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ABSTRACT. Let X be a Banach space, K a non-empty closed subset of X and T: K—X a mapping
satisfying the contractive definition (1.1) below and the condition T(8k)C K. Then T has a unique
fixed point in K. This result improves Theorem of Rhoades [1] and generalizes the corresponding
theorem of Assad [2].
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1. INTRODUCTION.

Let X be a Banach space and K a closed subset of X. In many applications the domain of a
considered function is K, but the codomen is not entirely included in K. So it is of interest to
amplify a class of such mappings which have a fixed point. Rhoades [1] introduced a class of non-
self mappings T of K into X which satisfy the following contractive definition

d(Tz,Ty) < h-maz{d(z,y)/2,d(z, Tz),d(y, Ty),[d(z,Ty) + d(y, T=))/q}, (L.1)

where h and g are reals satisfying 0 < h < 1,¢>1+2h. Rhoades proved that if T(8K) C K, then T has
a unique fixed point. As pointed out by Rhoades [1, p. 459], the method of proof used in his
Theorem 1 does not extend to more general contractive definitions.

The purpose of this note is to extend the result of Rhoades [1] to a class of non-self mappings
of K which satisfy the following contractive definition:
There exists a constant h,0 < h < 1, such that for each z,y € K,

d(Tz,Ty) < h-maz{d(z,y)/a,d(z,Tz),d(y, Ty),[d(z, Ty) + d(y, Tz)])/(a + h)}, (1.2)

where a is a real number satisfying a > 1+ (2h%)/(1 + h).

Note that if T satisfies the condition (1.1) then T satisfies condition (1.2) with a=1+h.

Using a new method of proof we proved the result which is an improvement of the Theorem of
Rhoades [1] and generalization of the Theorem of Assad [2].
2.  MAIN RESULT.

In this paper we shall use the fact that, if z€ K and y ¢ K, then there exists a point z € 8K, the
boundary of K, such that d(z,z) + d(z,y) = d(z,y).

THEOREM 2.1. Let X be a Banach space, K a non-empty closed subset of X and T:K—X a
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mapping satisfying (1.2) on K and such that T(0K)C K. Then T has a unique fixed point in K at
which T is continuous.
PROOF. Let z,€ K be arbitrary point. Define two sequences {z,} and {z} satisfying the
following conditions:
(i) zh41=Tz,,
(i) z,=z,ifz, €K,
(iii) =z, € 0K and d(z, _,,z,) +d(z,,2,) = d(z}, _,zh) if z,, ¢ K.
Let P={z € {z,}:z, =z}} and Q= {z; € {z,}:z, #z}}. Note that {z,} C kK and if z, €Q, then
z,_, and z, ,, belong to P, since by T(8K) C K we cannot have two consecutive points of {z,} in Q.
From (1.2) it is easy to obtain d(z},z}, ;) < h-d(z, _;,2,).
We shall estimate d(z,,z,, , ;). Actually, we have three cases to consider:
Case: =z, z,,,€P,
CaseIl: z,€P, z,,,€Q,
Case lIl: z,€Q, z,,,€P.
It is easily seen that Cases I and II imply

d(zn’:n+l)5 h'd(zn-l’zn)' (2'1)
Case Ill. z,€Q, z,,,€P. We shall show that

d(zn'zn-l- l) S h~d(z"_2,zn_ l)‘ (2'2)

If d(z,,2, ) <d(z,_,,2,), then (2.2) holds by Case II, since z, € Q implies z,, _, € P. Assume
now that

d(‘rn’ Tny l) > d(zn - l’z;l)' (2.3)

Since z,, € Q and is a convex linear combination of z, _, and z, it follows

d(z,,z, + 1) S maz{d(zy,z, + 1) 4z, _1s2, + 1} (2-4)

Using (1.1) and (2.3) we obtain

d(z;uzn + l) = d(Tz" —1 Tzn) <h. maz{d(z" - p:n)/a’ d(z",z" + l)v 2“(3"’ T4 1)/(“ + h)}

and hence, as a > 1,

(T Tp 1) S 2h-d(20, 2, 4 1)/ (1 4+ h). (2.5)

Then from (2.4) and (2.5) we get

d(zmzn+l) < d(zn-l""n+1)‘ (26)

Using again (1.1), (2.3) and the triangle inequality we have
d(:n —1%y + 1) = d(T:l:" -2 T:l:") S h maz{[d(zn — 2%~ 1) + d('tn - 1'zn)]/a'
Az, _ 302, 1)y Az 2, 1 0)[d(2, 502, 1) +d(2, _1y2, 1) +d(z,_1,2,))/(a+ b)) 2.7
Suppose that (2.7) implies

d(:n—l’:n+l) S h- [d(zn—rzn—l) +d(zn- l’zn+1) +d(z"_1,z")]/(a+ h)'
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Then we have

d(z, _ 12, 4q) Sheldz, g2, ) +d(z, _y,2,))/a
Since by  (2.6) d(z,_yz,,,)<h-d(z,_pz,_;) immediately implies (2.2), and
d(z, _ 1,2, 4,) < h-d(z,,z, ) is in contradiction with (2.6), we may suppose that (2.7) implies

d(z, _ 1,2, 1) <h-[d(z,_52,_ ) +d(z, . ,2,))/a. (2.8)

Assume now that d(z, _;,z, ) > [2h/(1+h)]-d(z,, _,z;,). Then by (2.1) we get

d(2y,20) S [L-20/(1+ )] -d(z,,_y,20) S[(1-H)/(L+B)]-h-d(z,, gz, )

and so by the triangle inequality and (2.5) we have

d(zy 2, 4 1) S d(zy20) +d(z0,2, 4 1)
<[ =h)/(1+h)]-d(z, _ 52, _1)+[2h/(1 +h)]-d(z,, 2, ; )-
Hence it follows that d(z,,z, ,,) < h-d(z, _z,_,), i.e., the relation (2.2).
Assume now that d(z,, _,,z,) <[2h/(1 + h)]-d(z,, _1,2,). Then from (2.1) and (2.8) we get
d(z, _1,Za4) <h-[1 +2h%/(1 +h)}-d(z,, g2, _1)/a<h-d(z,_yz,_,)
since by hypothesis a > 1 +2h2/(1 + h)]. So we proved (2.2).
By (2.1) and (2.2) we conclude that in all cases
d(z,,z,, +1) Sh-maz{d(z, gz, _ ) dlz, _,2))

Now it is easily shown by induction that, for n > 2,

d(z,,z, 1) < h("/z)maz{d(zo, z,),d(z;,25)},

where (n/2) is the greatest integer not exceeding n/2. Hence for m >n > N,

A2 2) < T2 v dlz,2, 4 1) < 26N /(1 = )] maz{d(z, 2,),d(2y,2,)}s

so that {z.} is a Cauchy sequence. Since {z,} C K and K is closed, {z,} converges to some point
pEX.
Let {Zaky 41} S P be an infinite subsequence of {z,}. From (1.2) .

d(p,Tp) < d(p, Tz (1)) + d(T@'n(k)» Tp) < (p Tz, +h- maz{d(zn(k), p)/a,

A2 1y gk + 1) APy TP [d(2, 1), TP) + (P2 4y 4 1))/ (a + B)}.

Taking the limit as n—oo yields d(p,Tp)<h-d(p,Tp). Hence Tp=p. Condition (1.2) implies
uniqueness.
Mappings which satisfy (1.2) may be discontinuous but at a fixed point they are continuous.

For if y,—p = Tp, then from (1.2) we have
d(Ty,, p) = d(Ty,, Tp)

< h-maz{d(y,, p)/a,[d(y, P) + d(p, Ty,), [d(y,,, P) + d(p, Ty,))/(a + h).

Hence lim sup d(Ty,,,p) < h-lim sup d(p,Ty,). Hence Ty,—p. This completes the proof.
The following result readily follows from Theorem 2.1.
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COROLLARY. Let X be a Banach space, K a non-empty closed subset of X and T:K—X a
mapping satisfying

d(T*z, T*y) < h-maz{d(z,y)/a,d(z, T*z),d(y, T*y),[d(z, T*y) + d(y, T*z)}/(a + h)]} (2.9)

for all z,ye K, where k is a positive integer and a,h constants such that 0<h<1 and
> 1+2h%/(1+h). If T(AK) C K, then T has a unique fixed point in K.

Theorem 2.1 can easily be extended to multi-valued mappings. Let (X,d) be a metric space
wm BN(X) the set of all bounded subsets of X. For A,B € BN(X) set §(A, B) = sup{d(a,b):a € A,b € B}.

Now we can state our result.

THEOREM 2.2. Let X be a Banach space, K a non-empty closed subset of X and F: K—BN(X)

a multi-valued mapping satisfying

§(Fz, Fy) < h-maz{d(z,y)/a,6(z, Fz),6(y, Fy),[D(z, Fy) + D(y, Fz)]/(a + h)}

for all z,y € K, where a and h are reals satisfying 0 <h <1, a>1+2h2/(14h). If Fz C K for all z € 8K,
then F has a unique stationary point in K (i.e., there is some £ € K such that F¢ = {¢}.

The proof of Theorem 2.2 is omitted, since it follows the same arguments as those of Theorem
3 of [2] and Theorem 2.1 above.
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