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ABSTRACT. The objective of the present paper is to introduce a certain general class

P(p,a,3)(p E N {1,2,3,...},0 _< a < p and 3 > 0) of p-valent analytic functions in the open unit disk V
and we prove that if I e P(p,a,3) then $v,c(I), defined by

c+P/: tc-’f(t)dt (cN),Jv, c(.f) --e
belongs to P(p,a,/). We also investigate inclusion properties of the class P(p,a,3). Furthermore,

we examine some properties for a class Tv(a,3 of analytic functions with negative coefficients.
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1. INTRODUCTION.
Let Av denote the class of functions of the form

f(z) zP+ an+ p zn+p (p N (1,2,3 }) (1.1)
n=l

which are analytic in the unit disk V {z: Iz[ < 1}. We also denote by Sv the subclass of Av
consisting of functions which are p-valent in V.

A function f e Av is said to be in the class P(p,a) (0 < a < p) if and only if it satisfies the

inequality

R4}> a (O <_ a < p,z . U). (1.2)

The classes P(1,0) and P(p,0) were investigated by MacGregor [7] and Umezawa [11], respectively.
In fact, the class P(p,a) is a subclass of the class Sv [11].

Let I and g be in the class Av, with l(z) given by (1.1), and g(z) defined by

z"+p. (1.3)() z"+ .+
n=l

The convolution or Hadamard product of f and g is defined by
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n--]

For a function y Av given by (1.1), Reddy and Padmanabhan [10] defined the integral
operator Jt,.c (P,* N) by

/ pj tc_y(t)dJp, c(f) "-
oo // "+t,. (1.5)=zt,+ E c+p+n an+t,
n=l

The operator J,c was introduced by Bernardi [2]. In particular, the operator J, were studied by
Libera [5] and Livingston [6].

Clearly, (1.5) yields

f G.. Ap = Sp, . At, (1.6)

Thus, by applying the operator Jt,,,: successively, we can obtain

Jp, c(J’,(f))
Sv,(f) [ l(z)

(n N),
(n- O). (1.7)

We now recall the following definition of a multiplier transformation (or fractional integral and

fractional derivative).
DEFINITION ([3]). Let the function

z"+t, (1.8)() .+
n----O

be analytic in U and let A be a real number. Then the multiplier transformation I’ is defined by

l’Xb(z)= E (n+p+l)-’Xcn+t, zn+t, (zq.U). (1.9)

The function lXtk is clearly analytic in U. It may be regarded as a fractional integral (for , > 0) or

fractional derivative (for a < 0) of . Furthermore, in terms of the Gamma function, we have

IX4,(z) r-fo(tO)x- 4,(zt)dt (,x > 0). (1.10)

DEFINITION 2. The fractional derivative DXb of order , > 0, for an analytic function given
by (1.8), is defined by

z"+p (,>O, zeU). (1.11)O()=-(z) (-+p+l),:.+p
n-’0

Making use of Definition 2, we now introduce an interesting generalization of the class
of functions in At, which satisfy the inequality (1.2).

DEFINITION 3. A function )’ e At, is said to be in the class P(p,a,3) if and only if

(p+ )-a oaI e P(t,,,) (0<_a<

Observe that P(p,a,O)= P(p,a). Furthermore, since .f . At, it follows from (1.1) and (1.9) that
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n
I+I a.+n (1.12)

which shows that (p+ 1) -a Day 6_: An if f e Av. In particular, the class P(1,a,3) was introduced by
Kim, Lee, and Srivastava [4].
2. SOME INCLUSION PROPERTIES.

In our present investigation of the genera] class P{p,a,3) (0 _< a < p,3 _> 0), we need the following
lemma.

LEMMA 2.1([1]). Let M(z) and N(z) be analytic in U, N(z) map U onto a many sheeted starlike

region of order 7 (0 _< 7 < p) and

Then we have

M(0)- N(0)= O, p,

R,fM(z)’.kN(z)]> (o_< < ,_> 1).

By using Lemma 2.1, we can prove

THEOREM 2.1. Let the function f(z) be in the class P(p,a,B). Then Jt,,c(f) defined by (1.5) is

also in the class P(10, a, 8).
PROOF. A simple calculation shows that

dDa(Jn,
Zp- zC+pJo (2.1)

where the operators ’/n, (c N) and D (, > 0) are defined by (1.5) and (1.11), respectively. In view

of (2.1), we get

M(z)= c+p [**,{Dai(t)}dtandN(z)=zp+(p+ 1)aJo (2.2)

so that

fM’(z)) {(p+ 1) ad--Daf(z) (2.3)

Since, by hypothesis, I - P(p,a,B), the second member of (2.3) is greater than a, and hence

fM’(z)]
ReN--j >a (o<a < p). (2.4)

Thus, by Lemma 2.1, we have

(vtz’ JfM(z)){(P+l)-b-’Da(Jpc(f)))zp-

which completes the proof of Theorem 2.1.

Let f An be given by (1.1). Suppose also that

(o _< a < p, >_ 0), (2.5)
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(c + p)...(c,. + p)
z" +z + (cj N(j 1,2 ,),,. N).

, (c + + ,)...(c,. + + ,) 0- + (2.6)

Then, by Theorem 2.1, we have

COROLLARY 2.1. Let the function f(z) be in the class p(p,a,). Then the function Fm(.f)
defined by (2.6) is also in the class p(p,a,).

The next inclusion property of the class p(p,a,), contained in Theorem 2.2 below, would

involve the operator J,( > 0) defined by

Jp,l(f)---- (1 + p)lAf(z) (A > O,f Ap). (2.7)

For m N, we have

Clearly, we have

Jpm, l(f (1 + p)mlmf(z)

(m- 1)!’ (log{) lf(t)dt. (2.8)

f At,=J,(f) Ap ( > 0). (2.9)

( > 0)THEOREM 2.2. Let the function f(z) be in the class P(p,a,). Then the function Jp,
defined by (2.7) is also in the class P(p,a,).

PROOF. Making use of (1.9) and (1.11), the definition (2.7) yields

(p+ 1)-D(jXp, l(f) jAp,((p + 1)- Df)

Therefore, setting

(B _> 0,A > 0,! A) (2.10)

we must show that

Ag(z) (p+ 1)-Df and G(z) S,(g), (2.11)

fG’(z)l
RV_,] > (0 < < ) (2.t2)

whenever f P(p, a, ).

From the integral representation in (1.10), we obtain

so that

(P+ 1) f*-G’(z) r(z) ]o(iT -t’(zt)dt (A > 0), (2.13)

Since f P(p,a,/), we have

(A > 0), (2.14)

’(t) } (0<a< p,O<t < 1), (2.15)
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and hence (2.14) yields

R fG’(z)/ (p+l) It
e/z-’T-If F(A) J (ld)- ltpdt (0 <_ < p,A > 0), (2.16)

which completes the proof of Theorem 2.2.

COROLLARY 2.2. If 0 _< a < p and 0 _< < 7, then P(p,a, 7) c P(p,,).

PROOF. Setting A -- > 0 in Theorem 2.2, we observe that

.f P(p,a, 7)=J, a(l) P(p,a, 7)

:(p + 1)-’rD’r(J,,’ (f)) P(p,o)

,(p+ 1)-Df

*! P(p,,,),

and the proof of Corollary 2.2 is completed.
Next we define a function h A by

h(z)= z’+n= (n+ p+ ln+"
Then, in terms of the Hadarnard product defined by (1.4), we have

(zU).

(h. f)O) +l{f(O +

(2.18)

(2.19)

which, when compared with (1.11) with m 1, yields

(h, .f)(z) p-----i-D I.

We now need the following lemma for another inclusion property of the class P(p,a,/).

LEMMA 2.2([8]). Let (u,v) be a complex valued function such that

(2.o)

/p: D--,C, D C C x C(C is the complez plane),

and let u ut + iu2, v v + ivy. Suppose that the function /(u, v) satisfies

(i) /(u,v) is continuous in D,

(ii) (1,0) D and Re{(1,0)} > 0,
+ ] d*(,,,)} < o.(iii) for all (its, v) D such that v < ---,

Let p(z) + pz + paz + be analytic in the unit disk V such that (p(z),zp’(z)) D for all z V. If

n,{(p(,),,p’(,))} > 0

then Re{p(z)} > 0(z V).
THEOREM 2.3. If 0 _< < p and _> 0, then

P(p,, + 1) c P(p,,)

PROOF. Let the function

(z V),

=2,,0,+ )+,
20,+ )+ I (2.21)

First, we shall show that

F(z) l{/(z + (f e A,). (2.22)
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Jf’(z)/_, (+1)+ (O_<a< p,z {5 U), (2.23)

whenever

fF’(z)l
(0 _< a < p, z {5 U). (2.24)

By the differentiation of F(z), we obtain

F’(z) p--{2f’(z)+ zff’(z)}. (2.25)

We define the function p(z) by

/’(z)
p- 3’ + (1 3,)p(z) (2.26)

with 3’ 2,,(+1}+r2(+i)+ (0<_ 3’ <1). Then p(z) l+plz+pz+ is Mytic in U. By using (2.25) d
(2.26), we obtMn

F’(z) {( + P)(7 + (1 7)p(z)) + p(1- 7)zp’(z)}. (2.27)

Hence, in view of ne]> (0 < ), we have

Re{(v(z),zp’(z))} > O, (2.28)

where 6(u,v) is defined by

qb(u, v) -i-{(p 4- p)(’r4-(1-3’)u)4- p(1-3’)v}-a

with u u + iu and v v + ivy. Then we see that

(i) (u,v) is continuous in D=CxC,

(ii) (1,0) {5 D and Re{C(1,0)} -a > 0,

(iii) for all(iu,h){5 D such that v < -0 +-22)

Re{b(iu2,vl)} p__((p2 + p)3’ 4- p(1- 3’)Vl}

_< _L_+l{(p2 4- p)3’_ p(1-3’)(12 4- u:2)}-,a _<0

(2.29)

,(r+ 1)+ t, Consequently, (u,v) satisfies the conditions in Lemma 2.2. Therefore, we havefor 3’ r(+ii+.

RJl’(z) 2a(p+ I)+ p (2.30)-t- > 3’ 2(V+ )+

Next, in view of (2.20) and above arguments, we have

.f {5 P(p, ct,/+ l):(p + I)-B- 1DB+ if {5 P(p,a)

=h {(p+ I)- tn/} {5 P(p,a)

=(p+ 1)- BDf {5 P(p,l.t)

f {5 P(p,,),

which evidently proves Theorem 2.3.

2a(p+l)+
2--(-) /

(2.31)
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REMARK. Since o < c* < p, we have

and hence P(p,g,) c
3. THE CONVERSE PROBLEM.

Let T;, denote the class of functions of the form

f(z)-’z
n=l

c*(p + )+
2(p+ 1)4-

(p6N=(I,2,3 },an+p>0

which are analytic in U and let T;,(c*,)=
In this section, we investigate the converse problem of integrals defined by (1.5) for the class

LEMMA 3.1. Let ! T;,. Then I e T;,(c*,) if and only if

E <n+p+l)1o
(n+p p+l a.+o < p-c*. (3.1)

n=l

PROOF. Suppose that

n+p+
(n+ p a <

n=l
p+l +;,-

It is sufficient to show that the values for Iv + 1)-(Oal)’ lie in a circle centered at p whose radius iszp-
p c*. Indeed, we have

-p=_ (.+p) ,n+p+
n

p+ an+; zn

Conversely, assume that

( )<- E (n+p)
n+p+l

n=
p+ a.+,l zl

(
,=I

p+l a.+;, < p-c*. (3.2)

> a(o _< c* < p), (3.3)

which is equivalent to

R (,+p)
n+p+l z" <p-c*. (3.4)

I,n
p+

Choose values of z on the real axis so that

’ Xn+p+I)1
n=l

(n+p p+l a.+;,z"

is real. Letting z-l along the real axis, we obtain

oo ,In+p+
< p-a.E ("+P p+l a.+,_

n=l

The proof is completed.
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THEOREM 3.1 Let F.Tp(a,)and y(z) [-c] [zCF(z) (ce N).

belongs to the class Tp(,) (0 _< < p) for [z[ < r, where

Then the function l(z)

(3.5)

The result is sharp.
PROOF. Let F(z)= z’- =a.+ zn+. Then it follows from (1.5) that

I() LF-6J [F()]

=z_ (++) +
n

p+c n+
(3.6)

To prove the result, it suffices to show that

(p + 1) (Of)
zp- (3.7)

for zl _<r. Now

(p + ’(Df)
Zp-1 --P (n+p p+l p+c n+p

n=l

(_< (n+/ n++ .++
n=l

p+l p/c ,+lzl".

Thus we have

+ 1) (Df)
zp_ -P < p-

(n+p)(n+p+ly
n=l

p+l p+c n+o

But Lemma 3.1 confirms that _
(n+p)

n+p+

n=
p+ a.+ ;,_

Therefore (3.10) will be satisfied if

n + p’ (n + p + c) [n + p’
p--_ ) p / c z <_ jy=-sj

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

for each n N, or if

I=I_< .+p+= (3.13)

The required result follows now from (3.13). Sharpness follows if we take

F(z)=zP- nTp+l (3.14)

for each n $ N.

THEOREM 3.2. Let F . T(a,B) and f(z) z-] [zF(z)] (e
_
N). Then the function f(z)=L+eJ

p-valently convex of order (0 < < p) in the disk
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izl <r,=inf[. p(p-6) (n+p+c)(n+p+l)/3]
n> (n+ p+)(p-a) p+c p+ (3.15)

The result is sharp.
PROOF. To prove the theorem, it is sufficient to show that

14- if(z) ) -19 <-p- (3.16)

for zl _< r’. In view of (3.6), we have

Thus

_yOn=in(n+p)(n+p+c) n+p zn+p-I

(p- E=,(n+p) ("+P+C)a,,+c.+ z")z-’

5- ln(n + P) + n+ Z

< (3.17)
-E=(+/ + ,1.

<p- (3.18)

oon= In(n+ P)(n+l+c)ap+cn+p ]zl
<p-& (3.19)

or

(n+ p)(n+ p+6)(n+p+e)a
n-

P(P-6) p4-e ,+lzl" < 1. (3.20)

But from Lemma 3.1, we obtain

(n+p(n+p+l)/ <1 (3.21)
n=

\p-a/ p+ an+-

Hence l(z) is p-valently convex of order (0 < < p) if

’"+P)(n+P+6>(n+P+C) [n+p’(n+P+’)1,
p(p 6 p 4- Izl"_<U=-a] p4-) (3.22)

or

P(P-" (p+cII__< (n+p+)(p-,) n+p+e p+ (3.23)

for each n N. This completes the proof of the theorem. The result is sharp for the function given

by (3.14).
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