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ABSTRACT. In this paper we will investigate the properties of normality and strong normality of

lattices and their relationships to zero-one measures. We will eventually establish necessary and

sufficient conditions for lattices to be strongly normal. These properties are then investigated in

the case of separated lattices.
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I. INTRODUCTION.
Let x be an arbitrary set and/. a lattice of subsets of X..4(/.) is the algebra generated by/.,

and I(/.) denotes the non-trivial zero-one valued finitely additive measures on t(/.). IR(/. will

denote those , 6. I(/.) that are/.-regular, and I(/.) consists of those , 6. IR(/.) which are countably

additive.

We first consider a number of equivalent characterizations of/- being a normal lattice, and

then introduce the concept of a strongly normal lattice and give an alternate characterization of a

lattice being strongly normal.
We associate next with/-, a lattice W(/-) in I{/.). Assuming/. is disjunctive, w(/-) is always

a replete lattice. We give necessary and sufficient conditions for w(/-) to be a prime complete
lattice. Next, we consider the set I(/.) with the topology of closed sets given by rw#(/.) consisting

of arbitrary intersections of sets of w#(/.). We investigate this topological space to some extent

giving necessary and sufficient conditions for it to be T2; similarly we given necessary and sufficient

conditions for it to be Lindel6f; finally we consider conditions when it is normal.

The notations and terminology used in this paper are standard and are consistent with [1], [2], [5],
[6] and [7]. Our work on normal lattices is closely related to work done in [3] and [4].
We begin with a brief review of some notations and some definitions for the reader’s convenience.

2. DEFINITIONS AND NOTATIONS.
Let X be an abstract set and/. a lattice of subsets of X. We will always assume that 0 and X

are in/.. If A C X then we will denote the complement of A by A" i.e., A’= X- A. If/- is a lattice of

subset of X then/." is defined/.’= {L’IL 6./-}
LATTICE TERMINOLOGY
DEFINITION 2.1. Let/- be a Lattice of subsets of X. We say that/- is:

1) -lattice if it is closed under countable intersections.

2) Separating or T if z, y e X; z # y then 9L 6./. such that z 6. L and y L.
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3) Hausdorff or T: if z, y X; z # y then IA, B such that z A’, B" and

4) Disjunctive if for z Xand L " where z L, =IA such that z A and A

5) is normal if for A, B where A n B I,=, such that A C ", B C " and

6) /- is compact if any covering of X by " sets has a finite subcovering.

7) is countably compact if any countable covering of X by/." sets has a finite subcovering.

8) /- is Lindel6f if any covering of x by/-" sets has a countable subcovering

t() the algebra generated by .
() the c-algebra generated by .
() the lattice of countable intersections of sets of .
r() the lattice of arbitrary intersections of sets of .

MEASURE TERMINOLOGY
Let be a lattice of subsets of X. M() will denote the set of finite valued bounded finitely

additive measures on A(). Clearly since any measure in M() can be written as a difference of two

non-negative measures there is no loss of generality in assuming that the measures are non-negative,

and we will assume so throughout this paper. We will say that a measure # of M() is regular if for

any A A()tt(A) sup t,(L). MR(C) represents the set of/.-regular measures of M().
LCA
L.

DEFINITION 2.2.

1) A measure/ e M() is said to be a-smooth on/., if for Ln e and L,ltl; then #(L,)-.0.

2) A measure , e M(/.) is said to be a-smooth on A(/.), if for A, e A(), A,I$; then #(A,)-.0.
If/- is a lattice of subsets of X, then we wiI1 denote by:

M() the set of c-smooth measures on/. of M(/.)

Me(/-) the set of -smooth measures on 4(/-) of M()

M(/-) the set of/.-regular measures of M(/.)

{10 if z A
DEFINITION 2.3. If A t(/.) and if z 6 X then ,x(a)=

if t A
at z.

I(/.) is the subset of M(/.) which consist of non-trivial zero-one valued measures.

is the measure concentrated

In(/. the set of/.-regular measures of I(/.)

Is(/. the set of C-smooth measures on/- of I(/.)

IS(/.) the set of C-smooth measures on

I(/-) the set of/.-regular measures on IS(/.)

DEFINITION 2.4. If , 6 M(/-) then we define the support of g to be:

S(p) N{L . p(L) p(X)}

Consequently if , I(/-)

1)
2)

S(p) f’{L /-Ip(L) 1}

DEFINITION 2.5. We say that the lattice/, is:

Replete if S(,) # for any , I().
Prime Complete if S(p) } for any/ 6 I()
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DEFINITION 2.6. Let :{0,1}; will be called a premeasure on if =(x)= 1, is

monotinic and multiplicative i.e., (LlnL2)==(L]).=(L2) for L],L26-. H() denotes all such

premeasures defined on and II.() represents a-smooth premeasures on .
We now list a few well known facts which will enable us to characterize some previously

defined properties in a measure theoretic fashion. The lattice is:

1) Disjunctive if and only if ux 6- In(i,), Yz 6- x.
2) T if and only if $(,) or a singleton for any

3) Compact if and only if 8(#) for any p 6- I

4) Countably compact if and only if In(l.
5) LindelSf if and only if $(p) # for any , 6-

6) Normal if and only if for any 6- I(i,) there exists

FILTER AND MEASURE RELATIONSHIPS
Let be a lattice of subsets of X.

DEFINITION 2.7 We say that q c I, is an I,-filter if:

()
(2) If L, L26- qL n L26- q

(3) If L1 L and L 6-L26- /

DEFINITION 2.8. is said to be a prime I,-filter if:

(1) is an I,-filter, and

(2) If L,L 6- and L 0 L 6- =L 6_ or L26-
DEFINITION 2.9. If /is an I,-filter we say that is an I,-ultrafilter if is a maximal I,-filter.

If 6- I(i,) let , {L 6- I,:#(L)= 1}.
PROPOSITION 2.10.

(1) If p 6- I(i,), then 4o is an I,-prime filter and conversely any I,-prime filter determines an element

# 6- l(i,) and the correspondence is a bijection.

(2) If # 6- In(i,), then 5, is an I,-ultrafilter and conversely any I,-ultrafilter determines an element

v 6- In(i,) this correspondence is also bijection. , is an I,-ultrafilter if and only if # 6- In(i,).
SEPARATION OF LATTICES
We are going to state a few known facts about the separation of lattices. We will use these

results later on in the paper.

DEFINITION 2.11. Let I, and/-2 be two lattices of subsets of x. We say that I, separates/-2
if A2,B 6-1, and A2B = then there exists A,B 6- I, such that A C A,B C B and A fB =.

PROPOSITION 2.12. Let I, be a lattice of subset of x. I, is compact if and only if ri, is

compact, in which case I, separates
PROPOSITION 2.13. I, Linde15f if and only if ri, is LindelSf and in this case if I, is also then

I, separates r.
The proofs for these propositions are esy and will be omitted.

THEOREM 2.14. Suppose I, c 2 and 1,1 separates 2 then I, is normal if and only if 2 is

norn’al.

PROOF.

(1.) Suppose that I, is normal and let A2, B 6- 1,2; A2fB2 }" Since I, separates 1,2 then
there exist A, B 6- L such that A C A, B2 C A and A OB =}. Now since L] is normal there
exist A, B 6- 1,1 C 1- such that A C A’, B C B" and A’n B"
and A’ B’= i.e., L is normal.
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(2.) Suppose that 2 is normal. Let /1 E 1(1) and assume that there exist two measures

vl,r . la(1) and v, r on L. Let , v d r the respective extensions of the previous

meures. Note that later two extensions e unique d belong to l(L2). Furthermore it c

seen since L sepates L that S v2 d S r on t. However, since L2 is normM then va ra
therefore v r d thence L is normM.

THE WALLMAN SPACE
If L is a disjunctive lattice of subsets of abstract t X then there is a WMIm spe

siated with it. We will briefly review the fundentM prorties of this WMlm space.

For y A in (L), define W(A) to be W(A)= { I(L):p(A)= 1}.

If A, B (L) then:

1) W(AOB)=W(A)OW(B).

2) W(AB) W(A)W(B).

3) W(A’) W(A)’.
4) W(A) C W(B) if d only if A C B.

5) W(A) W(B) if d only if A B.

) [()] [()].
Let W(L) {W(L),L G L}.

W(L) is a compact lattice, d the topologicM sp&ce I(L) with closed sets W(L) is a compact

T spe cMled the WMlm space siated with X d L. Since L is disjunctive, it will be T if

d only if L is normM.
In addition to eh v q M(L) there corrpondence a unique M(W(L)), where (W(A)) u(A)

for A (L) d conversely. Also, v M(L) if d only if q M(W(L)). Since W(L) is compact

is rW(L), d W(L) sepates W(L) (s Proposition 2.11). Furthermore M(W(L)) h a uque
extension to G M(rW(L)).
Next we consider the space I(L) d its topolo.

DEFINITION 2.15. Let L be a disjunctive lattice of subsets of X,L L d A (L).

1) W(L) {# I(L) p(L) 1}.

2) W(A) { I(&) p(A) 1}.

3) w(&) {W(L),L L} W(L)I(L).
The following properties hold d e not dict to prove.

PROPOSITION 2.16. Let L be a disjunctive lattice then for A,B ()

1) W.(AOB) W(A)OW(B).
2) W(A B) W(A) W(B).
3) W.(A’) W(A)’.
4) W(A) C W(B) ifd only if A C B.

5) [w()] w[()].

For eh v M(L) there corresnds a unique v’ M(W,()), where V’(W(A)) v(A) for A (L) d

conversely.

v Ms(L) ifd only if v’ ms(w(L)), d

v M(L) ifd only if v’ M(W,(L))
It c be sho that the lattice W,(L) is replete d hat I(L) with W(L) the tolo of

closed sets is disjunctive d T. It will be T if we further sume that property (P1) is satisfied;

where (P1) is defined follows:
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(P1)" For each t, I(L) there exists at most one v I() such that/ < v on L.

A proof of the last statement can be found in [8].
3. NORMAL AND STRONGLY NORMAL LATTICES

PROPOSITION 3.1. L is normal if and only if for each L L where L C Li O L and L1,L L;

then there exists AI, A . such that A1 C L and A C L and L A 13 A2.
PROOF.
(1.) Assume that is normal and that L CL’OL then L rLlt3L2= or equivalently

(Lf3L)3(LnL)=$. Since L is normal there exist ft, 2 such that LnL C [4,LL2C [4’ and

r t2 . Let A1 L f3 1 and A L f’l 12. Clearly A C L and A C L. Now
A113 A2 (L1Ct 11)O (L Ct 12)= L(I 12) LX L.

(2.) Let L C L and L,Lx L then X L L and by the condition there exist AI,A L

such that A C L, A C L and A10 A X, clearly L C Ai, L C A and A Cl A t} and thence is

normal.

DEFINITION 3.2. Let ,r: L-{0,1}; r will be called a premeasure on L if t(X) 1, is monotonic

and multiplicative i.e., r(L3L2)=r(L).r(L2) for LI,L2 L. II(L) denotes all such premeasures

defined on . It can be shown that there is a one-to-one correspondence between elements of II(L)
and L-filters.

DEFINITION 3.3. Let I(L) {t II(L): if L10 L X then =(L) or r(L2) 1}

Clearly, lit(L) C I() C (L) C II()
Let *J" {L L:LA # for all A L such that t(A) 1,r i(L)}

THEOREM 3.4. L is normal if and only if is an -ultrafilter.

PROOF.
(1.) Assume that is normal we have to show that:

(a) $ obvious

(b) If L C L2, L1 L
(c) If L L2 L f3 L2
We have to show that LL2rA#$ for all AL such that t(A)= 1. Assume otherwise i.e.,

LnLA= for some AL and =(A)=I where =I(L) then (LICA)N(LA)=$. Since L is

normal there exist A,A2 such that LfA C Ai, L2rA A’ and AI A=.
Clearly A OA X=vt(A113 A2) l=>r(A1) or r(A2) 1. Say r(A) 1. then =(A t3 A1) and

L A t3 A $ which is a contradiction since L
(d) Now assume that c } where 1 is an L-ultrafilter. Assume their 6xists L } but L , hence

there exists A L such that =(A)= but At3 L I}. However since ’(A)= then L t3 A # $ for all

L {J D ty D {A L:r(A) 1} which is a contradiction. Therefore is an L-ultrafilter.

(2.) Now assume that 3" is an L-ultrafilter we have to show that L is normal i.e., if p I()

there exists a unique vlit(L) such that tt<v on L. Suppose there exist v,v lit(L) and

v<vl<v2 on L. Let $,= {L L:p(L)= 1} and "J’v= {L L:Lf3A #for all A such that t,(A)= 1}.

u and are ultrafilters and we have _<vu c "=Yu c "Y=u "Y, for 1,2. Therefore. Furthermore we have that q ci and hence v ql "Finally since all the ultrafilters are equal we get that v v which proves that t is normal.

Let v I(L). Define for any E C X, (E) in] /(L’). Then it is easily seen that is a finitely
EcL

subadditive outer measure. L

PROPOSIT!ON 3.5. is normal if and only if ; {L L: (L)= 1} is a prime -fi]ter.

PROOF. Suppose L is normal. If L1,L then (L) (L2) 1. Now if p (L f’l L2) 0 then



342 E.B. YALLAOUI

there exists A t such that L n L2 C A" and (A’) 0. But then L n L2 C A’, and since t is normal,

by Proposition 3.1, we have A A] UA where A],A ,A] C L, d A C L[. Now p(A)= then

p(A) or p(A)= 1. Say p(A), then p(A)= 0 which is a contriction since ] c A d y (L)= 1.

Thus ,L implies L L .
The rt of the prf is cle.

THEOREM 3.6. t H() then:

x i() ifd only if there exists I() such that

PROOF. Supse =i() d let = {L’’:=(L)=O}. d h the finite

intersection prorty. The interaction of elements of form :filter be. Now sume that

c and is :ultrlter. Then p I(’). If =(L)=0 then L’ C p(L’)= lp(L)= 0 hence

p S on d therefore I() such that p S
The second pt of the prf is eyd shl omitted.

Let c ,X d if L,L then L L . Consider the set of l t-filters that

exclude , (i.e., =). We ptiMly order by set inclusion. Since {X) is t-filter that

exclude , then there exists at let one . Furthermore, sin {, is a ptiM ordeng, which

is inductive ordering then by rn’s le there must exist a mimM element. Let this

mimM element. So ma={: where e t-filters that exclude

THEOREM 3.7. is pme t-filter.

PROOF. is certnly t-filter.

Let A B where A, B we have to show that A or B . Assume otherwise that is

A,B. Suppose that F0 such that AFo= then Fo(AB)(FoA)U(FoB)
F0 B B which is a contradiction thus we may now sume that A

for 1 F .
t the filter generated by M1 {A F F }. Since A d A C, similly let

the filter generated by MI {BFFO},OC. So there ests H6,H6 such that

A F C H for some F d similly there ests H ,H such that A F C H for some

FO. t FF2=F3 then HIOHD(AF1)O(BF)D(AF3)U(BF3)HIOH2D(AOB)
F however since H H2 , it is a contriction. Thus A e or B or equivently is a

prime filter; d I(L).
COROLLARY 3.8. Let e H(t)then /

PROOF. be e Z-filet epresening

c

mim -filter ntning d excluding

filter d A (, wch is a contradiction; since A longs to

Therefore , d hence = H(t). Thus

e z(t)

DEFINITION 3.9. We say that is strongly norm
then p S p or a2 S p on t.

THEOREM 3.10. t is strongly norm if d only if I(t)= i(t)
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PROOF.

(1.) Suppose that I() i(L). Let/1,g2 I() and suppose that they are not comparable i.e.,

/1 2 and ; pl on L. Then 3LI,L such that #,(Li) ,j. Consider ^. We have

(Pl A p2)(L1 t9 L2) but (/ h p2)(L) 0 and (/h ^/)(L) 0 therefore/h ^ 2 I()"
Now suppose that s i(), and _</h and _</ on , then r _</h ^/2. Suppose L O L X

then (L) or r(L) say (L) 1=(/h ^/)(L) therefore /h ^/ i() I() which is a

contradiction unless/1 _</2 or/ < p on . Therefore i()= I()=:, strongly normal.

(2.) Conversely assume is strongly normal. Let i() then s =/\ {/o: _< ,,,,, I()}.

{{/a}oe ^, -< is totally ordered. So/,-</a or/a_</,,a,/ A. Suppose L,L and r(Lt3L:)=
then tt,,(L O L)= for all a. Suppose that for some a0,/%(L)= 0 then /(L1)= 0,/(L2)= for all

tt._<tt% but then tta(L)= for all >’0" Hence ,(L)= for all a, then (L)= l=,te I().
Therefore i()= I() if is strongly normal.

4. SOME PROPERTIES wtr().

We now consider the topological space (I(),rWa()). Let (P2) be the following property.

(P2)" If I() then there exists v I() such that < v on .
THEOREM 4.1. Let 2. be a disjunctive lattice then W,() is prime complete if and only if

(P2) holds.

PROOF.

(1.) Suppose that W,(L) is prime complete. Let v I,(L) then ’ Ia[W,,(L)] and since W,(L)
is prime complete then S’(’)# , however $(’)= {v l(L)I < v on L} then 3v l(L) such that

v _< v on L i.e., that (P2) is satisfied.

(2.) Suppose (P2) holds. Let ,X l[W()] then l,,(L) such that .X ’ l,[W,()]. From
(P2) vl(L)[V<v on L. Hence ’<v" on W(L) where v’ I[W(L)]. Since W,,(L) is replete then

$(v’) # O, and S(v’) c S’(’) S(A) then $(A) # $.

Let (P3) be the following property.

(P3): If = II() there exists v I(L) such that = < v on L.

THEOREM 4.2.

(1) If is replete and satisfies (P3) L is LindelSf

(2) If is countably compact ,L satisfies (P3)
(3) If is disjunctive and LindelSf ,L satisfies (P3)
(4) If Z is disjunctive then, satisfies (P3) if and only if (I(L), tWo(L)) is LindelSf

PROOF.
(1.) Let t II,(L) since L satisfies (P3) St I()[t _</ on ,8(/)# $ because is replete and

$(g) c $(=). Hence S(=) # $.

(2.) Let t II(L)t,/ I(L) lr <_ . Since L is countably compact then I() It(). Hence
satisfies (P3).

(3.) Let = II(L) then SOt) # I because L is LindelSf. Let z $(=)=>r < It(L).
(4.) Assume L satisfies (P3) then W,,(L) satisfies (P3) plus W,,(L) is always replete then W,(L)

is LindelSf from part 1.

Conversely if (I(L),rW,,(L)) is LindelSf then w,() is disjunctive and LindelSf then W,(L)
satisfies (P3) from part 3 and hence satisfies (P3).

Define V,,(L) { I(L) Ig(L) 1} and V,,(L) {Y(/) L L}. Similarly we can consider the
set I,() and the topology of closed set on Ia(L) given by rVa(L).
Let (P4) be the following property.
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(P4): If = 11.() then there exists p I.() such that s p on L.

THEOREM 4.3.

1) If is prime complete and satisfies (P4) L is LindelSf

2) If is countably compact satisfies (P4)
3) If L is LindelSf L satisfies (P4)
4) L satisfies (P4) if and only if (l(),rV,() is LindelSf

PROOF. The proof is similar to that of Theorem 4.2 and will be omitted.

REMARK. Consider once more the topological space (I(L),rWa()), where as usual we

assume that is disjunctive. If is normal and if W(L) separates rW,() then using (Theorem
2.13), we have that the topological space (I(L),rWa()) is normal. Finally, we note that if is a 6-

lattice then so is W(L) and therefore if W(L) is LindelSf, then by (Theorem 2.12), tWo(L) is

LindelSf and w(L) separates rW,(L).
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