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ABSTRACT.
expressing

We derive new classes of infinite products taken over the primes, for example

pH(I_p-"I)(1-p-m)
-1

as,an infinite produce of Riemann zeta functions, this product being taken over the set of rational

numbers a/3 geater than zero with a relatively prime to 3

KEY WORDS AND PHRASES. Arithmetic functions, Dirichlet series and other series expansions,

Convergence and divergence of infinite products, Combinatorial number theory, Lattice points in

specified regions, Riemann’s zeta function, Partitions (elementary number theory), Applications of

sieve methods, Analytic work on partitions, Multiple sequences and series, Exponential sums,

Multiplicative equations (Diophantine equations), Combinatorial identities, and Elliptic theta

functions.
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1. INTRODUCTION.
In a recent paper (Campbell [4]) a class of infinite products was derived.

The simplest of these is

(1.1)

2 h
_, where k is the set ofl, lyl <l, lzyl <1- The notationskl-[i= ’ i== ’sitive integers less th d relatively prime to k, e used henceforth d in (1.1). The threm

ven in [4] is the cen of

THEOREM 1. If (%) d (bk) e bitry sequences chosen so that, together with choice of

the foowing fctions e defined then

. l_ep(bkz)
]

{ .lak . [n/m]

k=l k= m=2 k=l jG$m

where [n] denotes the greatest integer in n.
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The proof follows easily by induction on n, and resembles the proof for the infinite case given
in [4]. There is an interesting parallel between this theorem and the identity used by Rarnanujan

([13] ana [10]) to derive his summations which generate his arithmetic function Cs(n)=
where #s. The rigorous proof of (1.1), and also of the infinite product identities in [4],
accounting for the branches of the fractional powers, can be approached easily from the finite (1.2)

2. PRIME PRODUCTS FOR INFINITE PRODUCTS OF ARITHMETIC FUNCTIONS.
There are many well known examples of functions definable in terms of an infinite or finite

product of rational functions of prime number powers. Such a function is, for instance, the

Riemann zeta function given by

H(1-p-s)-l=(s), Res> 1. (2.1)
p

Products such as (2.1) lend themselves neatly to substitution into the new class of infinite products
in [4]. To illustrate this let us take (1.1) with p-m, -,, Re, > 1, Re m +, > 1, and then

form the product over all primes p on both sides. Hence application of (2.1) yields

THEOREM 2.1. If Re and Re m +, > with m # 2fix(log p)- for r l

pI( -(m+n))(1-P-in)-((n) kH j ((fin + kn)1/k
p
_p-n (2.2)

This is substantially the generalized form of

E (k)k- llog(kn) (pn_ 1)- 1, Re n > 1,
k=l P

which is given in Titchmarsh [15], where (t) denotes the Euler totient function. The method of

deriving (2.2) is applicable to the generalized form of (1.1) given in [4] as

k "m’krn + m

t:l (1-z’/Y)’/ ’ :ezp{-((rn+ l,y)grn(Z)+ E (r(1 +k’zY)9k(Z)}’ (2.3)
k=O

for z and y as in (1.1), m any positive integer, and

grn(Z) ffz’m eZ)
iog z’ (n,y) ytt- ,n, yl < 1, (2.4)

k=l

for any complex number n. Hence we have

THEOREM 2.2. If r +, Re n and Re rn + n > 1, rn # 2sir(log p) for s G then

= E{_+1,-.)#( m)+ ([:),+, n))gk(p rn)}
P k=0

The manner of applying the Riemann zeta function to (1.1) and (2.3) works also for other

functions definable by prime products. For example, the sum of the ,th powers of the divisors of r,

defined by

I lai + 1)A

Ip
where r Pi (2.5)A(r)

i=l p/-I i=l

can be substituted with A -(jrn +kn)into (1.1) and (2.3) to obtain
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THEOREM 2.3. If Re n and Re m + n > with r and a as in (2.5) then

and if h is any positive integer then

kHj{ai(jrn+kn)(r)}jh/kh+ kHj k(a(jm+kn)(r)jh/kh+(-r--n) )

II (%+ 1)rio(l), with
i=1

w(z)=ezp{-(h+ 1,p(-nz)gh(p-mz)+ = (hk(k + 1,p-(m+n)z)gk(p(-mz)}
k 0

gh and ( defined as in (2.4). (Assuming p= # 1).
For example, take m n and r 6 and then h so that

n(6)(a (1 + 2)n(6))1/2(a (1 + 3)n(6))l/3(a (2 + 3)n(6))1/3(a (1 + 4)n(6))1/4"

(2n2n+ 1)2n2:1 22n(22n+ 122::1 (3n3n+ 1)32:1 k32n-
( 32n )23::1

(a (1 + 2)n(6))1/22(a (1 + 3)n(6))1/32(a (2 + 3)n(6))2/32(a -(1 + 4)n(6))1/42"

32n
_(22n-1 n2:1( 24n 2n_ -1 A, 22n ,24n [k 32n 34n

with A f(22n) (2n) + t(32n) (3n), such that (z) is defined by

(((2, z 2)- (2,z- 1))z(z 1)- 2.

Let us next consider the Jordan’s totient function Jk(r). This is the number of ordered sets of

k elements chosen from a complete residue system (rood r) such that th greatest common divisor of

each set is prime to r. It is known ([14], p. 92) that

Sk(r)=rkH (1 p- k).

Hence, again applying (1.1) and (2.3) we have

THEOREM 2.4. If m, n, and r are as in Theorem 2.2 then

Jn,r (J(jrn+kn,(r’l/k plier( 1-m (1-p

} +n)
and

(J(jm + kn)(r))jh/kh +j\ r--(j-, is for any positive integer h, equal to

ezp Z{-((h+l’p-n)gn(p-n)+ E (l+k,p n))gk(p n)}
pit k=O
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The main interest in the theorems of this section appears twofold. Firstly, they are examples
of a new kind of infinite product taken over the primes for which an additive property for the

primes is implied. That is, products of form l-I l’(p)g(p) suggest for the first time an additive quality
for the g(p) function. Secondly, the operators k I’Ij and kj define mappings from the set of

rational numbers in (0, 1) 1-1 and onto functions where, to some extent, independent variables are

associated with numerator and denominator for each fraction when it is reduced into its Farey
fraction form. Evidently then, Theorem 2.1 does for the set of Farey fractions in (0, 1) what the

classical identity (2.1) does for the positive integers. Combinatorially, Euler’s product (2.1) is

equivalent to the statement that every positive integer is factorable into a unique product of

primes. We might suspect that (2.2) implies an analogous statement for the set of Farey fractions

in (0, 1). What hampers our making such a statement is the occurrence of fractional powers on the

left side of (2.1). This issue of powers is equally serious for the right side since (1-p-m) will be

generally not a positive integer. However, we may start the process of understanding the left side

of (2.1) by considering the function fj, k(,X) where

,jrn + kn ,jrn + kn

for’positive integers k and j e Ck" Clearly, (2.6) is equivalent to

x oo x x fj, k(,l)fj, k(A2). fj, k(,k) oo
(2.7)

A1=1 A2=1 A3=1 Ak=l (A1A2A3 "’’Ak)m +kn A=I Ajm+kn

k
Since j d k e relatively prime in the ce of (2.1) we may, in (2.7), deduce that H i d
that M1 such ces of this e included with the occurence of se factors in dfferent orders

k
counted distinct. Furthermore, from (2.7), H I; (i) is the reciprocal of the number of ways

c= be split into k ftors in positive integes% that se factors rer=ged e counted

distinct. It is evident from (2.7) that j,k() is most eily evMuable when h fewest divisors.

For exple, it is eily deduced that for y prime p we have Ij, k(p)= 1/k.
A more fundentM prime product is given by
THEOREM 2.5. If Re n d Re m > then

lp(1)(1-p-m)-ll-pn (n)(rn + n) kH j (,(jm + kn)l/k(,(jn + km)1/j. (2.8)

Our proof of this involves the following definition and lemma.

DEFINITION 2.6. Let 4 + denote the set of all extended Farey fractions a/D such that a and

D are relatively prime positive integers. Furthermore, let 4(a,b] be the subset of 4 + in the rational

interval (a,b]. Let this convention be adopted for any open or closed such interval.

LEMMA 2.7.

4 + U= 14(i 1,i), (2.9)

4 + 4(0,1) U 4(1,o) U {1}, (2.10)

4(1,o0) {aid . 4 + :Dla
_

4(0,1)}. (2.11)

Whilst not rigorously proving this lemma, we note that its truth is linked to appropriate

operations on 4(0, I). Specifically for
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1/2
1/3 2/3
1/4
1/5 2/5
1/6
1/7 2/7
/s
etc.,

3/4
3/5 4/5

5/6
3/7 4/7 5/7 6/7
3/s 7/8

(2.12)

in this case of (2.9), we add a positive integer to each term in (2.12) to translate the sequence

4(0,1) onto *5(i,i + 1), and then iterate. For (2.10) and (2.11) we note that the set of reciprocals of

(2.12) terms is precisely the set of elements of

PROOF OF THEOREM 2.5. The factors on the left side of (2.2) which are subject to the

operator k I’I may be thought of as elements listed thus

(2.13)

((5rn + 6n) I/6

;(5 + 7-)I/7 :(6. + 7.)

of a set which is the result of an isomorphic mapping from (0,1). This is immediately seen by
comparison with (2.12). Let P(m,n) be the left side of (2.1) so that the term factors of P(m,n+rm)
for r any positive integer will correspond exactly to the elements of (r,r + 1]. Hence, applying (2.2)
and (2.9) to the product l’I[-_P(m, mi+n)we have

H(I_ p- (rm+.))(l_i- m)-I
p _p-n (2.14)

where l-I" is over a, B respective numerators and denominators of the fractions in q(0,r]. If we let

r-oo in (2.14), the right side product is then over all a/B being elements of +. It remains for us

to establish that this product taken over 4 + is equivalent to the right side product in (2.8). (2.10)
and (2.11) show exactly this as required and so Theorem 2.5 is proved.

We note that if m n in Theorem 2.5 we have

COROLLARY 2.8. If Re m > then

pII(11p-rn)(1-p-m)-I II (m)kr’(az) (2.15)
k=l

where " is over all positive integers a,B which are relatively prime and whose sum is k.

It is worth noting that (2.16) and (2.17) are equivalent expressions for the left side of (2.8):

{- } (2.16)ex
#pAre + #n
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where the summation is over all primes p, and all positive integers A +

it[ ai (2.17)H where r Pi

which is the prime product decomposition of r and with the left-most product over all positive

integers A + 1,#.

3. DIRICHLET SUMMATIONS AND A GENERALIZED TOTIENT FUNCTION.
In this section we examine the identity which arises from equating coefficients of like powers of

r in the expansion of Theorem 1. Without loss of generality we let b/ for all positive integers k,

and use the following

DEFINITION 3.1. For all positive integers -1 and m, let

era(k) y (A/k)m. (3.1)

We note that if m were zero in (3.1) it would define the Euler totient function for k > 2.

Theorem 1 expanded as power series in z leads to

THEOREM 3.2.

[-121 [n131 ["ll
Cm(2) E a2k +m(3) E a3k +m(4) E "4k +

[n/A] )Cm(’) E aAk
A=2 k=l

(3.2)

( m BA )}kakA=o(rn+ A)kA(rk-1

where BA are the Bernoulli numbers and (ak) is any sequence for which all the functions are defined.

This theorem leads simply to many corollaries; often analogous to the identities in Ramanujan

[13]. Of particular interest is the case n-oo, % k- s, yielding

COROLLARY 3.3. (Lossers [2])

Z Cm(k)k-s=(s)-I m BA((s+A-1)
m+ Re s’> 2. (3.3)

k=2 A=0’’
If, in this, we note that

]-[ l_p-S
(s)- lff(s + A- 1)

XXp p1-s-A=I+ E kl-AH(1-pA-1)k-S’
=

we get the closed form of era(k) in terms of the prime divisors of k,

COROLLARY 3.4.

m BAkl A m

Cm(k)= Z ()m+l-A H (1-pA-1)= E (7) BA J1-A(k) (1-A+m)-l.
=0 pl =0

From Definition 3.1 we see that
k

m(d) (A/k)m. (3.4)
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Some simple cases of Theorem 3.2 are given by

COROLLARY 3.5.

lbm(2)[n/2] + tkm(3)[n/3] + tbm(4)[n/4] +

lbm(2)[n/2] + bm(3)[n/3] + bm(4)[n/4] +

B3 2

(3.5)

(3.6)

In/2] [n/3]
m() () + m(3) (3) + m(4) (4) + (3.7)

z B lzkBo -(n+ 1)zn+l +nzn+2 B1 z-xn+ +() --l’- +--.,

(3.8)

for any value of s and z except for xl 1; each series being finite to n-1 terms on the left sides,
and to rn + terms on the right sides.

A notable case of Theorem 3.2 is with n-.o, ak ykk- 1, yielding

COROLLARY 3.6. (Campbell [4]) If lyl < and f(,y) ]o=1 j-kTj

o .m,km +H (1 Ykffm(kl/k =kHj (1 :)’/ /

k=2
exp y

This result is unusual since the functions a(k) and B(/) defined by

(3.9)

o
)()/ o { 0()}II (1- E a(k)vk= -1

k=2 k=O k

are easily computed in finite form from (3.9). Elaborate classical methods are normally applied to

such problems. For example, asymptotic estimates for the generated coefficients of the function

1-I= (1-vk) -ak with ak non-negative real numbers are treated in Andrews [2], ch. 6. Thus, (/0

can be found exactly from Corollary 3.6, whilst the theorem of Meinardus will yield an asymptotic

estimate. We leave a comparative study of these results for a later paper.

Let the Definition 3.1 extend to include all complex numbers m. Then

THEOREM 3.7. If Re m and Re n > then

o lb_ m(k) + lb_ n(k) (,(m)(n) (3.10)+ E kin+ n ((m+n------"k=2
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PROOF. If Re rn and Re n > then

--(l+(1-m-t-2-m)2-n+(1-m+2-m+3-m)3-n+(1-mw2-m+3-m+4-m)4-n+ ...)

+(1 /(1 -n/ 2-n)2-m /(1 -n + 2-n /3-n)3-m /(1 -n /2-n + 3-n +4- n)4-m / -..)

-((. + n)

((m + n){(1 +

_
m(2)2 m- n +

_
m(3)3 m- n +

_
m(4)4 rn- n +

+(l+_n(2)2-m-n+_n(3)3-m-n+_n(4)4-m-n+...)}-((m+n),

so that (3.10) follows trivially. End of proof.
Next we consider the case of Theorem with n--o and k x- llog q,

COROLLARY 3.8. If (%) and q are suitably chosen then

a&lql/---------ql/ (Sm qJ/m), where Sin= akin. (3.11)- m-2 Jm -In particular, for positive integers n, if q- ezp(2rin),

namely, Ramanujan’s trigonometrical function. (see [13] primarily, also [9], [11], [14], and [15]).
Hence, substituting this value for q into (3.11) and applying the well known summation,

t’\ r /
j 0 otherwise,

to the left side of (3.11), we arrive at

COROLLARY 3.9. If (%) is suitably chosen then

,r at= Sk ck(n), where Sin= amj. (3.12)
tln k=l j=l

Many of the summations in Ramanujan’s [9] are simple cases of this, including, for

ak k- 1, the classical result

, s(n)((s + I)- ck(n)k- I, Re s > 1. (3.13)
k:l

We may, of course, select (%) such that Sm of (3.12) is a finite sum with ak 0 for/ greater than a

certain integer j. In that case, Sm will be summed over [j/m] terms. Another simple case of (3.12)
is

e yr H (1 y)-9,(n)/’, yl < 1. (3.14)
/:1

As with Corollary 3.6, the coefficients generated from the infinite product of (3.14) are easily
calculated in finite form.

The results of this section work out most neatly wherever the summations Srn together with

the functions amk are simply and finitely evaluable. It is well known that if f(k) is a multiplicative
function, that is, f(mn)= f(m)f(n) whenever (re, n)= 1, then any existing Ef(k)k s is a product of
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Riemann zeta functions. In that case, if m is any positive integer then Ef(mk)k-s can be

evaluated. For example, k tra(k)k-s with Re s-a > 1, leads to

"- I,i+1),, (,i +
Srn= Z tra(mk)(mk)-S=(s)(s-a)m-SH -Pi -P +Vi

k= i= 1-Pi

where rn l-I P,. This is derived from taking the product over primes Pi for the associated

function

The transform which maps the function ak onto its image function Sm appears to be most

easily found when:

(i) ak f(k)k -s so that Sm is found from the theory of prime products and their Dirichlet

series.

(ii) ak g(k)qk so that evaluating Sm depends on some application of the Hecke operator (see
Andrews [2], p. 161)

qk -lmlF(wjql/m),rn{F(q)} amk m
k= - j=0

where , exp(2xi/m) and F(q)= = akqk this latter mermorphic around q 0.

Thirdly, but less generally, a combination of (i) and (ii) has led to the infinite products in

C,ampbell [41.
4. LAMBERT SERIES AND ARITHMETIC FUNCTIONS.

So far we have considered Theorem for cases where bk or k k. Now we examine cases

with (bk) an increasing sequence of positive integers other than the k k already considered. We
especially consider cases of Theorem 1 where ak so that convergence of the infinite series cases

depend on the (bk) sequence. The results of greatest interest in this section come apparently from

cases of Theorem 1 with noo. However, the convenience of the finite form of Theorem is that all

of the infinite versions of the theorem can be rigorously proven by elementary processes. The

following theorem is simply a restatement of Theorem 1 with n.

THEOREM 4.1. If (ak) and (bk) are arbitrary sequences of functions which, with the variable q,

are chosen for convergence of the following, then

x l_q
k k x x> jk bmkZ ak Z {ak+ Z Z amkq (4.1)

k= 1-qbk k=l m=2 JErn
This theorem is the key to the results of this section. In order to use (4.1) with ak we note

that it may be rewritten as

qbk qk cx:> jk bmk (4.2)
x bk x> jk mk

J amk qZ ak b--- Z Z Z amkq Z m
k=l 1-q k=l rn=2 jEqbrn k=l

using the notation of 1. When k k in Theorem 4.1 or the (4.2) version of it, the identities

resulting often involve Jacobi theta functions. Many such related identities are relevant also to the

theory of partitions. For example,
THEOREM 4.2. Forz#0and ql <l, lzql <lwith zl >1,

x
k) qkZ (zk + z

qk2
/= l_q/ ,xYtt {I-I(z’,q’X) 1}, (4.3)

where

Z zkqk2 H (1 _q2k + 2)( + zq2k + 1)( + z- lq2k + 1): I-I (z,q).
k= -oo k=0

(4.4)
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PROOF. Let at: zk+ z -k and bk k in the (4.2) form of Theorem 4.1. The left side of (4.3)
compares for convergence with E(zk + k)qk which converges only if limoo(zk + z k)qk O. Clearly

then z and q must fulfill the conditions zkqklO as k-o assuming zl >_ with ql < 1. End of

Theorem 4.3 resembles Theorem 4.2. We follow this with a definition and some simple theta

function identities.

THEOREM 4.3. Forz#0and ql <l, Rea>0,

DEFINITION 4.4. For ql < 1, let

Ol(z’q) Z qk2cs 2kz, 02(z’q) Z qk2sin 2kz,
k=l k=l

oo
01(z’q)=01(z)-2 q Z (-1)k qk(k+ 1) sin (2k+ 1)z.

k=0

THEOREM 4.5. If ql < 1, and in (4.5) z # (n +1/2), for integers

)q2k2 1-/O’l(z) 02(kz, q2jk), (4.5)sin 2kz= cot z + Z j
k 1-q2k 40-0- k

(4.6)

PROOF. To obtain (4.5), (4.6), respectively substitute in Theorem 4.1 the values ak sin 2kz,

cos 2kz, and k 2k, k, then use the fact that

2k0"1(
_cotz_t_4

q
O(z) k _q2k

sin 2kz.

Use of the notation in Definition 4.4 concludes the proof.
The identity (see [1], 16.30.1)

oo
1 q2___kZ k q2k

sin 2ka sin 2k 1/4 log
k=l 1-

lends itself neatly to Corollary 3.8 rather than to (4.1) or (4.2). In that case it seems worth noting
that if [ql < 1, z1/k 1, then

( q2k 1- sin2kasin2k) (4.7)ezp 4 k q2kk=l 1--x/k

Ol(a + 8)sin(a-l) [ (olCCa + l)k, q2k) sin(a_ l)klfk(x)lk
el(a-/) sin(a + )kx__Xlel((a )k, q2k) sin(a + )k]

where fk(z)= rx/k. In particular for positive integers with exp(2rin) we have

kl n 1-q2k
sin 2ka sin 2k (4.8)
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e(a-) sin(a + )klke((a_ B)k, q2k) sin(a + )

where ck(n is manujan’s trigonometric function in 3.
The following generalization of Threms 4.2 and 4.3 sms of combinatoriM interest.

THEOREM 4.6. If ql < 1, a 0, m any positive integer, z y complex number except for the

ce a 0, m 1, which is essentially Theorem 4.2,

o0 +1

_
zk qakm + qkm_qkm Em(Z’X,qm(a’ + It)}, (4.9)

k -qkm "-It

where Ern(Z,q)= zkqkin+ 1.
k=l

PROOF. We require (4.2) with substitutions % zkerp(akm+ log q), bk =k
rn with the

conditions specified for the theorem. Note that convergence for cases with m integers greater than

1, the q powers dominate. For m 1, (4.9) is closely related to Theorem 4.3, and its proof is only

trivially different in content. However, for m 2,3,4 we see that

ov +1

E zkqakm+ qkm-qkm
k qkm

lql.2mkrn12ka(2k)rn+ +1

k=l
z q + z3kqa(3k)m + (ql.3mkm + + q2.3mkrn + )

+ z4kqa(4k)m + (ql.4mkrn + +q3.4mkm+ l)+ .}
o q,m a,

A

_
ItkE1 + It)kin +

,X It Em(Z’ q,Xm(aa + It)). End of proof.

We now consider some combinatorial inferences from the theorems in this section. It may also

be of interest to interpret identities (4.7) and (4.8). However, the theorems of this section yield

simple relations between the generated coefficients, so for brevity we focus on these only. Examples

of such relations are found in, for instance, [10] and [11].
THEOREM 4.7. Let (at) and (bk) be sequences of positive integers such that for ql < 1,

+ bkqak /(1 qbk) (4.10)
k>l

converges. Also, let (A), /(B), 7(C) be respectively the number of solutions of the independent

Diophantine equations, A ak + n bk, B ak + (n- + k)bk, C amk + jk brnk, for fixed positive

integers A, B, C, and various positive integers m-1, n, j e Cm, k. Then for each positive integer h

we have a(h) B(h) + 7(h).
PROOF. Select (ak)---.ezp((ak) log q) in (4.2). Then we have

+ bk + kbkqak

_
qak + jk

bk + qarnk bmk (4.11)
q qbk
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where the first two sums are taken over the positive integers k, whilst the third summation is over

m, j, and k as defined in Theorem 4.7. We also see that (4.10) must converge for us to expand

(4.11) to obtain

+ nbk + (n- + k)bk +-qak qak + -qarnk jkbrnk,

which is equivalent to, for summations over positive integers h,_
(h)qh #(h)qh +

_
7(h)qh. End of proof.

Although (ak) and (bk) of Theorem 4.7 are arbitrary enough to include the prime numbers and

some arithmetic functions, the theorem is best applied to sequences whose mkth term is neatly

specified. Such a function is kr with r >_ 1. If ak is any constant positive integer it cancels from the

identity, and the (bk) sequence becomes all-important. Hence, choice of bk kr with at constant

yields
COROLLARY 4.8. For every positive integer h,

((h) =/(h) + 7(h),

where ,(h) N{h nkr}, #(h) N{h (n- + k)kr}, 7(h) N{h jkr + lmr with j e m}, with N{.

the number of positive integer solutions of ..., and r any positive integer.
A further notable example of Theorem 4.7 with its Theorem 4.1 counterpart is the case

ak constant, bk (k- 1)!, yielding
COROLLARY 4.9. If ql < then

oo 1)! oo

k-1 1-q(k-l)! m
k-1

(4.12)

so that

N{h n(t- 1)!} N{h (n- 1)(/- 1)! + t!} + N{h (mlOU/m with j e m}-
Clearly, there are numerous other identities examinable using the methods of this section. A

further way of obtaining Lambert series from Theorem 4.1 is adopt a similar approach to that of

Section 3. Since any Dirichlet summation has a Lambert series counterpart, the method outlined at

the end of Section 3 for Dirichlet series Sm will also yield Lambert series transformations. An
axljunct to this may be the work of Apostol and Zuckerman [3] on the functional equation for

multiplicative functions,

F(mn)F((rn, n))- F(rn)F(n)f((m,n)).

However, generally the Lambert series is less manageable than the corresponding Dirichlet

summation.

5. MORE INFINITE PRODUCTS, AND WEIGHTED VECTOR PARTITIONS.
The method of Section 2 which takes us from Theorem 2.1 to Theorem 2.5 is applicable to the

more fundamental identity (1.1). An "isomorphic" line of reasoning involving iteration on (1.1)
with It replaced successively by zy, z2y, z3y zny; forming the finite product of these cases, then

letting n-.oo, yields

THEOREM 5.1 If I1 and lyl <1,

(1 y)(1 zy) kH j (1 zjyk)l/k(1 yj)l/j (I y)I/(l z).
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The left side of this theorem clearly contains all factors of the left side of (1.1), hence the

companion identities

THEOREM 5.2. For vl < 1, [zv[ < 1,z# 1,

,1-y, kHj"-zjyk’i/k (:_-:y)l/,l-z,, (5.2)

whilst for I1 < 1, [y[ < l,

(1 zy)kH j(1 xkyj)1/j (1 zy)1/(1 z). (5.3)

We note that Theorem 5.1 leads to Theorem 2.5 if we suitably substitute p-m,y p-n,
and form the Euler product over primes p on both sides. This technique and similar variations on

it will give, from (5.3), companion identities for Theorems 2.1 through to 2.4. We note also that

the range for the variable y in (5.3) has been extended trivially from that of yl < to ryl < 1. It

seems of particular interest to observe that the exponent 1/(1-z) on the right sides of (5.1) to (5.3)
may be selected as a positive integer n whenever 1-1In. In such cases, the right sides are: very

simple power series for (5.2), and polynomials in y for (5.1) and (5.3). This leads to the expectation

that these identities might have "near bijection" proofs as does the well known Euler’s pentagonal
number identity (see Andrews [2])

H (1-qn) E (_ 1)rnq-m(3rn- 1), Iql < 1. (5.4)
n=l rn= -o

Clearly (5.1) and (5.3) will suggest companion identities to those given in Campbell [4], and

each such identity will have a combinatorial interpretation in terms of two dimensional vector

partitions. (see ch. 12 of Andrews [2]).
For example, the coefficient of rayB in the left side of (5.1) is

sj (1]i(_ ).+n+a (5.5)

where the summation is over solutions of the two dimensional vector equation

m(0,1)+n(1,1)+ E Bi(ai’i)=(A’B)’ (5.6)
i=1

where m and/or n can be 0 or, B and sj are positive integers, whilst a and 3 are positive relatively

prime integers. The sum (5.5) taken over (5.6) is obviously not easily amenable to calculation, and

yet the right side of (5.1) tells us it is in fact equal to

(- 1)B{coefficient of A in (1/(1B- z))}.
6. CONCLUSION

The author has left many aspects of this paper open-ended. For example, the bivariate

Dirichlet series resulting from 2 will be developed in a future paper, as will the vector partition

interpretations suggested by 5. Although Theorem 3.2 can be derived simply (and without

Theorem 1) using the inclusion-exclusion principle, the results of that section may link with the q-

analogue idea for the Euler totient function in Campbell [4]. 4 contains work mainly due to
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Theorem 1, and there may be scope for further development along similar lines.

identities in 5 seem to suggest an entirely new type of identity to research.

The companion
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