r by Algorithm 1:
Initialize P=I,; z=0; r = 0;

S2

53

S4

CENTER OF A POLYTOPE 219
i=1
STEP(a,, b,, P, z, ind)
ind=0,v=Pay=[-11 1 0f,y=|v]|?2=3,b= -5

2/3 1/3 1/3 0
1/3 2/3 —1/3 0 .
0. P= =[5/3 —5/3=5/3 0 [, ind=1;
v# 13 -1/32/3 o [~ [8/3 —5/3-3/ foin
0 0 0 1
r=1.
j=2

STEP(a,, by, P, z, ind)
ind=0;v=[1 1 0 lr;y=3;b2=6;

1/3 0 1/3 —-1/3
0 1/3 -1/3-1/3|
1/3 -1/32/3 o |
-1/3-1/3 0 2/3

y#O. P=

z=[11/3 1/3 -5/3 2 [.
ind=1;r=2.

g=n—-r=2.

17321 0 0 0
0 17321 0 0
D = Diag(1/ /p2) = :
iag(1/v/pi) 0 0 12247 0
0 0 0 12247
5774 0 5714 — 5774 6.3512
0 5714 —5774 — 5774 5774
S=DpP= S §=Dz=
4082 —.4082 8165 0 — 20412
—4082 —.4082 0 8165 24494

Apply Algorithm 2.

63=m§n{6,~}=63= -20412; J={3}; Q=1,;2=0; j=1;
STEP(s4, 1, Q, 2, ind) = STEP(s;, 1, Q, 2, ind);

ind=0; v=| 4082 — 4082 8165 0 [;y=1;b=1-sz=1;

220 S.K. SEN, H. DU & D.W. FAUSETT

8334 .1666 —.3333
.1666 8334 3333
—.3333 3333 3333
0 0 0

Y#0,Q=Q—v'fy=

[~=J =T)

z=[4082 — 4082 8166 0 [;ind=1;

LAMDA

ind=1; a=Dz=[7071 —7071 1 0 [
N=0-85)/lag—a,) (igJ], a,# ap)

A = (81— 63)/(a3 — ay) = 28.6521; N, = 1.5339;), = 4.4906;
Ag=min(),), A, >0 =), = 1.5339; A = 1.5339;

8= 6+ ha=[7.4358 — 5072 50732.4494;

z=z+)z =[4.2028-02928 04141 2 [

J={2,3}.

Since ind =1, j=2.

STEP(s,, 1, Q, z, ind)

ind=0;v=Qs, = 2886 .2888 0 —s54fiy=llvl2=5
b=1-stz= 17072

6668 —.0001 —.3333 .3333
—.0001 .6667 .3333 .3334
—.3333 3333 .3333 0

3333 3334 0 3333

y#0,Q=Q-w'/y=

z=z+bv/y=[13936 5776 8166 —19711];ind =1;
LAMDA
ind=1; a=Dz=| 24138 10004 10001 —2.4140 [;
No= (8= 89)/(ap—a) (i £ J; o, #)
A = (8, = 8;)/(ay —) = —5.6198; A, = 8659; Ay =), = .8659;
X = 8659.
§=56+8a=[9.5260 3590 .3587 .3590 [;
T=z+Az=[5499 2073 2930 2032 [
J={2,34}, j=3. {since j=q+1}
stop.
The solution is a required center of the polytope and hence it is an initial feasible solution of

a related linear programming problem.

CENTER OF A POLYTOPE 221

Remark: If a nonnegative solution of linear equations is required then a center which is

a nonnegative solution may be computed.

5. PARALLEL IMPLEMENTATION

Step S.1 (Algorithm 1) of the centering algorithm, coded as a host program and a node
program, is implemented on a parallel hypercube computer as follows. The host sends the
number of rows m and the number of columns n of the mathix A, the number of processors
(nodes) p =2 used, and the right-hand side vector b of the equation Az =b to each node
processor. Which part (rows) of P and z will be computed by each node processor? In order
to consider this question we set k =[n/p| and k; =n—kp. If k, #0 then each of Nodes
0,1,2,..,k;, —1 computes k+1 rows of P and z, and each of Nodes kyk,+1,...,p—1
computes k rows of P and z. If k, =0 then each of Nodes 0,1,2,...,p computes k rows of P
and z. For example, if we have 4 Node processors 0,1,2,3 and P is 10 x 10 then n =10, p =4,
k=2, and k; =2. Node 0 will compute first three rows of P and z, Node 1 next three rows of
P and z, Nodes 2 and 3 the remaining two rows each. Each processor initializes its part of P
and its part of z. Observe that z is initially zero and P is initially an identity matrix. It then
sends one row of A at a time to each processor starting from the first row. Each node
processor, on receipt of a row of A, computes its part of the vector v, the resulting (partial) y,
and b;. Each node then communicates these partial v and partial y to other nodes so that each
node has complete v and complete y (the global sum) in its memory; the number of
communications required is d, the dimension of the hypercube. If y# 0 then each node
processor computes its part of P and z, and sets ind = 1. The process is continued until the
host program completes sending all the rows of A. On receipt of one row of A, each node
processor will be executing the procedure STEP once. Thus each node will execute STEP m
times to form its own part of P and z, and also the rank r of A and the dimension of the
solution space ¢ =n —r corresponding to the m rows of A. Since the communication time
between the host and a node processor is much larger than that between one node and another,
it will be seen later that each processor sends its part of solution to Node processor 0 which

appropriately appends the parts of £ and forms the required z.

The parallelization of Steps S22 and $.3 proceeds along with that of Step S.1; no
communication among processors is needed. Every processor computes the dimension of the
solution space ¢. It then computes the rows of D, §, and S corresponding to its parts of P and

z. Thus, each node processor has its part of D, §, and S. If p;, =0, i.e., if the ith row and the

222 S.K. SEN, H. DU & D.W. FAUSETT

ith column of P are zero, for some i then, instead of deleting the ith row and ith column of P
and consequently removing the corresponding coordinates as is done in the sequential
algorithm, we set ith row and ith column of S to zero as well as (i,7)th element of D zero; we
also set 6, = K, a sufficiently large positive real number, and corresponding component of
z=0. The motive of retaining this unnecessary information is to avoid inter-processor
communication (that will arise due to index modification) at these steps. In fact, this

information will be skipped as and when they are encountered.

For the parallel implementation of Step S.4 (Algorithm 2) of the Centering algorithm
each node processor needs complete § in its memory; so, the number of communications that is
required to accomplish this task is d. It then finds a smallest component of § and records its
index as 8. The processor that contains the Sth row of S, viz. s}, sends this row to every other
processor. After initializing its part of the matrix and vector z each processor enters into
the repeat loop containing two procedures STEP and LAMDA. Having completed the
execution of STEP as in Algorithm 1, each node, if ind =1, executes LAMDA, computes its
part of a, communicates this part to all other processors so that each processor has complete a
in its memory. Thus every processor using the complete a, §, and the index 3 computes all },,
finds a smallest nonnegative); if not all A, <0, and then updates complete é and its part of z.
Thus, each processor executes the repeat loop the required number of times; the processor 0
then collects from all other processors their parts of the solution, appends them appropriately

and sends the complete solution z to the host.

The number of communications between the host and a node depends on the size of the
coefficient matrix A relative to the memory capacity of the nodes. If the capacity of each node
is insufficient to store the entire matrix, we can let each node keep only the right-hand side
vector b and one row at a time of the matrix A. In this case the host must send the matrix A
row by row to each node processor, as described above. The number of communications
required is then m + 3. If the storage for each node is not a problem, the host can send the
entire matrix A and vector b to each node in one communication. The number of
communications is then 3. However, the number of communications among nodes in our
parallel code is 6d, where d is the dimension of the hypercube used. If a typical
communication is about 500 times more expensive than a flop then the order of the matrix

should be at least 130 x 130 to achieve any speed up over a sequential machine.

CENTER OF A POLYTOPE 223
6. CONCLUDING REMARKS

If the polytope defined by Az =b, z> 0 is nonexistent then the centering algorithm
detects that condition. If it is unbounded then the algorithm produces a nonnegative solution
of Az=1>b which may be useful for a physical problem; further, such a solution with an
indication of unboundedness is also useful while solving an Ip problem. Preservation of
linearity and simplicity by the algorithm is attractive in interior point methods for Ip

problems.

While Algorithm 1 (for the computation of the projection operator P = (I — A + A), the
solution vector z = A*b, and the rank of A) can be implemented error-free, Algorithm 2 (Steps
5.3 and S.4) however is not implementable error-free because of square-root operations. Thus,
a partial error-free computation is possible and may be useful in enhancing the accuracy of the
final solution. It can be seen [6,7] that the error-free computation is inherently parallel and
immune to ‘intermediate number growth’. Since the centering algorithm involves extensive
matrix-vector operations, implementation of the algorithm on a vector/super-computer is

relatively straight-forward.

It can be seen [13] that a convex polytope is defined, in a more general form, as a set

which can be expressed as the intersection of a finite number of closed half spaces.

ACKNOWLEDGEMENTS. S. K. Sen is on leave from SERC, Indian Institute of Science,
Bangalore 560012, India and wishes to acknowledge the support of a Fulbright fellowship for
the preparation of this paper. D. W. Fausett was supported by NSF Grant #ASC 8821626,

New Technologies Program, Division of Advanced Scientific Computing.

The authors thank Dr. Chuck Romine of Oak Ridge National Laboratory for his

assistance in developing a parallel code for the centering algorithm on the Intel 860 computer.

REFERENCES

(1] Lord, E.A., Venkaiah, V. Ch., and Sen, S. K., An algorithm to compute a center of a
polytope, Proc. CSI-90 (1990) 1 - 8.

[2] Bayer, D.A. and Lagarias, J.C., The nonlinear geometry of linear programming I, Affine
and projective scaling trajectories, Trans. Amer. Math. Soc. 314 (1989) 499-526.

[3] Renegar, J., A polynomial-time algorithm based on Newton’s method, for linear
programming, Mathematical Programming 40 (1988) 59-93.

[4] Vaidya, P.M., An algorithm for linear programming which requires 0(((m +n)n?+
Em +;z)"5n)L) arithmetic operations, Proc. ACM Annual Symp. on Theory of Computing
1987) 29-38.

[5] Lord, E.A., Sen, S.K., and Venkaiah, V.Ch., A concise algorithm to solve over-/under-
determined linear systems, Simulation 5 (1990) 239-240.

224 S.K. SEN, H. DU & D.W. FAUSETT

[6] Venkaiah, V. Ch. and Sen, S.K., Error-free matrix symmetrizers and equivalent
symmetric matrices, Acta Applicande Mathematichae 21 (1990) 291-313.

[7] Venkaiah, V. Ch., Computations in Linear Algebra: A New Look at Residue Arithmetic,
Ph.D. Thesis, Indian Institute of Science, Bangalore 560012, India, 1987.

[8] Rao, C.R. and Mitra, S.K., Generalized Inverse of Matrices and Its Applications, Wiley,
1974.

[9] Golub, G.H. and Van Loan, C.F., Matrix Computations, 2nd Ed., Johns Hopkins Univ.
Press, 1989.

[10] Bischof, C.H. and Hansen, P.C., A block algorithm for computing rank-revealing QR
factorizations, Argonne National Laboratory Preprint MCS-P251-0791, 1991.

(11] Hong, Y.P. and Pan, C.T., Rank-revealing QR factorizations and the singular value
decomposition, Argonne National Laboratory Preprint MCS-P188-1090, 1990.

[12] Stewart, G.W., Updating a rank-revealing ULV decomposition, University of Maryland
Technical Report UMIACS-TR-91-39, 1991.

(13] Luenberger, D.G., Introduction to Linear and Nonlinear Programming, 2nd Ed. Addison-
Wesley, 1984.

