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ABSTRACT. We study Isaacs’ equation (.) w,(t,x) 4- H(t,x, w(t,x)) 0 (H is a highly nonlinear
function) whose "natural" solution is a value W(t,x) of a suitable differential game. It has been felt
’that even though W(t,x) may be a discontinuous function or it may not exist everywhere, W(t,x)
is a solution of (.) in some generalized sense. Several attempts have been made to overcome this
difficulty, including viscosity solution approaches, where the continuity of a prospective solution or

even slightly less than that is required rather than the existence of the gradient W(t,x). Using
ideas from a very recent paper of Subbotin, we offer here an approach which, requiring literally no

regularity assumptions from prospective solutions of (.), provides existence results. To prove the
uniqueness of solutions to (.), we make some lower- and upper-semicontinuity assumptions on a

terminal set F. We conclude with providing a close relationship of the results presented on Isaacs’
equation with a differential games theory.
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1. INTRODUCTION.

There has been a constant interest for many years in solving Isaacs’ equation, starting with
the first serious treatment of Isaacs’ equation by Fleming [6] (in the context of differential games),
who approached this problem using several facts from stochastic processes and a theory of PDE; see
also other treatments [1-5, 7-9, 13], including viscosity solution approaches, which basically assume
(except for [13]) the continuity of a prospective solution. The present paper does not have much in
common with the existing approaches, except for [10], which deals with fixed time problems.

Our starting point is a dynamical system (differential game) involving two control parameters
u

_
U(t) and v

_
V(t), whose dynamics are described by the equation

(t)= f(t,x(t),u,v), x(to) Xo, (to, Xo) E fo C RTM, to < < T, (1.1)

where measurable control functions u(t) and v(t) are chosen with the aim of minimizing (resp.
maximizing) a functional of the form

P P[to, xo, u(.), v(.)] g(r, x(r)), (1.2)
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where r r[to, xo, x(.)] is the stopping time, the first time E [t0, T] for which (t,x(t))
(F is a fixed terminal set). This situation leads naturally (Section 5) to the lower Isaacs equation

(t,z) + max min (----x (t z, ), f(t x, u, v)) 0 (1.3)
uu(t) v(t)

with the boundary condition w(t,z) g(t,z) on F; since we assume Isaacs’ condition:

max min (s,f(t,z,u,v)) H(t,z,s)= min max (s,f(t,z,u,v)), (1.4)

the lower Isaacs equation, coincides with the upper Isaacs equation, and is commonly called Isaacs’
a 0 (t z)) 0. We study this highly nonlinear PDE onequation: (t,x) + H(t,x,

n {(,)’Y (,0, 0, =(’),(’)), (0, 0) Z 0,0 5 T}, (1.)

the set of all points attainable from 0 (a given set of initial conditions). The interesting feature of
Isaacs’ equation is that H-J equations (t, z)+H(t, z, ata,,, x)) 0, with H(t,x, s) satisfying some
regularity conditions, may be viewed as Isaacs’ equations associated to certain differential games
(see [5] and references in [10l). Throughout the paper, we assume conditions (1.4), (2.1)-(2.3), and
(2.9)-(2.10); in Sections 4, 5 we additionally impose some continuity requirements on prospective
solutions of Isaacs’ equation.

Our goal is to adopt the notion of a minimax solution to the Cauchy problem for a H-J equation,
introduced recently by Subbotin for fixed time problems (r T) [10], to the variable time setting.
Wd define the notions of "upper" and "lower" solutions of Isaacs’ equation, without imposing on

them literally any continuity assumptions, in such a way that (Proposition 3.1) Isaacs’ equation
always admits lower and upper solutions. What is more, we prove w+(t,z) (resp.w_(t,z)), being
the infinum (resp. supremum) over all upper (lower) solutions of Isaacs’ equation, is its solution
(Theorem 3.5); it means, it is both an upper and lower solution.

When we compare solutions of Isaacs’ equation and eventually prove uniqueness results, we

impose some continuity assumptions. Typilly, we require from a prospective solution to be lower-
or upper-semicontinuous; sometimes we need continuity at each point (t,x) F. For example, any
two solutions of Isaacs’ equation must coincide if they are continuous at each point (t,z) F)
(Corollary 4.3). Another result (Theorem 4.4)says that if w+(t,x) (resp. w_(t,z))is lsc (resp. usc)
at each point (t,z) F, then Isaacs’ equation admits exactly one solution w(t,x) w+(t,z)
w_(t,z), which happens to be continuous on .

In the lt section, we return to the differential game we started with to show, for example,
that (i) if the upper value of the game W(t,z) is lsc (usc) on , then it is a upper (lower) solution
of Isaacs’ equation; (ii)if (t,z), the lower value of the game, is usc (lsc) on then (t,x) is a

lower (upper) solution of Isaacs’ equation; and (iii)if W(t,x)is usc on and (t,x)is lsc on

then the differential game has a value W(t,x), which is a continuous solution of Isaacs’ equation
satisfying w_(t,z) W(t,z) w+(t,x).
2. ASSUMPTIONS AND THE CONCEPT OF A SOLUTION OF ISAACS’ EQUATION

Apart from (1.4), we make the following sumptions ((2.1)-(2.3), (2.9) and (2.10)).

f(t,z, u, v) is a continuous function in all variables; U(t) and V(t) are

compact sets varying continuously in time on the interval [0, T]. (2.1)

There is a constant A such that IIf(t,m,,) f(t,,,)ll llm- (2.2)yii, v(t), v(t), 0 5 5 T.

Assumptions (2.1), (2.2)imply [11, Corollary 2,1] that X(t0, x0), the set of all solutions of equation
(1.1), is a precompact subset of C[to, T], the space of continuous mappings from [t0, T] into
equipped with the max norm. To simplify our presentation, we make two "convexity" assumptions,
ensuring the compactness of certain sets of trajectories. For example, the condition below guarantys
the compactness of X(to, Zo) for all (t0, z0) .

The sets f(t,x,U(t),V(t)) are convex in R for all (t,x) . (2.3)
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To go ahead with our preliminary analysis, we use Isaacs’ condition (1.4), which implies the existence
of a saddle point pair (u, v), for any triplet (t,z,s), satisfying the saddle point inequality

(s,f(t,x,u,v*)> <_ s,f(t,x,u*,v))= H(t,x,s) < (s,f(t,x,u*,,v)> (2.4)

holding for all u ( U(t),v V(t). It is well known from elementary game theory that if (u],v,)
itl 12and (u, v,) are saddle point pairs, then they are "exchangeable," i.e., v,) and v,) are also

saddle point pairs. This observation leads us to set-valued maps U(t,x,s) C U(t) and V(t,x,s) C
V(t), containing u: and v, respectively, such that (s,f(t,x,u,V(t,x,s))) < (s,f(t,x,U(t,z,s),
V(t,x,s))) H(t,x,s) < (s,f(t,x,U(t,x,s),v)). These maps give rise to the two set-valued maps

F+(t,x,s) {f(t,x,U(t,x,s),v) v E V(t)}, (2.5)
F_(t,x,s) {f(t,x,u,V(t,x,s)) u

_
U(t)}, (2.6)

which are usc in (t,x) and compact-valued. In addition to (2.3), we make one more convexity
assumption, (2.9), ensuring the compactness of X+(to, xo, s), X_(t0, x0, s), whose elements are solu-
tions of the differential inclusions:

Jc (t) F+(t,x(t),s), [0, T], x(to) Xo,

c (t) F_(t,x(t),s), [0, T], x(to) Xo,

(2.7)
(2.8)

respectively.

The sets F+(t,x,s),F_(t,x,s) are convex for all (t,x) e a,s t:P. (2.9)

The set Fro is bounded, the terminal set F C f is closed and r[x(.)] <
T for any trajectory x(t) x(t, to, xo, u(.),v(.)),(to, xo) o, of

(2.10)equation (1.1); in addition, inf{t (t,x) 9/0} 0, sup{t: (t,x) c=
f0) _<T.

REMARK 2.1. Our notion of a solution of Isaacs’ equation will be applicable to a wide class
of prospective solutions (we do not impose any continuity assumptions). If, however, a prospective
solution w(t,x) had a gradient at a point (,), then our definition would imply the identity:
o___ (, g) + H(-, 7, o, ( )) 0.Ot Ox

DEFINITION 2.1. By an upper solution of Isaacs’ equation (1.3) with the boundary condition
w(t, x) g(t, x) on F C f, we understand a function w(t, x): f R satisfying w(t, x) _> g(t, x) on
F and the inequality:

V(,) E fl, Yt" F, T] sup inf w(*, x(’)) < w(, ),
Ilsll=l (.)x+ 6,,)

i* min(t*, r[x(.)]). (2.11)

When w(t,x) is lsc on , then (2.11) can be replaced by the statement that w(t,x(t)) decrees
along some trajectory x(.) E X+(,, s) on the interval , fix(-)]]; clearly, the inf in (2.11) can then
be replaced with min. Without the lower-semintinuity sumption, one can always guant
that, for each k,

( + )) < w(,)(+ ,(+ )) w(+ ,
for positive integers i,r satisfying r < i, + *. (2.12)

DEFINITION 2.2. By a lower solution of Isaacs’ equation (1.3) one understands a function
w(t,z) R satisfying w(t,x) 9(t,x) on F and the inequality:

V(,5) ,Vt* G [,T], inf sup w(,x(*)) w(,5), (2.13)
I1,11= (.)ex-6,,)

where " min(t*, T[X(.)]).
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Similar remarks to those following (2.11) apply here, with obvious changes.
DEFINITION 2.3. A function w ft R is a solution of Isaacs’ equation (1.3) if w(t,x) is

both a upper and lower solution of (1.3).
It is known [10] that (2.11)(resp. (2.13))is equivalent to the inequality

inf{O.l)w(t,x): f E F+(i,,s)} < 0 (resp. sup{O.l)w(t,x): f F_(,,x)} _> 0),

for any s, lls]l 1, if w(t,x)is lsc (resp. usc) on f; here Ow(t,x) and O’w(t,x) are the lower
and upper Dini derivatives of w(t,x) at the point (i,) in the direction of h. When w(t,x)
has a gradient at (,) then (2.11) and (2.13) become equivalent to the inequalities" (i,)+

(,) u(-i,,s))) > o,(, )+maxuu6)( f(-[,,uo( ),f(,,U(,,s),v)> < 0and -? a,mind,v6)( ax
a(,), we get (see (2.4))"respectively. By setting s

Ow Ow Ow
-i

Ow
--(t,5) + H(i,-, -x(t,5)) < O, -( ,) + H(-,5,-:x (t,5)) >_ O.

It follows from (2.4) that the latter two inequalities imply the former two, so that they are equivalent.
It means our concept of a solution to Isaacs’ equation is exactly what it should be when applied to
regular functions (see Remark 3.1).
3. GENERAL CASE (WITHOUT CONTINUITY ASSUMPTIONS)

Let us start with the following three properties:

(F1) minlF+(....)<s,f) H(t,x,s)= maxlF_(....)(s,f),s . Rn;

(F2) F+(t,x,q) fq F_(t,x,p) f(t,x,U(t,x,p), V(t,x,q)) (;

(F3) In(t,x,a) n(t,y,s)

_
Xll yll-I111 for (t,x) ,(t,y) f,a R".

Note that properties F1, F2 are obvious, while F3 requires a short proof.
PROOF Without loss of generality, let U(t,y,s) >_ U(t,x,s). With (u, v) meaning a saddle

point pair for (t,x,s)and (u,v)meaning the same thing for (t,y,s), IU(t,x,s)- U(t,y,x)l will
be equal to (see (2.4))

It follows directly from F2 that X+(i,-,q)lqX_(i,,p) for any (,) f,q R’,p R"; also,
by virtue of (2.9), X+(,Z,q) and X_(,Y,p) are compact in C’ff, T].

PROPOSITION 3.1. The set of all upper solutions to Isaacs’ equation (1.3) contains at least
two (possible identical) elements, namely the functions.w’(t,x) =_ G max{g(t,x) (t,x) F}
and wm(t,x), given by (3.1). Similarly, the set of all lower solutions to Isaacs’ equation contains
the constant function W,o(t,x) g min{g(t,x): (t,x) F} and wmi’(t,X), given by (3.2). Both
w’X(/, x) and wmi(t,X) coincide with g(t,x) on F.

PROOF It is obvious that w"(t,x) and w,(t,x) are respectively an upper solution and a
lower solution to Isaacs’ equation. Setting

Wm"x(t,Z) max{g(r,x(r)) z(.) E ullll=aX+(t,z,s)}, (3.1)

let us observe wm(t,X) g(t,X) on F. To show (2.11), select (,) f, t" e [,T], and
[[[[ 1, in order to demonstrate even something more than is required in (2.11), namely that
wm(t,x(t)) < wm(,)on the whole interval [L r[x(.)]], including the point * min(t’, r[x(.)])
for any x(.) X+(,5,). Indeed, this fact follows from the very definition of Wmx(t,X); as a
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matter of fact, we will have wm’X(t,x(t)) < W"x(, Y) for all x(.) X+(,Y,) for which 9(r, x(r)) <
u"(t, x). In a similar manner one shows the function

w’"(t,x) min{9(r,z(r)) z(.) Uilll=X_(t,z,s)} (3.2)

is a lower solution of Isaacs’ equation.
REMARK 3.1. Inequality (2.11) (a similar observation refers to (2.13)) cannot be replaced

with the sharp inequality (without changing the meaning of the definition) because the constant
upper solution w"(t,x) =_ G would not satisfy it. We also cannot replace it with the equality
because then Wmax(/,X) would not be an upper solution.

LEMMA 3.2. The lsc envelope of an upper solution w(t,z) to Isaacs’ equation (1.3), given
by

w.(,) liminf w(t,x), (,) t, (3.3)
(t,)-.()

satisfies condition (2.11). It is an upper solution of (1.3) if w(tz) is Isc at each point (t,z) F.
PROOF Note that if w(t,x) is lsc at each point (t,x) F then g(t,x) <_ w(t,x) w.(t,z)

on F, as required in Definition 2.1. Let us choose a point (,Y) f, R", and t" [,T]. There
is a sequence (t,x) convergent to (,) with w(t,x) converging to w.(,5). Since w(t,x) is an

upper solution, there exist trajectories x(.) X+(t,x,’g) such that w(*,x(*)) <_ w(t,x) +
,t min(t*, r[x(-)]). Since X+(t, x,-g) are compact in the Banach space C"[t,T] and depend
continuously on (t,x), we can assume x(.) converges to some (.) X+(,Y,) with ’[x(.)] <
liminf._.o r[x(.)]. What is more, we can assume z(.) were chosen in such a way that

r r
w(tk, xk) > w(tk + 2--,x(t + )) > w(t + -,z + -))

whenever < < r, with i,r being any natural numbers for which tk + < r[x(.)]. We thus
have w.( + ,x( + )) < lim._.oow(t,z) w.(,), for all natural numbers r,k satisfying
+ < r[Y(-)]. Since the set of points + is dense in [, oo), and w.(t, x) is a lsc function, we

have w.(t,2(t)) < w.(,) for any [,r[x(.)]], Y(-) X+(,Y,).
Arguing in an analogous manner, one can prove our next result.
LEMMA 3.3. The usc envelope w*(,Y) limsup(t,x)_.(,r w(t,x) of a lower solution w(t,z)

of Isaacs’ equation (1.3) satisfies condition (2.13). It is a lower solution if w(t,z) is usc at each
(t,) e r.

Let us denote by w+(t,z) the infimum over all upper solutions of Isaacs’ equation, i.e.,

w+(t,z) inf{w(t,z)’w(.) is an upper solution of (1.3) }, (t,z) n. (3.4)

Analogously,

w_(t,z) sup{w(t,z)’w(.) is an lower solution of (1.3) }, (t,x) Ft. (3.5)

LEMMA 3.4. w+(t,z) is an upper solution of Isaacs’ equation (1.3), and w_(t,z) is a lower
solution of (1.3).

PROOF First observe w+(t,z) #(t,z) and w_(t,z) g(t,x) on F (see Proposition 3.1).
Given a point (,) q,t* [,T], and R", there exists a sequence wk(t,z) of upper solutions
converging to w+(t,z), and a sequence of trajectories z(.) X+(,,) for which w+(t*,zk(t[,)) <

starting with a certain index K(k > K) wherew(t,(t’)) <_ w(,) + <_ w+(i,) + ,
t: min(t’,r[x(.)]). It means (2.11) holds; arguing similarly, we demonstrate w_(t,x)satisfies
condition (2.13).

THEOREM 3.5. w+(t,x) and w_(t,x) are solutions of Isacs’ equation (1.3).
PROOF In view of the previous lemma, it is sufficient to show w+(t,x) satisfies condition

(2.13) and w_(t,x) satisfies condition (2.11). To show (2.13), we argue somewhat similarly as in
the proof of Lemma 3.1 from [10]. We choose t" [0, T],p Rn, Ilpll 1, to define the auxiliary
function (below F’ min(t’, r[x(.)])):

w+(t,x) if > t*
w,(t,x) (3.6)

max{w+(’,z(’))’x(.) X_(t,x,p)} if < t*
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with the aim of showing max{w+(/’, x(*)): z(.) E X_(t,z,p)} > w+(t,z) if t. E [t,T], as required
in (2.13). If we prove wp(t,z) is a upper solution of Isaacs’ equation, then we will know wp(t,x) >
w+(t, z) on ft.

First note w,(t,x) w+(t,x) 9(t,z)on F (see Lemma 3.4). To show wv(t,x) satisfies
condition (2.11) at (i,Y) ft, consider two cases: i > t" and < t" In the first case (2.11)
holds because w(t,z) coincides with w+(t,z) for > t’. In the second case, select t . [,T],q
n", lqll , to demonstrate

L min{w(Fq,z(F)).z(.)_ X+(i,y,q)} < wp(,), min(t, r[z(-)]). (3.7)

With z(-) E X+(i,y,q)flX_(,y,p)(c(t) c= F+(t,z(t), q)tqF_(t,x(t),p)), we study two subcases:
(a) o min(t,r[x(.)]) < t’, and (b) o > t’. In the first subcase, L < w(t,x(t)) <
(cf. (3.6)). In the second subcase (b), we are going to show the triplet inequality

L < wp(t,z(t)) < w(t’,x(t’)) < wp(,2), (3.8)

the first part of which is obvious because x(.) X+(i,5,q). The second part holds for x(.)
X_(t*, x(t*), p) (see (3.6)). The last (third) part of (3.8) is also clear because the set of all z(-)
X_ (, 5, p) comprises all trajectories x(.) E X_ (, 5, p) which coincide with x(.) q X_ (, 5, p) on
the interval [i, t*].

Arguing similarly, one can demonstrate w_(t,x) satisfies condition (2.11).

4. SPECIAL CASE (UPPER AND LOWER SOLUTIONS SATISFY CONTINUITY ASSUMP-
TIONS)
REMARK 4.1. If w+(t,x) (given by (3.4)) and w_(t,x) (given by (3.5)) are respectively lsc

and usc at each point (t,x) ( F, then they are respectively lsc and usc on ft.
PROOF As w+(t,x) is lsc on F then, by Lemma 3.2, it coincides with its lsc envelope on

which is of course lsc on ft. Similarly, w_(t,x) is usc on ft because it coincides with it usc envelope
(Lemma 3.3).

LEMMA 4.1. If u(t,x), a upper solution of Isaacs’ equation, is lsc at each point (t,z) F,
and w(t,x), a lower solution of Isaacs’ equation, is usc at each point (t,x) F, then u(t,x) > w(t,x)
on ft. In particular, with u(t,x) w+(t,z) and w(t,x)= w_(t,x) (see (3.4) and (3.5)), we have
w+(t,x) > w_(t,x) on ft and consequently u(t,x) > w(t,x) on ft, for any upper solution u(t,x)
and any lower solution w(t,x) of Isaacs’ equation.

Note that the second part of Lemma 4.1 gives us the strongest application of the first part,
while the weakest application is obtained when u(t, z) w" (t, x) G and w(t, x) w, (t, x) g
(see Proposition 3.1).

PROOF Choose a point (i,5) E ft\F to show u(i,5) > w(,5). We argue partly similarly
as in the proof of Lemma 3.3 from [10], where the special case r T was dealt with. Namely, we
define the set Mk(t), < < T, as the collection of all pairs (y(.), z(.)) X+(,5) X_(i,5) for
which

(i) u(r,y(r)) is decreasing on the set of points i + [,tu], t, min(t,r[y(.)]), including the
end point t (see (2.12));

(ii) w(r,z(r)) is increasing on the set of points i + [/,tz], tz min(t,r[z(.)]), including the
end point t,;

[/, min(t, t)].(iii) (z(r) y(v), ;: (r)- (r)) < llz() ()11 / on

There is no problem with finding pairs (y(.), z(.)) satisfying (i), (ii) for T (see (2.12)). What
we want to show now is that condition (iii) also holds, for any k > 0, i.e., Mk(T) . Suppose
we have done it. Then, for each , there is a pair [/(.),z(-)] M(T) satisfying (i)-(iii). Let
r tu min(T, r[y(.)]) r[yk(-)] (by virtue of (2.10)), and r t min(T, r[z(.)]) r[z(.)].
With r min(r’,T) we have (z(r)- yk(r),k (r)-- lk (r)) <_ AIIz(r) y(r)ll 4- on
Since z(r) y(r) tend to zero with k tending to infinity (uniformly in r), and X(i, 5) is compact
in C"[7, T], we may assume y(.),zk(.) tend to some x(-) E X(i, 5). Without loss of generality,
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let us assume rt‘ r. We will then have that (rt‘,yt‘(rt‘)) and (rt,,zt‘(rt‘)) converge to some point
(r,x(r)) (5 F, taking into account (rt‘,yt‘(rt‘)) (5 F and r is a closed set. In addition, u(rt‘,yt‘(rt‘)) <
u(,) and w(i ,it‘ zt‘( + ))’t‘ > w(, ), where + it‘ is within the distance of to rt‘. Finally,

u(,y) > lim u(rt‘,yt‘(r))> li.mg(rt‘,yt‘(r))=
and (because w(t,x)is usc at each point (t,x) (5 F)

it it,
w(i,’2) -t‘-<lim w( + -, zt‘(i + -)) _< w(r, z(r)) -9< (r, z(r)).

If rt‘ r then we need the lover-semicontinuity of u(t,z) at each point (t,x) (5 F.
What remains to do now is to prove condition (iii) holds for any positive integer k on the maximal

interval [,min(r[y(.)l, [(.)l)l, that is to say, Mk(T) t. Suppose on the contrary that, for any
pair (y(.), z(.)) satisfying conditions (i), (ii), the maximal interval on which (iii) holds is [,t] with
tt‘ < min(r[y(.)], r[z(.)]). With (y(.), z(.)) being such a pair, set yt‘ y(tt‘),zt‘ z(tt‘),st‘ zt‘-yt‘,

to observe, based on property F1, that

min (st‘,f) H(tt‘,yt‘,st‘), max <st‘,f> H(tt‘,zt‘,st‘), (4.1)
f.F+ (tit ,yit ,sit f.F-(tk ,Zk ,Sit

and consequently (st‘, f tt‘,yt‘, u, v,it)) (st‘, f(tt‘, zt‘, u,it, v)) < H(tt‘, zt‘, st‘) H(tt‘, yt‘,st‘) < mllz-
ull I111 < AIIII (see (2.4) and property F3), for any v (5 V(tt‘),u (5 U(tt‘), which implies
(z ,, ) _< AIIII (see (iii)). Since the sets F+(t,z, st‘ ), F_( t, z, st‘) depend upper-
smicontinuously on (t, z), the function s(r) z(r)-y(r)is continuous and, based on (2.11), (2.13),
y(r) and z(r) can be extended on [tt‘,tt‘ +a] (for some a)in such a way that (r) (5 F+(r,y(r),st‘),. (r) (5 F_(r,z(r),st‘), with (i) and (ii) satisfied on [,min(t + a, [U(’)l)l, we will have

(z() y(), ()- b ()) _< llz() y()ll + -, t _< _< t, + .
This contradiction shows Mt‘(T) # .

COROLLARY 4.2. If w+(t,z) is lsc at each point (t,z) (5 F and w_(t,x) is usc at each point
(t,z) (5 F then there is at most one solution w(t,z) of Isaacs’ equation (1.3). If it exists, it is
continuous on ft and satisfies w(t,z) w+(t,z) w_(t,z) on ft.

PROOF By Lemma 4.1 we have w+(t,z) > w_(t,z) on ft. If a solution w(t,z) of Isaacs’
equation exists then, by virtue of (3.4) and (3.5), w_(t,z) > w(t,z) > w+(t,z) on ft, and w(t,z)
is continuous on 12 (by virtue of Remark 4.1). The proof is completed.

COROLLARY 4.3. Any two solutions u(t,z) and w(t,z) of Isaacs’ equation must coincide if
they are continuous at each point (t,z) (5 F.

PROOF By Lemma 4.1, we have u(t,x) > w(t,x) and w(t,x) > u(t,x).
THEOREM 4.4. If w+(t,x) (resp. (w_(t,x)), given by (3.4), (3.5), is lsc (resp. usc) at

each point (t,x) (5 F, then there is exactly one solution w(t,x) of Isaacs’ equation satisfying
w(t,x) w_(t,x) w_(t,x). This solution is continuous on ft.

PROOF The conclusion follows from Corollary 4.2 and Theorem 3.5.
COROLLARY 4.5. If F {(t, x) (5 f: T], i.e., the boundary condition for Isaacs’ equation

becomes w(T,x) g(T,x), then w+(t,x)is lsc at each point (t,x) (5 F and w_(t,x)is usc at each
point (t, x) (5 F. Consequently, the conclusions of Theorem 4.4 are valid.

REMARK 4.2. The content of Corollary 4.5 is less general, although close enough to that of
Theorem 2.1 from [10].

PROOF Assume w+(T,y) > lim(t,x)_(r,r)w+(t,x) for some (T,Y) (5 F. There must then
exist a sequence (tn, xn) (5 ft for which w+(t,, x,) < w+(T,) e, (t,, x,) -- (T, Y), and, by
virtue of (2.11), w+(T,x,(T)) < w+(t,,x,) with g(T,z,(r)) <_ w+(T,x,(T)) for some trajectories
x,(.) (5 X(t,, x,). This implies

g(T,) imoog(T,x,,(T)) <_ w+(T,)- ,
which is impossible because (see Proposition 3.1) w+(T,Y) < w’(T,)= g(T,Y) < w+(T,)- .
Arguing similarly, one :an prove w_ (t, x) is usc at each point (T, ) (5 ft.
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5. RELATIONSHIP TO DIFFERENTIAL GAMES, CONTINUITU OF THE VALUE FUNC-
TION

Let us return now to the differential game (1.1), (1.2) to find interpretations for w+(t,x) and
w_(t,x). To define the game completely, we have to specify what we mean by strategies for player
(choosing a control function (u(t)) and player II (choosing a control function v(t)). Next, we have

to define the upper value of the game, (t,x), and the lower value of the game, W(t,x) (if they
are equal, the differential game has a value).

We recall the definitions of upper and lower values of the game introduced in [13], as well as

the optimality principles of dynamic programming in differential games obtained first in [12], and
next extended to a more general case in [13], to prove Theorems 5.1, 5.2, 5.3 ensuring, under semi-
continuity assumptions imposed on W(t,x) and l/V(t,x), that (t,x),W___(t,x) are upper or/and
lower solutions of Isaacs’ equation. The existence of a value is proved in Theorem 5.3 where we

assume (t, x)is use on 12 and W(t,x)is lsc on Q. It is claimed the value function W(t,x)is then
a continuous solution of lsaacs’ equation satisfying w_(t,x) >_ W(t,x) >_ w+(t,x) on

Below we invoke some results from [13], which were proved under weaker assumptions (without
convexity conditions (2.3), (2.9)), with one exception concerning regularity of i(t), V(t) articulated
in condition (1.4) from [13]. This condition is readily satisfied when U(t) =- U, V(t) =_ V for some

compact sets U, V.
Let H denote the set of all finite partitions r of [,T]. For any c X(,) (II, U) (U is

the class of all control functions (u(.)), we write down c[x(.)] as (cl[x(.)], c2[x(.)]) with [x(.)], _[(.)] (.).
DEFINITION 5.1. An operator X(,5) - (II, U) is said to be a strategy of player

if whenever xi(t) x:(t), <_ <_ t*, then (i)t t,...,ti+ t+, where t,t,...,ti+
are the first k + points of the partition ’1 ([xi(’)], while t,t,... ,t+ are the first k +

and (ii)partition points of 2 c[x(.)], with k being the inde for which t, _< t* < tk+,
O2[Xl(’)](t O2[Xl(’)](t), tk+ t+ tk+1.

In an analogous fashion, we understood the concept of a strategy for player II. It is easy to
see how the players proceed when employing their strategies. Namely, at time player (a similar
observation refers to player II) chooses his/her partition point tl (knowing only) and a control
u(s), < x < tl. At time t, knowing x(s) for < s < tl, player selects t: and u(s) for s e Its, t),
and so forth.

Denote by A(,5),B(,5) the space of strategies for player and player II, respectively (as-
sociated with a point (,5)). Given c A(,5), we say that a trajectory x(.) X(,5) is an
outcome of c(x(-) 0[(], for short) if there are controls u(.) V,v(.) c= Y such that &(t)
f(t,x(t),u(t),v(t)),x() 5, and z[x(.)] u(.). In a similar fashion, we understand 0[Z],fl
B(,).

When [x(-)] u(.) and/2[x(-)] v(.) with {c(t) f(t,x(t), u(t), v.(t)),x() , we say x(.)
is an outcome of the pair (,)(x(.) E 0[,], for short). Clearly, when &(t) f(t,x(t),u(t), v(t)),
x()- 5, then by P[,5,x(.)] we shall mean P[-,5, u(.),v(.)] (given by (1.2)); analogously, since
each pair (c,/) E A(,5) x S(,) gives rise to exactly one outcome x(.), by P[,,,f/] we shall
mean P[,, x(-)]. Following [13], we define the upper and lower values of the game as follows:

___W(i,)= sup inf P(,5, x(-)], (t,5)= inf sup P[,5, x(-)]. (5.1)
A(,) (-)e0[] s(.) (.)0[]

These formulas may be, clearly, replaced with the following ones"

W({,5)= sup inf P[,5, c,], (,5)= inf sup p[,m,,]. (5.2)

DEFINITION 5.2. The differential game (defined above) has a value W(i,) at a point
(,Y) fl, if W(,y) W(,y) W(,y).

It was proved in [13] (Theorem 3.1) that, for each (,5) f- F,

sup inf W(t,x(t)) W(,5), <_ <_ v[x(.)], (5.3)
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and
inf sup IA-7(t,.v(t))= W(,y), " < <r[x(.)]. (5.4)

/(.Y) x(.)o[]

Note that in the relations above, called in [13] "optimality principles of dynamic programming
for differential games," x(.) 0[c] (resp. z(.) 0[/3}) can be replaced with /3 B(,Y) (resp.
c A(,)).

The natural question arises how to find a relationship between strategies c A(t,x),/3 B(t,x)
and set-valued maps U(t,x,s), V(t,x,s). For each U(t,x,s) C , denote by ut(t,x,s) the selection
from U(t,x,s) which is the maximal element of U(t,x,s) in the lexicographic order. Given U(t,x,s)
and the partition r, {’,t,} of ,T],t, + (i 0, 1,...) one is naturally led to the differential
inclusion (cf. (2.5), (2.7)): ,,(t) f(t,x,(t),u’l(t,,x,,(t,),s),V),t, < < t,+,x(i) , which (for
a fixed control (-) V) uniquely determines a strategy r (c,() A(i,). In fact, it is
enough to set

o[z(.)] r, a[z(-)] u’(t,,x(t,),s), t, <_ < t,+a, (5.5)
t, r,(i- O, 1,...),ut(t,x,a) C U(t,x,s).

THEOREM 5.1. If W(t,z)is lsc (resp. use) on f then W(t,z)is a upper (resp. lower)
solution of Isaacs’ equation (1.3). Consequently, if W(t,x)is continuous on D then it is a solution
of Isaacs’ equation satisfying w_(t,x) > (t, w) > w+(t,x) on f.

PROOF First notice (t,x) g(t,x) on O. Throughout the proof we fix a point (i,) D
and a vector s, ]ls[I 1. To demonstate W(t,x) is a upper solution, we select a natural number n
to uniquely determine the strategy c (c, c) given by (5.5). Next we observe the first part of

sup inf (t,x,(t)) < inf sup (t,x(t))= (t,Y), (5.6)

< < -[x(-)], is a trivial fact from elementary game theory, while the second part is exactly identity
(5.4). It follows from (5.6) and the remark immediately following (5.4), that there is a x(.) 0[]
such that W(t,x(t)) <_ W(,), < < r[x(.)], with ,,(t)6 f(t,x(t),U(t,,x(t,),s),V),x(i)=
2,ti < < t,+. Using assumption (2.9) and the upper-semicontinuity of U(t,x,s) in (t,x), we can
assume x,(-)is convergent to some z(-),k(t) f(t,z(t),U(t,z(t),s),V), i.e., z(.) fi X+(,y). Since
W(t,z) was assumed to be lsc on f, we conclude from W(t,x,(t)) < W(,y) that W(t,x(t)) <
W(,y), < < r[x(.)l _< liminf,,_ r[x,,(.)], as required in (2.11).

To prove (2.13), we assume W(t,x) is use on ft and argue similarly, with (5.5) replaced by:
/3" (/3’,/3’),/3’[z(.)] r,,/3’[z(.)] v"(t,,z(t,),s),t, < < t,+a, where vt(t,z,s) is the selection
from V(t,z,s) which is the maximal element of V(t,z,s) in the lexicographic order. We obtain
from (5.4) that there are trajectories z,,(.) 0[3"] for which W(t,z,,(t)) > W(,), which gives us
W(t,z(t)) >_ W(,y), < < r[z(-)],z(.) X_(,), using the upper-semicontinuity of W(t,x) as
required in (2.13).

Finally, if W(t,x) is continuous on 12 then W(t,z) must be a solution of Isaacs’ equation
satisfying w_(t,x) > W(t,z) > w+(t,z), by virtue of (3.4), (3.5).

THEOREM 5.2. If W(t, z) is use (lsc) on 9t then W(t,z) is a lower (upper) solution of Isles’
equation (1.3). Consequently, if W(t,z) is continuous on 12, then W(t,z) is a solution of Isaacs’
equation with w_(t,z) > W(t,z) > w+(t,z), (t,z) .

PROOF The second part of the theorem is an obvious consequence of the first part. We start
with observing W(t,z) g(t,z) on F, choosing a point (,) ft and s fi R", IIll 1. Aa i,, the
proof of Theorem 5.1, we "approximate" the multifunction V(t, z, s) with the sequence/3" [/3’,/3’
defined therein to obtain trajectories z,,(.) 0[/3"] for which W(t,x,,(t)) > W(,), < < r[z,,(.)],
with the inequality

inf sup W(t,x(t)) > sup inf W(t,x(t))= W(,Y), (5.7)

playing the role of (5.6); as previously, o A(,Y) can be replaced with x(.) 0[/3]. The final step
to make is to conclude W(t,x(t)) > |,|__’(,) for some x(.) X_(,), as required in (2.13), using
the upper-semicontinuity of W(t, x) on l.

If W(t,x) is lsc on then, based on (5.3), we choose, for a" (a’,a’) given by (5.5), a
trajectory x,(-) 0[a] such that W(t,x,(t)) < W(,Y),i < < r[x,(.)]. As in the first part of
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the proof of Theorem 5.1, x,(.) are convergent to some x(-) E X+(,Y) for which W(t,x(t)) <
W(,Y), i < < ’[.r(-)]. The proof is completed.

THEOREM 5.3. If Il--7(t,x) is usc on 9 and W___(t,x) is lsc on l then the game has a vahle

W(t,x) W(t, x) _W(, z), which is a continuous solution of Isaacs’ equation satisfying w_(t,z) >
W(t,z) > w+(t,x),(,x) . Any solution of Isaacs’ equation continuous at each point (t,z) F
coincides with W(t, x) on Ft.

PROOF By virtue of Theorem 5.1 (resp. Theorem 5.2) W(,x) (resp. W(t,x)) is a lower

(resp. upper) solution of Isaacs’ equation. Using Lemma 4.1, we conclude __W(t,z) > W(t,z).
Since the inverse inequality always holds true (a trivial fact in elementary game theory), we infer

W(t,x) H--(t,x) W(t,x) on fl, and (by (3.4), (3.5)) w_(t,x) > W(t,x) > w+(t,x). The last

part of the theorem follows immediately from Corollary 4.3.
COROLLARY 5.4. If assumptions of Theorem 5.3 are satisfied, W+(t,x) is lsc at each point

(t,x) F and w_(t,x) is usc at each point (t,x) F, then W(t,x) is the only solution of Isaacs’
equation. W(t,x)is continuous on Ft and satisfies W(t,x)= w_(t,x)= w+(t,x).

PROOF The conclusions follow immediately from Corollary 4.2 and Theorem 5.3.
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