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ABSTRACT. Let x be a Banach space, K a non-empty closed subset of X and T:KX a mapping

satisfying the contractive definition (1.1) below and the condition T(OK)C.K. Then T has a unique

fixed point in K. This result improves Theorem of Rhoades [1] and generalizes the corresponding

theorem of Assad [2].
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1. INTRODUCTION.
Let X be a Banach space and K a closed subset of X. In many applications the domain of a

considered function is K, but the codomen is not entirely included in K. So it is of interest to

amplify a class of such mappings which have a fixed point. Rhoades [1] introduced a class of non-

self mappings T of K into X which satisfy the following contractive definition

d(Tx, Ty) <_ h max{d(z, y)/2, d(x, Tx), d(y, Ty), [d(z, Ty) + d(y, Tx)]/q}, (1.1)

where h and q are reals satisfying 0 < h < 1,q >_ + 2h. Rhoades proved that if T(i)K) c_ K, then T has

a unique fixed point. As pointed out by Rhoades [1, p. 459], the method of proof used in his

Theorem 1 does not extend to more general contractive definitions.

The purpose of this note is to extend the result of Rhoades [1] t’o a class of non-self mappings

of K which satisfy the following contractive definition:

There exists a constant h, 0 < h < 1, such that for each , y E K,

d(Tx, Ty) < h. max{d(x,y)/a,d(x, Tx.),d(y, Ty),[d(x, Ty) + d(y, Tx)]/(a + h)}, (1.2)

where a is a real number satisfying a > + (2h2)/(1 + h).
Note that if T satisfies the condition (1.1) then T satisfies condition (1.2) with a + h.

Using a new method of proof we proved the result which is an improvement of the Theorem of

Rhoades [1] and generalization of the Theorem of Assad [2].
2. MAIN RESULT.

In this paper we shall use the fact that, if E K and y it K, then there exists a point z

_
OK, the

boundary of K, such that d(.,z)+d(z,y)= d(x,y).

THEOREM 2.1. Let X be a Banach space, K a non-empty closed subset of X and T:K--,,X a
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mapping satisfying (1.2) on K and such that T(OK)c_ K. Then T has a unique fixed point in K at

which T is continuous.

PROOF. Let r0 c K be arbitrary point. Define two sequences {x,,} and {x,} satisfying the

following conditions:

T.,(i) z,+l

’if ’OK,(ii) r,, .
(iii) z. C OK and d(z._ 1,z,,) + d(z,,,z’,,) d(x’._ l,z,) if z, $ K.

Let P {zk {z,,}:zk z,} and Q {z {z,,}: # ri,}. Note that {,,} c_ K and if ,, Q, then

x._ and r. + belong to P, since by T(OK) c_ K we cannot have two consecutive points of

From (1.2) it is easy to obtain

We shall estimate d(z.,z.+ 1)- Actually, we have three cases to consider:

Case I: :,,, z,, + 6 P,

Case II: :,, P, z. + 6 Q,

Case III: z. , r. + P.

It is easily seen that Cases and II imply

d(xn, Xn + 1) -- h’d(n- l’Zn) (2.1)

Case III. . 6 Q, x. + P. We shall show that

d(zn’zn+ 1) < h’d(n-2’n-1)" (2.2)

If d(z.,r. + 1) -< d(r._ ,x,), then (2.2) holds by Case II, since r. e Q imphes r._ e P. Assume
now that

d(zn,,n+l)>d(Zn_l,Z’n).

Since ,, 6 Q and is a convex linear combination of ,_ and z, it follows

d(zn, xn + 1) -< rrtaz{d(ztn,n + 1), d(zn l’Xn + 1)}"

Using (1.1) and (2.3) we obtain

(2.3)

(2.4)

d(z’n’Zn + 1) d(Tz,_ 1,Tz,) <_ h. max{d(z 1,zn)/a,d(zn, z, + ), 2d(xn, z + 1)/(a + h)}

and hence, as a > 1,

d(xn’Zn+ 1) -< 2h’d(n’n+ )/(1 + h).

Then from (2.4) and (2.5) we get

d(n, zn + 1) -< d(n- l’Zn + 1)"

Using again (1.1), (2.3) and the triangle inequality we have

(2.5)

(2.6)

d(xn- l’;Vn + 1) d(Tzn- 2’Tzn) <- h rrtax{[d(zn 2, Zn_ 1) 4" d(z

d(zn- 2’zn 1)’ d(zn’zn + 1)’ [d(zn 2’z,- 1) 4" d(zn- 1,Xn + 1) 4" d(x,_ 1,zn)]/(a + h)}.

Suppose that (2.7) implies

d(zn- l’Zn 4-1) -- h’[d(zn- 2’n 1) 4" d(zn- l’n + 1) 4" d(T’n- l’Zn)]](a 4" h).
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Then we have

d(xn- 1,xn + 1) -- h [d(xn- 2, xn- 1) + d(zn- l’Zn)]/a"

Since by (2.6) d(:._ ,. +,) <_ n.d(._ ,._ ) immediately implies (2.2),
d(Zn-l,Xn+ )<-h’d(zn’Xn+ l)is in contradiction with (2.6), we may suppose that (2.7) implies

d(n- l’Zn + 1) (- h .[d(n_ 2,n_ 1) -b d(x 1, xn)]/a.

Assume now that d(z._l,z.+ 1) > [2h/(1 +h)].d(z._,z’.). Then by (2.1) we get

d(xn, x) _< [1 2h/(1 / h)] d(n_ ,x) _< [(1 h)/(1 + h)].h.d(n_ 2,n_ t)

and so by the triangle inequality and (2.5) we have

d(a:n,n + 1) -< d(n,#n) + d(’n, xn + 1)

_< [h(1 h)/(1 + h)]’d( 2, z 1) + [2h/(1 + h)].d(,n, + ).

Hence it follows that d(z.,z.+ 1) < h.d(.._2,z._), i.e., the relation (2.2).
Assume now that d(z._a,z.)< [2h/(1 +h)].d(z._,r,). Then from (2.1) and (2.8) we get

d(xn- l’Zn + 1) -- h.[1 + 2h2/(1 + h)].d(xn_ 2, xn_ 1)/a

_
h’d(xn_ 2,;vn 1),

since by hypothesis a > + 2h2/(1 + h)]. So we proved (2.2).
By (2.1) and (2.2) we conclude that in all cases

and

(2.8)

d(Tyn, P) =d(Tyn, TP)

<_ h rnaz{d(Yn, p)/a,[d(Yn, p) + d(p, Tyn),[d(un, p) + d(p, TYn)]/(a + h).

Hence lim sup d(TYn, p) <_ h.lirn sup d(p, TYn). Hence Ty,,p. This completes the proof.
The following result readily follows from Theorem 2.1.

d(..,.. + ) < h. ma.{d(.._,,*._ ), d(.._ ,..)}.

Now it is easily shown by induction that, for n > 2,

d(zn’n + 1) h(n/2)maz{d(zo, zl),d(Zl,Z2)}

where (n/2) is the greatest integer not exceeding n/2. Hence for m > n > N,

d(zn, Zm) E= N d(z,,z, + ,) [2h(N/)/(l-h)].maz{d(zo, Z,),d(Zl, Z2)},

so that {z} is a Cauchy sequence. Since {z} K d K is closed, {z.} converges to some point

pX.

Le {z.(t)+ } P be infinite subsequence of {z.}. From (1.2)

d(p, Tp) d(p, Tx.(t)) + d(Tz.(t),Tp) (p, Tx.(t)) + h.maz{d(z.(t), p)/a,

(.t),.t + 1)), (,, 7,), [(.t), 7,) + (,, .t) + )]/( + h)}.

Taking he limi n yields d(p, Tp)h.d(p, Tp). Hence T=. Condition (1.2) implies

uniqueness.

Mappings which satisfy (1.2) my be discontinuous bu a fixed poin hey e continuous.

For if ., T, hen from (1.2) we hve
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COROLLARY. Let X be a Banach space, K a non-empty closed subset of X and T:K-,X a

mapping satisfying

d(Tkz, T:y) < h. rnaz{d(z, y)/a, d(z, Tkz), d(y, T:y), [d(z, Tky) + d(y, Tz)]/(a + h)]} (2.9)

for all z,yK, where k is a positive integer and a,h constants such that 0<h<l and

> + 2h=/(1 + h). If T(OK) C K, then T has a unique fixed point in K.

Theorem :2.1 can easily be extended to multi-valued mappings. Let (X,d) be a metric space

,, nN(X) the set of all bounded subsets of X. For A,B BN(X) set (A,B) sup{d(a,b):a A,b B}.

N’ow we can state our result.

THEOREM 2.2. Let X be a Banach space, K a non-empty closed subset of x and F:K-BN(X)

a multi-valued mapping satisfying

*(F, Fv) <_ h ma{d(, V)/a, *(, F), *(v, Fv), D(, Fv) + D(v, F)]/(a +

for all z,v K, where a and h are reals satisfying 0 < h < 1, a > + 2h2/(1 + h). If Fz c_ K for all OK,

then F has a unique stationary point in K (i.e., there is some K such that F {}.

The proof of Theorem 2.2 is omitted, since it follows the same arguments as those of Theorem

3 of [2] and Theorem 2.1 above.
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