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ABSTRACT. In this paper we establish some new approach to constructing
convolution for general Mellin type transforms. This method is based
on the theory of double Mellin-Barnes integrals. Some properties of
convolutions and several examples are given.
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1. INTRODUCTION.
As is known from [1], the following operators of Mellin type

convolution
©
kM0 = [ k(Z) fW-, x0, (1.1)
define a sufficientls large class of integral operators. In

particular, if k(x):e-x. then formula (1.1) defines the modified
Laplace transform (A f) [2]

©

A D6 = [o Vw24, (1.2)

0

which leads to classical Laplace transform (Lf) [3] with the

following convolution
x

L
(F29) ) = [f(x-t)a(t)dt (1.3)

o
and the factorization equality

L
(L(Fxg)) (x)=(LF) (x)(Lg) (x). (1.4)
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Recently we [4] have developed a method of generalization of the
Laplace convolution (1.3) on Mellin type transforms (1.1). It can be
effectively extended to the integral transforms with G-function in
kernel and more general G-transforms [5]. In this case the
factorization equality of type (1.4) takes the following form

(K, (F%g)) ()= (K, F)(x)(K,9) (x), (1.5)

where (fxg)(x) is general convolution which is defined below for three
operators (K1,K2,K3). In case of classical Laplace transform it is the
set (L,L,L), for G-transforms it is (G1’Gz'83) (see below).

In this paper we consider some properties of these convolutions
in special spaces and their various integral representations. By this
method one can obtain the known convolutions and many new examples.

2. SOME FUNCTIONAL SPACES, G-TRANSFORM AND ITS PARTICULAR CASES
In this section we will consider generalization of the Mellin type
convolution transform (1.1) by Mellin-Parseval equality [2]

J+i®
o1 x x -8
KO = 52— [ K () F (s)x as, (2.1)
¥-i®
where x denotes the Mellin transform of functions k(x), f(x)
[\
() = [fOOx" Tax, (2.2)

0
(y-i»,y+i®) is some vertical contour in the complex plane s. Thus the

transform (1.1) can be studied with aid of asymptotic of function
k*(s) and f*(s) on the contour o = (y-i®, 7y+i®), in particular, when
o= {s, Re(s)=y=1/2}.0ur main aim is to consider transforms of the form
(2.2) which are convenient for our further studies.

Thus the behaviour of the functions k*(s) and f*(s) on the contour
0 can be observed from the fact that their inverse Mellin transforms
belong to the space of functions ® (L) [5]. As is shown below this
space is very convenient for the studies of transform (2.2).
DEFINITION 1. Denote by % '(L) the space of functions f(x), x €
(0,+®), representable by inverse Mellin transform of integrable

functions f*(s) € Li(o)iL(o) on the contour o:

_ -1 x . _ 1 x -8
f(x) = ® {f (8); x }_ o[ 17 (s)x"ds (2.3)
o
The space l_1(L) with the usual operations of addition and
multiplication by scalar is linear vector space. It the norm in
l-i(L) is introduced by the formula
+
x .

Ily1g,y = Ilf (1/2+it)|dt, (2.4)

-0

then the space ® '(L) is a Banach space.
Now we consider main properties of the space m’i(L).
1) f(x) € (L) if and only if x 'f(x') € " ().
This property follows from the fact that the functions f(x) and
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x 'f(x_') are the inverse Mellin transforms of the functions f (s)*and
f*(l-s) respectively, But the functions f‘(s) and f*(l’s) either both
belong to L(9) or none of them belong to L(0).
2) If f(x) € R”(L) then x”zf(x) is bounded uniformly, continuous on
(0, +®) and furthermore x’lzf(x): 0(1) when x—>» and x—> O.
This property follows from the Riemann - Lebesgue lemma
3) If £(x), g(x) € R '(L) then x'"?f(x)g(x) € R '(L).

This fact follows from that x1/2f(x)g(x) is the inverse Mellin

transform of the function 2;i If*(t)g*(s-to1/2)dt which belongs to
(o]
L(0) by Fubini theorem. Here g(x)= R"{g*(s); x }.

4) Let f(x) € R (L) and x /2

®

g(x) € L(R+).Then

Jq(u) f(%) gﬁ— belongs to m'I(L).
o
In fact by the property of the Mellin convolution this integral is
the inverse Mellin transform of the. function f*(s)g*(s) and since

f*(s)e L(o0) and g*(s) belongs to space of essential bounded functions,

hence f*(s)g*(s) € L(0).

As is known by [1] the Mellin transform of G-function is the ratio
of products of gamma-functions and according to asymptotic expansion
of gamma-functions this ratio has power-exponential behavior on the
contour o. Therefore it is necessary to take into consideration this
fact in the spaces of, l'i(L) type.

DEFINITION 2.[5]. Let c,7 € R be such that
2sgn(c) + sgn(y)>0. (2.5)
Denote by l;:,(L) the space of functions f(x), x € (o,+v),

¥
representable by the inverse Mellin transform (2.3), where f*(s)lsl X
Nic| Ims

xe |€ L(0). .
Note that f*(s)lslyenclimslelL(a)l if and only if f*(s)lslvenclsle
L(o), and in this case the integral in (2.3) converges if c>0, 7 € R,

or c=0, >0, which is equivalent to (2.5).
The space ﬂéiy(L) is Banach space with norm

nclt x
Ifhg-1 L ° Ie c|ims| |s¥¢%(s) |ds (2.6)
c,? o
It is obvious that the space léiy(L) in case ¢C=0, 7¥=0 coincides
with the space l"(L).
DEFINITION 3. The G-transform of function f(x), x>0, is defined as

(61)(x)= e"""{‘“)pJo t(u)| ()= -2
P,q (B) [ ]

2ni

Iw(s) f*(s)x"’ds, x>0, (2.7)
a

where o={ s € C, Re(s) = 1/2 }, O<m<p , O<n«<q,

m n
TTr +s) TTr1-a5-s)

v (s) = 22 = . (2.8)
TTr (x +s) TT T(1-8,-s)

Jj=n+1 j=me1
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Here, we assume that

RQ(B )*1/2>olj:1""‘!n: I/Z-RG(UJ)W, j=1’---on;
J (2.9)
Re(aj)+1/2>0.j=n+1,....,p; 1/2—Re(B’)>o. J=m+1,...,q
DEFINITION 4. The ordered pair (c*,rt), where
13 q
x _ _ _P+q _ _
c  =m+n > > 7%= Re [)i:.iaj }}.131] (2.10)

is called the index of the G-transform (2.7)

x x
THEOREM 1.[5]. The G-transform with the index (c ,7 ) exists on the
space l;lv(L) if and only if
»

2sgn(c+c*)+sgn(1+1')zo. (2.11)
In this case the G-transform maps l;‘,(L) isomorphically into
-1 4
.c+c*,1+1‘(L)'
Now we see that the inversion of G-transform (2.7) is also

G-transform and it can be written as follows

(@) )] » (B)
m,n 1,p - pP-n,q-m m+l,q 1,m -
[Gp.q [(ﬁ),'q ” o[sew]oo= a3 [(a) @, ]°[°“"] o=

n+1,p

S S I U
2ni ) y(s)
o
The following theorem represents our G-transform defined by contour
integral (2.7) in the traditional real form. The proof is obvious from
the Mellin - type convolution (1.1).

THEOREM 2. Let

g* (s)x °ds (2.12)

239n(c*) + sgn (1* - 1)>0, (2.13)

x
then the G-transform (2.7) with the index (c .1*) can be represented
in the real form (1.1) as follows

du
u °*

®
(61) ()= |6"°" {—"— (), ]f(u) (2.14)

Psq u
@,

o

where G;’: [ x li:;p]= ;nin(s)x-' ds is Meijer’s G-function [1].
q o

Here the existence of the G-transform (2.7) is guaranteed by

(2.13) and inequality (2.5) in Definition 2 of i:"(L) (see also

(2.11)). Theorem 2 shows that inequality (2.13) provides the
convergence of integral which is used for definition of Meijer’s
G-function.

REMARK 1. If inequality (2.13) is replaced by

asgn(c®) + 2sgn(7*) + sgn |p-al > o,
then the statement in Theorem 2 is also true (see [5]).
Further,since the Meijer’s G-function is rather a general function,
its particular cases lead to a number of corresponding transforms.
Here we give a table of those transforms which are required to study
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the convolutions. For convenience we introduce the following notations

of transforms (see [2]).

{k(x)} [rw] = Kt = L Koo, 215)
o

L
* 24
{x"‘k(x)} o [f(u)}: [ [%] k(2 f(u) - {k(x)} o[x“’f(x)]z
0
= OCROIX () (%), (2.16)
{k(x)} fraw] = L [ 2= e, (2.17)
1 L k (s)
{xak(x) }-:[ f(u)] = L f 1 f*(s)x_sds (2.18)
2ni kt(s+a) -

Now we give a table of the definitions of important simple
G-transforms in the forms (2.15)-(2.18), where the function ¥(s)

(k*(s)) is defined by (2.8) such that pt+q<2. These transforms are
special modifications of known classical integral transforms and their
inversions (Laplace transform, Hankel transform, Stieltjes transform,
Riemann-Liouville differintegral operators, Meijer transform).

The more general particular cases of G-transforms, which will be
introduced in section 4, can be easily obtained from (2.15)-(2.18) by
using the table of Mellin transforms and representations of the
kernels k(x) through Meijer’s G-function [6].

TABLE 1

SIMPLE INTEGRAL G-TRANSFORMS AND THEIR INVERSIONS
Modified Laplace transforms

2 (5)e [f(u)](x)={."‘} [t = A r00= j e (2.19)
6?0 ( ! )o[f(u)] (x)={.'”"}o[f(u) ]: /\_f(x):je-(x/'“)—lf(u)d%' (2.20)
o
{xae'xta} o [f(u)]: qut x “F(x)= x* }e'(x/") f(u) (2.21)
0

s )] rwleofe) oo et o

+1) -1 —
{x“e"‘ } ° [f(u)]: AL T (0= 211& Ir(t(sia)) £ (s)x " °ds  (2.23)
L

Modified Riemann-Liouville differintegral operators

and their inversions
0.1 e (X'I)T‘1 } [f( )]‘Ia (x-uf(x))'
1:1 [ o ]o [f(u)](x)- {——7r763~— o u) |=I,

P x-u)*!
= I T(a) u  f(u)du, Re(x)>0
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n X a+n-1
- d (x-u)
- n T'(ax+n)

dx °

u'af(u)du, -n<Re(a)<-n+1 or Re(a)= -

Im(x)#0, n=1,2,3,...

ot () frealoor (75 [reola ocreon-
: o

a

= J“‘%%;%Z:l u %f(u)du, Re(a)>0 (2.24)
x
®
:[_ _9}n _1%%3%2;:;: u “f(u)du, -n<Re(a)<-n+l or Re(a)z -n,

dx x

Im(a)#0, n=1,2,3,... (2.25)
-1 -1
{—ff%f§2§—— } o[f(u)]z(x: ]"(x‘“f(x))=x;“(x‘“f(x)) (2.26)
a

Modified Hankel transforms and their inversions

2, -p/2

1-v/2,1+v /2 (
N

[e},:g [D/Z'__,,,Z]]ﬁo[f(u)](x)={av(z/_x‘)}-1o[f(u)]

.g[»/ _ ]o[f(u)] (x):{Ju(Z/_T)} [f(u)] JJ (2/—7/T‘)f(u)— (2.27)

©
)}o[f(u)]=jJ,(2/Wf(u)"—3 (2.28)
0

:{x-i J”( ;—‘)}°[f(u)] (2.29)
x
leg:é[l—vlillovlz}]~ o[f(u)](x):{Jv[;§§_)}'1o[f(u)] =
={ xJ,(2/ %) } ° [f(U)] (2.30)

Modified Sin- and Cos - transforms and their inversions

63:3[1/2 OJ [f(u)](x):{——i—sin(zf x )}o[f(u)]: fsln(2/;73)f(u)d"

(2.31)

fcos»(z/ ')f(u)

(2. 32)

e},;g[o_l,z]o[f(u)] ()= {/—T—cos(z/_—')} [f(u)]:

(172,11
Gg:é[ —_ ]o[f(u)](x) = {“i‘Sin(Zx"/z)

————

. [f(u)] -
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= 1 Isin(zfu/x)f(u)gﬁ (2.33)
LA
1/2,1/2 -
Gg’;[ . ]o[ f(u)](x)={——l—603(2x 1/2)} °[f(u)] =
» y T
os(2/u/x)f(u)g§ (2.34)
Y 0
-1
s OJ] frofe {stncar) " [rw)]
=1 {x”’zsin(zx"’z)} o[f(u)] (2.35)
Yy n
[Gg:é[;,xlz]J °[f(")](x) {5:::°°°(2' )} [f(u)] :
_ 1 -1/2 -1/2
= {x cos(2x )} o[f(u)] (2.36)
Y n
1/2,1) 7! -1
[Gg:é[ __ ]} o[f(u)](x) = ——A—sin(2x'1/2)} ° [f(u)] =
{/ n
T | {x”zsin(z/ x')} o[f(u)] (2.37)
Yy
1/2,1/2 ! -1
0,1 1/2 . -
[Gz,o[ ]J o[ f(u)](x) {————cos(Zx )} [f(u)]
= 1 {x‘lz cos(2y x )} o[f(u)] (2.38)
VT

Modified Stieltjes transform and its inversion

st (%) - [rw] oo = {f(p)(1+x)'”} o [rw)-

®
p
= r(p)f .!_ISE% _Qg (2.39)
(x+u)

0

-1

o [ra] oo ={F(p)(1+x)'p}-lo [re]-

et (57)]

5 (s)x °ds (2.40)

1 f 2
2ni ) T(s)I(p-s)
L

Modified Meijer transforms and their inversions

Gg:g [u/zj::/2]°[f(U)](X) = { 2KD(2/_§“)} o [f(u)] =
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= 2]k, (2/ %70 (X (2.41)
0o
1-v/2,1+v/2 ®
Gg:g[ _ ]o[f(u)](x):{sz(;§:]}o[f(u)]:2IK“(2/—37;“)f(u)9§
X o (2.42)

[sg:g [u/zjj;/z}]-l°[f(")](x) = {2&0(2/_1“)}v1o [f(u)] =

-1 1 x -5
= 5 f AN A G L (2.43)
L

-1 Ps

[1""/2_'"”’2] o[t ]oo = {2Ku( /L— ]}-1"[“")]:

X

ON

1 1 x -5
= 2ni I T(st0/2)T(—s-v/2)f (8)x ds (2.44)
L

3. DEFINITION AND MAIN PROPERTIES OF CONVOLUTIONS FOR MELLIN

TYPE TRANSFORMS
Now we consider the Laplace convolution (1.3)if f(x), g(x) €

l—1(L). By Definition 1 substituting representations (2.3) for f(x),
g(x) in (1.3), changing order of integration and using the
beta-integral we can represent (1.3) in its equivalent form:

(fy 9900 = —=— [ [LTUZSITUL) %5y g%(1)x " 'dsdt,  (3.1)
* .. 2 r(2-s-t)
(2ni)
o'.os

where 0 x ot:{(s,t) € € Re(s)= Re(t)=1/2}.

For Laplace convolution (3.1) we have the following result.
THEOREM 3. The classical Laplace convolution (f;g)(x) (1.3) exists for
all f(x), g(x) € l’l(L) and it posseses the factorization property
(1.4). In this case x /?(flg)(x) € " '(L).

PROOF. From (3.1) it follows that the Laplace convolution (fig)(x)
exists if and only if

TERUSE) % (s) o%(t) € Lox o). (3.2)

Using the representation for the beta-function we obtain that

L %E;-i’t;t = 0(1), when s,t—>o, (S,t) € osxat' (3.3)

But by Definition 1 it follows that f*(s) g*(t)G L(Oaxdt).Hence
the condition (3.2) holds valid. Further by the substitution t=s+t-1/2
representation (3.1) can be written in the following form:

1/2 -T
(@) ) = Z— [ dv——= [T (1/2-1+ )T (1-t) ¥ (r-t+1/2)g” (t)at,
g

s T@/2-v) 2
T

t
where otz{t € €, Re(tr)=1/2}. (3.4)
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Hence it follows that x_1/z(f;g)(x) € ﬂ'l(L). Now by an appeal to the
classical Laplace transform
x
W) = [e7Mf(wdu

0
and the convolution (3.1) it is not difficult to obtain the property

(1.4) Theorem 3 is proved.

The representation (3.1) for Laplace convolution can be modified
and generalized on the G-transform (2.7).
DEFINITION S. Integral convolution (fxg)(x) for two functions f(x) and
g(x) for .the set of three G-transforms (G1‘G2'G3)is defined as the
following integral.

H_(s) H_(t)
- 2 3 x * -s-t
(fxg)(x) = (2n1) II RECTI) f (s) g9 (t)x dsdt, x>0, (3.5)

where Hj(s). j = 1,2,3 are the corresponding kernels of G-transforms
(ij)(x)uhich are defined by the following relations:

m. n
j J
(8! )+s, 1-(o! )-s W, T +e) 0, T (1-a,-s)
Hj(s)zr jjn,o‘l o d,m 41 : 2 N
(« )+s, 1- (ﬂ )-s Hj r(a:»s)ﬂ:. ’1F(1-3: -s)
)

J j kn01

Thus by Definition 5 we see that for each convolution defined by (3.5)
there corresponds the ordered set (G1,G2,G3)of G-transforms and vice
versa. Hence we obtain the family of integral convolutions for
corresponding G-transforms. As is known from [5], the composition of
G-transform is also G-transform. Hence we can note some algebraic and
structural properties of these convolutions (see below).

THEOREM 4. Let f(x), g(x) € ﬂ;:,(L) and for parameters of the kernels
Hj(s), j=1,2,3 and H1(3+1/2) the corresponding conditions (2.9) hold.
Let further,

R [ R e G B [N A O (3.7)

where y(s,t) = [Hl(s+t)]-1H2(s)H3(t).Then the convolution (3.5) exists
172 -1
and x (fxg)(x) € ® (L).

PROOF. By condition (3.7) and Definition 2 it follows that

W(S,t)f*(S)g*(t) € L(0 %0 ). Hence we write the integral (3.5) in the

following form (see 3.4).

-1/2
¢ 3 ) P
(t*9) )% |
0'[

' dt
H,(T+1/2)

j H,(1/2+T-t) £ (1/247-t) H, (t)g" (t)dt,
(3.8)

2n1
L
and using Definition 1 the proof of Theorem 4 is completed.
THEOREM 5. Let the conditions of Theorem 4 hold and moreover the
following inequalities hold
2sgn (C+ct)+sgn (1+1t)z 0, j=2,3,
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where c‘, 1*. iz2,3- indices of G-transforms with corresponding
1 1
kernels (3.6). Then the factorization equality of type (1.5)for the

G-transforms set (G1'Gz’Ga) is true
(6,(f%g)) (x)=(6,f) (x) (6,9) (x),

where

1/2 1/2

def _ ~
(GF)(x) = x G(t £) () _

in case x'’f(x) - R;’Y(L). and G-transform G has the
kernel G(s)=H(s+1/2). ’ '

PROOF. By the property (3) of L (L) and Mellin-Parseval equality
(2.1) we notice that the function h(x):xl/z(sz)(x)(Gag)(x) is the
inverse Mellin transform of the t-integral of (3.8). Further the
conditions of Theorem 5 provide the existence of G-transforms
Gj,j=2,3.

Now we apply Gi-transforn to convolution (3.5) and obtain the
corresponding factorizaiion equality.

THEOREM 6. Let y(s,t) € L(Osxot)and f(x), g(x) € L(x
(2800, x 200 € L(R)).

Then the following real representation of convolution (3.5) holds:

-1/2,'?0)

()00 = [ s (X, X Jrg(v) v (3.9)
2
R
where
S(x,y) = Ifw(s,t)x”y"dsdt. (3.10)
a o
s t

The proof of Theorem 6 can be obtained by Fubini theorem.
Now we consider the convolutions in form (3.9), where the

corresponding kernels S(x,y) depend on the sum and maximum of

variables x,y. As it is known from [7] w(s,t)= k*(s+t)8(s,t) (for sum)
and  W(s,t)=(s+t)k (s+t)s 't '(for maximum). In the first case

r
H,(s)= k,is),
Hz(s)zua(s)zr(s) and in the second case Hl(s):———%———.Hz(s)=H3(s)=s-t.
s k (s)

*
where k (s) is- Mellin transform of some function k(x) such that
h(x)=x_"?’k(x) belongs to the space R [8] of integrable functions on
arbitrary segment [€,E], O<€<E<x. Further the integral
X
*x €-1
h'(s) = [hGOx"lax, s € o, (3.11)

[¢)
converges, i.e.there exists a constant C>0, for which for all €, E>0

and t € R

E

f kKOO " 2ax |< c. (3.12)
€

REMARK 2. In particular, if k(x) € L(0,®), then h(x)=x'’?k(x) € R.
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-1 1/2

THEOREM 7. Let f(x),g(x) € m (L), x k(x) € R. Then the following
integral representations of type (3.9) for convolutions(3.5) (f*g) (x)

and (f*g)nax(x) are true

(fxg) (x) = fzk (x —Eﬁ¥— )f(u)g(v) dUd: R (3.13)
r
(txa), . 0 = [ k[x max {u',v’ })f(u) g(v) W (3.14)
2
R

The proof of Theorem 7 can be obtained by Fubini theorem and using

of the following identities [7]

* o1t
B(s,t)k (s+t)=j K(x+y)x® 1yl 1dxdy, (3.15)
o2
+
s+t k¥ (s+t)= J Kk (max{x,y}x° 'y' 'dxdy. (3.16)
2
R
+

By Theorem 3 it is not difficult to obtain the factorization
equalities for convolutions (3.13),(3.14).

(6,(f*g) ) 6)= (A, £)(x)(A,9) (), (3.17)

(6 (F*g)(x)=(1'x () ) (1'% ") (@) (), (3.18)

max

where G-transform G, and G, ..have the kernels as indicated above
and operators in right parts of (3.17), (3.18) are defined by Table 1.

Now we consider some estimations of norms for convolutions (3.13),
(3.14) in traditional L-spaces.
THEOREM 8.Let k(x) € L(0,®) and f(x),g(x)€ L(x 50,9). (" Ygx) » L
(0,)). Then the convolutions (f*g)‘(x),(f*g)max(x) € L(0,v) and the
following estimations of norms are true

-1/2

1(rxa) L(R’)S 2| (fx9) | LR ) < "lf"L(x—i/Z;RQYIQlL(x-ilz;R )®

®

where M= flk(x)ldx.

0
The proof of Theorem 8 can be obtained by an appeal to the

following chain of inequalities and equalities.

III,R(X max {u-1,v—1})f(u)g(v)—gﬁe!— dx<
R R”

f |k(x)|dxj min{u, V}lf(u)g(v)|d“dv -

0

= 1kGo [ax] —5§§§T;—;;lf(u)g(v)ld“3§ <2 [k x| D] t(wev) |
R ' ! R

+
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dudv IIR(X)'d"J L)_Qi_)_L dudv<l|k(x)|deM du I J.ﬂ_(_)_l_ dv.

’ ‘ * + 0

EXAMPLE 1. Let k(x)=2K (2 ¥"'x )be MacDonald function [1]. Then the
corresponding convolutions (3.13),(3.14) and their factorization
equalities can be written in the forms

(1%g) (%)= 2.[2'(0(2 X y—:w )f(u)g(v)d“'dv .
R
( /\:’(f*g),)(x):(/\’f)(x)(/\*g)(x), (3.20)
(f*g)max(x)= ZJ\ Ko(z m}) f(u)g(v)dsgv .

A
-1
{2x'/2K,(2/7)} o[(f*g)m(u)]:(le“)(f)(x)(Ijx")(g)(x). (3.21)

4. SOME EXAMPLES OF CONVOLUTIONS AND FACTORIZATION EQUALITIES
In this section we give a table of examples of integral convolution by
real representation (3.9) with S(x,y) as hypergeometric function of
two variables (Horn functions)[9]. Some other Horns functions can be
defined by the use of G-function of two variables [4]. The sets of
G-transforms in factorization equalities follow from Table 1 and table

of Mellin transforms in [1], [6].

TABLE 2
® ®
(*9) ()= { { G e e R MO IO

O T (£20) 000 =18 {(ux)"‘}(f)(x){(ux) B’ }(g,(x) (4.1)

[s I

(1) o= ”" (oot fy Bri- G - T FWeSRY-

=7 Y x - (1-a- x -1
G 9)(’()‘””{” TP e 1-a-p  _a-B (_i)}(f)(x) x

(1=a’ =B )/2_(2x) "
x{x e W 1o’ = “-_ﬂ,(—i—)}(g)(x). (4.2)
2 d b
L) VI )
(f*9) ()= J f G B )f(U)g(V)—duzz' .
oo

(x'a/\tlxa)(f*g)(x):ﬁ;—) {11-‘1(B;Y;—x)}(f)(x){lrj(ﬂ‘ % ;-x)}(g)(x)- (4.3)
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[a UL 1)

(f*g) (x)= f I Fola, By, 0 5~ —’;‘ " )f(u)g(V)‘:ﬂ'dv
o o

1, —(asfrrs2 2 T aepriz ()Y’

X(x“'y)/z{:},_,(zx”z)} x”"”f(f)(x)(x 1=y’ N

x{J,,_,(zx”z)} Y772y (g) 0. (4.4)
(1#9) 0= [ [ 6,(B7 5= X, - X yr(u)g(v)dUdv
0o 0
(xl-ql’“qx’-i)(f*g)(X)=ﬂr\%?;){(1*><)—B}(f)(X) A, () (x)- (4.5)
® ©
(#9)0)= [ [ 0,88 1 - %, - - )f(we(v)Tdv
0o o
(x"/\_x’)(f*o)(x)=r(r){(1+x)“’}(f)(x){(ux)“*'}(g)(x). (4.6)
@® ©
() 00z [ [ 0 (67 - %, - X Hr(uyg(nd
o 0
(ORI (f*q)(x)=rm{(1+x)"3}(f) GO, (@) (). (4.7
©® ©®
(1%9) ()= j j v, (@B, 5- X, - X ) f(u)g(v)dudv

(x-aAjixa)(f*g)(x)z%){lﬂ(ﬁﬂ;'X)}(f)(x) (x(i-y' vz

x{a,,_,(zx’“)} x V13 (g) (0). (4.8)
® o
(+0)60= [ [ v, (01.05- %=, - X ) f(u)g(v)T
o0

(x_a/\tixa)(f*g)(x)-rgnrnl) (xn-y)/z
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< {37—1(2x1/z)} >‘(1-1)/z)(',)(x)(xn-w’)/z x

x{a,._,(zx”z)} x V702 (9) (x) . (4.9)
® ®
(r20) 0= [ [ B, (00,87 5- X, - X )f(u)g(v)du
o0
i} raszs Shordeee,
(< TA_x") (£29) ) =T (1) x
NONG!
-1 '
x{g‘z*’ Wo. po (—5—)}(f)(x){(1+x)'“ }(q)(x). (4.10)
2
® o
(1#9)0)= [ [ 5, (v - X, - 2 )f(ug(v)-Sudv
0o 0
_ r(1+a-—ﬂ )F(I*B'“ )
< IA_x") (£29) (x)=T'(¥) 2 2 x
T ()T (B)
(20! 1 A
x\e %, p-a (5 (6D A (9)0A). (4.11)
2
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