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ABSTRACT. In this paper we will investigate the properties of normality and strong normality of
lattices and their relationships to zero-one measures. We will eventually establish necessary and
sufficient conditions for lattices to be strongly normal. These properties are then investigated in

the case of separated lattices.
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1. INTRODUCTION.

Let X be an arbitrary set and £ a lattice of subsets of X. (L) is the algebra generated by £,
and I(L) denotes the non-trivial zero-one valued finitely additive measures on A(L). Ig(L) will
denote those p€ I(2) that are L-regular, and I}(L) consists of those u € Iz(2) which are countably
additive.

We first consider a number of equivalent characterizations of £ being a normal lattice, and
then introduce the concept of a strongly normal lattice and give an alternate characterization of a
lattice being strongly normal.

We associate next with £, a lattice W,(2) in If(2). Assuming £ is disjunctive, W (L) is always
a replete lattice. We give necessary and sufficient conditions for W,(2) to be a prime complete
lattice. Next, we consider the set I%(2L) with the topology of closed sets given by W (L) consisting
of arbitrary intersections of sets of W,(2). We investigate this topological space to some extent
giving necessary and sufficient conditions for it to be T,; similarly we given necessary and sufficient
conditions for it to be Lindeldf; finally we consider conditions when it is normal.

The notations and terminology used in this paper are standard and are consistent with (1], [2], [5],
(6] and [7]. Our work on normal lattices is closely related to work done in [3] and [4].

We begin with a brief review of some notations and some definitions for the reader’s convenience.

2. DEFINITIONS AND NOTATIONS.

Let X be an abstract set and £ a lattice of subsets of X. We will always assume that 8 and X
are in L. If Ac X then we will denote the complement of 4 by 4"i.e,, A"= X - A. If L is a lattice of
subset of X then L’ is defined £’ = {L’| L€ L}

LATTICE TERMINOLOGY

DEFINITION 2.1. Let £ be a Lattice of subsets of X. We say that £ is:

1) é-lattice if it is closed under countable intersections.
2) Separating or T, if z,y € X; z # y then 3L € £ such that z€ L and y ¢ L.
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3) Hausdorff or T, if z,y € X; z # y then 34,Be L such that z€ 4, ye B and A'NB =0.
4) Disjunctive if for z€ X'and Le L where z ¢L, 3A€e L such that ze A and ANL=0.
5) L is normal if for A,B € £ where AnB=8,34,B e L such that AcA,BcB and A'nB =0.
6) L is compact if any covering of X by L’ sets has a finite subcovering.
7) L is countably compact if any countable covering of X by L’ sets has a finite subcovering.
8) & is Lindeldf if any covering of X by L’ sets has a countable subcovering
A(L) = the algebra generated by 2.
o(L) = the o-algebra generated by L.
5(L) = the lattice of countable intersections of sets of L.
(L) = the lattice of arbitrary intersections of sets of L.

MEASURE TERMINOLOGY

Let £ be a lattice of subsets of X. M(L) will denote the set of finite valued bounded finitely
additive measures on A(L). Clearly since any measure in M(L) can be written as a difference of two
non-negative measures there is no loss of generality in assuming that the measures are non-negative,
and we will assume so throughout this paper. We will say that a measure y of M(L) is regular if for
any A € A(L)p(A) = ?K B(L). Mpg(L) represents the set of L-regular measures of M(2). .

Lel

DEFINITION 2.2.
1) A measure pu € M(L) is said to be o-smooth on £, if for L, € £ and L_|0; then u(L,)—0.
2) A measure y € M(L) is said to be o-smooth on A(2), if for A, € (L), A,10; then u(A,)—0.
If £ is a lattice of subsets of X, then we will denote by:

M (L) = the set of ¢-smooth measures on L of M(L)
M?(L) = the set of o-smooth measures on A(L) of M(L)
%(2) = the set of 2-regular measures of M°(L)

DEFINITION 2.3. If A€ A(2) and if z € X then p (A4)= {l fzed is the measure concentrated

0 if A
at z. 2

I(2) is the subset of M(L) which consist of non-trivial zero-one valued measures.
Ip(2) = the set of L-regular measures of I(2)
I,(L) = the set of ¢-smooth measures on £ of I(L)
I°(L) = the set of s-smooth measures on A(L) of I(L)
I%(2) = the set of 2-regular measures on I°(L)

DEFINITION 2.4. If u e M(L) then we define the support of u to be:

S = (L e L|n(l)=nX)}
Consequently if € I(L)
S ={LeL|nL)=1}
DEFINITION 2.5. We say that the lattice £ is:

1) Replete if S(u) # @ for any p € IF(L).
2) Prime Complete if S(u) # @ for any pe I (L)



NORMAL AND STRONGLY NORMAL LATTICES 339

DEFINITION 2.6. Let =:2—{0,1}; = will be called a premeasure on £ if »(X)=1, x is
monotinic and multiplicative i.e., x(L,NL,)=x(L,).x(L;) for L;,L,€l. T(L) denotes all such
premeasures defined on £ and II(L) represents o-smooth premeasures on L.

We now list a few well known facts which will enable us to characterize some previously
defined properties in a measure theoretic fashion. The lattice £ is:

1) Disjunctive if and only if u, € Iz(2),Vz € X.

2) T, if and only if S(u) =@ or a singleton for any u € I(2).

3) Compact if and only if S(u) # 8 for any u € Iz(L).

4) Countably compact if and only if I5(L) = I{(L)

5) Lindeldf if and only if S(u) # @ for any p € (L)

6) Normal if and only if for any u € I(2) there exists a unique v € I (L) such that p<v on £

FILTER AND MEASURE RELATIONSHIPS

Let £ be a lattice of subsets of X.

DEFINITION 2.7 We say that ¥ c £ is an L-filter if:

(1) 0¢¥
(2) ¥L,L,eF=>L,NL,€F
(3) fL,cLyand L, eF=>L, €F

DEFINITION 2.8. ¥ is said to be a prime L-filter if:
(1) 9 is an 2-filter, and
(2) ¥L,l,etand LLUL,eF=>L,€For [,€F

DEFINITION 2.9. If ¥ is an £-filter we say that ¥ is an 2-ultrafilter if ¥ is a maximal 2-filter.
fueIr)let F,={LeLl:ulL)=1}.

PROPOSITION 2.10.

(1) If peI(2), then ¥, is an L-prime filter and conversely any £-prime filter determines an element
p € I(2) and the correspondence is a bijection.

(2) If peIg(2), then ¥, is an L-ultrafilter and conversely any L-ultrafilter determines an element
n€Ip(L) this correspondence is also bijection. ¥, is an L-ultrafilter if and only if 4 € I5(2).

SEPARATION OF LATTICES

We are going to state a few known facts about the separation of lattices. We will use these
results later on in the paper.

DEFINITION 2.11. Let £, and £, be two lattices of subsets of X. We say that £, separates £,
if Ay, B; € L, and A, N B, =@ then there exists 4,, B, € £, such that A, C A,,B,C B, and A,nB, =0.

PROPOSITION 2.12. Let £ be a lattice of subset of X. £ is compact if and only if 72 is
compact, in which case £ separates r2

PROPOSITION 2.13. £ Lindeldf if and only if r£ is Lindeldf and in this case if L is also § then
L separates TL.

The proofs for these propositions are easy and will be omitted.

THEOREM 2.14. Suppose L, C L, and L, separates L, then £, is normal if and only if £, is
normal.

PROOF.

(1.) Suppose that £, is normal and let 4, B,€l,; A,nB,=8. Since L, separates L, then
there exist A,, B, €L, such that 4,C 4,, B,C 4, and 4,nB, =8. Now since £, is normal there
exist A, Be L, CL, such that 4, c A, Byc B and A'nB =0. Therefore 4,c A, CA’, B,CB,CH
and A'nB =0i.e., L, is normal.
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(2.) Suppose that 2, is normal. Let 4, € I(,) and assume that there exist two measures
vy,7 €Ip(L,) and py; <vy, py <7y on L. Let py, v, and 7, the respective extensions of the previous
measures. Note that later two extensions are unique and belong to Ix(2;). Furthermore it can be
seen since L, separates L, that p, <v, and u, <, on L,. However, since L, is normal then v, =1,
therefore v, = r; and thence £, is normal.

THE WALLMAN SPACE

If L is a disjunctive lattice of subsets of an abstract set X then there is a Wallman space
associated with it. We will briefly review the fundamental properties of this Wallman space.

For any A in A(L), define W(A) to be W(A) = {p € Ix(L):p(A) = 1}.

If A,B € A(L) then:

1) W(AuUB)=W(A)UW(B).

2)  W(ANB)=W(A)NW(B).

3) wA)=w(4).

4) W(A)c w(B)if and only if AC B.
5) W(A)=w(B)if and only if A=B.
6) W[AL)] = A[W(L)).

Let W(L) = {W(L),L € L}.

W(L) is a compact lattice, and the topological space Ip(2) with closed sets TW(L) is a compact
T, space called the Wallman space associated with X and 2. Since £ is disjunctive, it will be T, if
and only if £ is normal.

In addition to each u € M(L) there correspondence a unique & € M(W(L)), where a(W(A)) = u(A)
for A€ A(2) and conversely. Also, 4 € Mg(2) if and only if 7€ Mg(W(L)). Since W(L) is compact so
is W(2), and W(L) separates rW(L) (see Proposition 2.11). Furthermore fi € M (W (£)) has a unique
extension to i € Mp(tW(2)).

Next we consider the space I{(L) and its topology.
DEFINITION 2.15. Let L be a disjunctive lattice of subsets of X,L € £ and 4 € A(L).
1) W (L)={pelR(2)|Inl)=1)})
2) W (A)={pelf(2)|n(4)=1}.
3) W, (2)={W,(L),LeL}=W(L)NIK(L)
The following properties hold and are not difficult to prove.
PROPOSITION 2.16. Let £ be a disjunctive lattice then for A,B € A(2)
1) W_(AUB)=W_(A)UW (B). ’
2) W_(ANB)=W_(A)NW (B).
3) W (A)=W(A).
4) W,_(A)c W (B)if and only if AC B.
5) AW ()] =W, [A(L))
6) oW, (2)]=W,[o(2))
For each u € M(L) there corresponds a unique y' € M(W (L)), where y' (W (A)) = p(A) for A € A(L) and
conversely.
p € Mp(L) if and only if 4" € Mg(W (L)), and
p€M,(2)if and only if 4'e M (W (L))
It can be shown that the lattice W,(2) is replete and hat I%(L) with rW (L) as the topology of
closed sets is disjunctive and T,. It will be T, if we further assume that property (P1) is satisfied;
where (P1) is defined as follows:
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(P1): For each € I(2) there exists at most one v € If(2) such that py<v on L.
A proof of the last statement can be found in [8].
3. NORMAL AND STRONGLY NORMAL LATTICES

PROPOSITION 3.1. 2 is normal if and only if for each L€ £ where Lc L{uL} and L, L,€L;
then there exists 4,,4, € £ such that A, c L} and 4, C L and L = 4, U A,.

PROOF.

(1.) Assume that £ is normal and that LcLjuL} then LNL,NL,=@ or equivalently
(LNL)N(LNL;)=8. Since L is normal there exist A,, A4, €2 such that LnL, c A}, LnL,C 4; and
AlnA,=0. Let A,=LnA, and A,=LNA, Clearly A,cL{ and A,cClL). Now
AUA;=(LNA)U(LyNA) =LN(AUA)=LNX=L.

(2.) Let LynL,=0 and L,,L, €2 then X =L{uLj and by the condition there exist A;,4,€2
such that A, c L}, A,C L} and A,UA4,= X, clearly L, C A},L,C A5 and A]NnA; =0 and thence L is
normal.

DEFINITION 3.2. Let x:2~{0,1}; = will be called a premeasure on £ if 7(X) = 1, is monotonic
and multiplicative i.e., x(L,NLy)=x(L,).x(L,) for L,,L,€L. Ti(L) denotes all such premeasures
defined on £. It can be shown that there is a one-to-one correspondence between elements of I(L)
and 2-filters.

DEFINITION 3.3. Let f(£) = {r e I(L): if L, UL, = X then x(L,) =1 or x(L,) = 1}

Clearly, Ig@)cI(2)c (L) cm(e)
Let ¥ ={LeL:LNA#0 for all A€ L such that r(4)=1,x€ I(2)}

THEOREM 3.4. 2 is normal if and only if J is an f-ultrafilter.

PROOF.

(1.) Assume that £ is normal we have to show that:

(a) 0¢9J obvious

(b) fL,CL,L €T €T

(c) IfL,L,eT=>L,NL, €T

We have to show that L,nL,nA#0 for all A€L such that n(4)=1. Assume otherwise i.e.,
L,NL,NnA=0 for some A€t and x(A)=1 where r€I(2) then (L;n4)n(L,nA)=0. Since L is
normal there exist A;, 4, € £ such that L, nAC 4], LN A C A} and A] N A} =0.

Clearly A,UA,=X=>x(A;UA,)=1=x(4;)=1 or x(4;,)=1. Say x(4,)=1 then n(ANA4,)=1 and
LN A, N A =0 which is a contradiction since L, € ¥

(d) Now assume that 9 c § where § is an 2-ultrafilter. Assume their éxists L€ § but L ¢ 9, hence
there exists A €L such that x(4)=1 but AnNL=0. However since x(4)=1 then LNA#89 for all
Le§DT > {Ae€L:x(A) =1} which is a contradiction. Therefore ¥ is an 2-ultrafilter.

(2.) Now assume that I is an 2-ultrafilter we have to show that £ is normal i.e., if ue I(L)
there exists a unique ve€Ig(2) such that p<v on L. Suppose there exist vy,v, € Ip(L) and
p<vp<vyonl LetF,={LeL:p(l)=1}and T, ={Lel:LNA#D for all A € £ such that u(4)=1}.
7, and g, are ultrafilters and we havey<v;2%,C%, =7,Cc7,=9,=9, for i=1,2. Therefore
9,=9,,=9,, Furthermore we have that ,.C9,, and hence 7, = %, =%,

Finally since all the ultrafilters are equal we get that v, = v, which proves that £ is normal.

Let pe I(2). Define for any E c X,5(E)=inf u(L). Then it is easily seen that 7 is a finitely
subadditive outer measure. ELCELJ:

PROPOSITION 3.5. L is normal if and only if % = {L € £: 5 (L) = 1} is a prime 2-filter.

PROOF. Suppose L is normal. If L,,L, € % then m(L,) =7 (L) =1. Now if 7 (L, NL,) =0 then



342 E.B. YALLAOUIL

there exists A € L such that L,nL,C A" and p(4)=0. But then L,nL,C A, and since £ is normal,
by Proposition 3.1, we have A = A, U4, where 4,4, €L, A, CLj, and A, CL; Now p(4)=1 then
u(A;) =1 or p(A;) = 1. Say u(A,), then u(A}) =0 which is a contradiction since £, C A and (L) =1.
Thus £,,L, € % implies L, N L, € %.

The rest of the proof is clear.

THEOREM 3.6. Let » € I(2) then:
= € I(2) if and only if there exists v € I(L) such that v < ».

PROOF. Suppose xel(L) and let M ={L'€L:x(L)=0). @¢m and M has the finite
intersection property. The intersection of elements of 4 form an 2'filter base. Now assume that
M C G and §is L-ultrafilter. Then §op € I(L). If (L) =0 then L' € M C §=>p(L) = 1=p(L) = 0 hence
p<=on L and therefore 3v € I(£) such that v=p <~ on L.

The second part of the proof is easy and shall be omitted.

Let %cC2,X¢3% and if L,,L,€% then L,UL,€%. Consider the set of all t-filters g, that
exclude %, (i.e., ,n% =0). We partially order § by set inclusion. Since {X} is an L-filter that
exclude %, then there exists at least one §,. Furthermore, since {g,, C } is a partial ordering, which
is an inductive ordering then by Zorn’s lemma there must exist a maximal element. Let § be this
maximal element. So § = maz{g,: where §, are L-filters that exclude ¥} and g # 0.

THEOREM 3.7. §is a prime Lfilter.

PROOF. §is certainly an £-filter.

Let AUB €@ where A4,Be L we have to show that A€§ or B€§. Assume otherwise that is
AB¢4. Suppose that 3F,€§ such that AnFy=0 then F,n(AUB)€§=(FonA)U(FoNB)
= Fon B € §=>B €§ which is a contradiction thus we may now assume that ANF #0 and BNF #0
for all Feg.

Let 7, be the filter generated by all {AnF|F eg}. Since A€ T, and A¢§=>GCT,, similarly let
9, be the filter generated by all {BnF|Fe€@},§C9, So there exists H,€¥,H, €T, such that
ANF, C H, for some F, € § and similarly there exists H, € %, H, € 7, such that AnF, C H, for some
F,€0. Let FnF,=F, then H,UH,D(ANF,)U(BNFy)D(ANF3)U(BNF3)=>H,UH,>(AUB)
N Fy € § however since H,UH, €%, it is a contradiction. Thus A€§or Beg or equivalently g is a
prime filter; and so G—u € I(2).

COROLLARY 3.8. Let ren(L)thenx= /\ 4,

t<ua
ua €I(L)

PROOF. Let ¥ be the t-filter representing = i.e., ¥ = {L € L:x(L) =1}. Let g, be the prime 2-

filter representing s, s0; §,={L€L:pu,(L)=1}. Clearly FC N G, We have to show that
Fcq,

¥ 2 ﬂ ga'

Fcl,
Assume that there exists Ac 2 and A€, forall a but A¢F. Let % =4 then A# X ie, X ¢3¥%. Let
g be a maximal 2-filter containing & and excluding 3. From the previous theorem, § is a prime £-
filter and A ¢, which is a contradiction; since A belongs to all prime 2-filters that contain %.
Therefore §= () §,, and hence x€(2). Thus x= /\ 4,

CY,q t<ua

DEFINITION 3.9. We say that £ is strongly normal if for u,pu,,p, € I(2) and u < py,p < py 00 L;
then py S py OF pp < pyon L.
THEOREM 3.10. 2 is strongly normal if and only if I(£) = T(2)
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PROOF.

(1.) Suppose that 1(2)=1(2). Let p,,p, € I(£) and suppose that they are not comparable i.e.,
m£py and py£py on L. Then 3L,L,€2 such that p(L;)=6,,. Consider pAp,, We have
(A p)(LyULy) =1 but (py A py)(Ly) =0 and (p, A py)(L;) = 0 therefore p, A p, ¢ I(2).

Now suppose that =€ I(L), and < p; and r<p, on L, then = < pyAp, Suppose L,UL,=X
then #(L,)=1 or n(L,)=1 say =(L,)=1=(p Ap,)(L;) =1 therefore u, Ap,€ I(L)=1I(L) which is a
contradiction unless y, < g, or p, < i, on L. Therefore I(L) = I(£)=>L strongly normal.

(2.) Conversely assume 2 is strongly normal. Let x € I(£) then »=/\ {u, 7 < p,.p, € I(L)}.
{{Ba}a € A» <} is totally ordered. So p, < g or pg < p, Ve, B € A. Suppose L, L, € L and m(L,ULy) =1
then p (L, UL,)=1 for all a. Suppose that for some o, pao(Ll) =0 then p (L)) =0,p,(Ly) =1 for all
Py S By but then uy4(L,)=1 for all py> Fay: Hence p,(L,)=1 for all a, then »(L,)=1=>7€I(L).
Therefore I(£) = I(L) if L is strongly normal.

4. SOME PROPERTIES w,(2).

We now consider the topological space (I{(L),7W,(2)). Let (P2) be the following property.
(P2): If pe I (L) then there exists v € I%(L) such that u<v on L.

THEOREM 4.1. Let L be a disjunctive lattice then W,(2) is prime complete if and only if
(P2) holds.

PROOF.

(1.) Suppose that W,(2) is prime complete. Let p€ I (L) then 4 €I [W (L)] and since W (L)
is prime complete then S(u")# 0, however S(u)={r € I%(L)|p<v on L} then v € I{(L) such that
p<von?ie., that (P2) is satisfied.

(2.) Suppose (P2) holds. Let AeI,[W,(L)] then 3p€ I, (L) such that A=y €I, [W,(L). From
(P2) wIg(L)|p<v on L. Hence ' <v on W,(L) where v € IZ[W (L)) Since W (L) is replete then
S(/) #9, and S(v') C S(4) = S(A) then S()) # .

Let (P3) be the following property.
(P3): If x € M (L) there exists pu € I{(L) such that x < pon L.
THEOREM 4.2.
(1) If 2 is replete and satisfies (P3) =£ is Lindelof
(2) If L is countably compact =2 satisfies (P3)
(3) If ¢ is disjunctive and Lindeldf =2 satisfies (P3)
(4) If ¢ is disjunctive then, £ satisfies (P3) if and only if (I%(2),7W ,(2)) is Lindelsf

PROOF.

(1.) Let e, (L) since L satisfies (P3) 3u € If(L)|x < p on L,S(u) # @ because L is replete and
S(p) C S(x). Hence S(=) # 0.

(2.) Let rem ()3, p€Ip(L)|m<p. Since L is countably compact then Ig(L)=1I%(L). Hence
L satisfies (P3).

(3.) Let xel,(2) then S(x)# @ because £ is Lindeldf. Let z € S(x)=>7 < p, € I(L).

(4.) Assume 2 satisfies (P3) then W (£) satisfies (P3) plus W () is always replete then W (L)
is Lindeldf from part 1.

Conversely if (If(2),7W (L)) is Lindelsf then W (L) is disjunctive and Lindeldf then W (L)
satisfies (P3) from part 3 and hence ¢ satisfies (P3).

Define V (L) ={ue I, (L)|u(L)=1} and V (L)={V (L)|LeL}). Similarly we can consider the
set I,(L) and the topology of closed set on I,(L) given by rV (L).

Let (P4) be the following property.



344

E.B. YALLAOUIL

(P4): If x €1 (2) then there exists p € I (L) such that x < pon L.

1)
2)
3)
4)

THEOREM 4.3.

If £ is prime complete and satisfies (P4) =2 is Lindeldf

If £ is countably compact =>£ satisfies (P4)

If £ is Lindeldf =2 satisfies (P4)

L satisfies (P4) if and only if (I%(L),7V (L) is Lindelof

PROOF. The proof is similar to that of Theorem 4.2 and will be omitted.

REMARK. Consider once more the topological space (If(L),rW (L)), where as usual we

assume that 2 is disjunctive. If £ is normal and if W (L) separates rW ,(2) then using (Theorem
2.13), we have that the topological space (I%(L),7W ,(2)) is normal. Finally, we note that if £ is a &
lattice then so is W,(L) and therefore if W _(2) is Lindelof, then by (Theorem 2.12), rW (L) is
Lindelsf and W (L) separates rW (L).
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