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ABSTRACT. We consider a complete open riemannian manifold M of non-

negative Ricci curvature and a rectifiable hypersurface E in M which

satisfies some local minimizing property. We prove a structure
theorem for M and a regularity theorem for E. More precisely, a

covering space of M is shown to split off a compact domain and Z is

shown to be a smooth totally geodesic submanifold. This generalizes

a theorem due to Kasue and Meyer.
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1. INTRODUCTION.
Let M be a complete connected riemannian manifold of dimension d

and class Cm. We assume that M is noncompact and that the Ricci

curvature of M is everywhere nonnegative. In this case, A. Kasue [1]

and D. Meyer [2] proved a statement from which the following struc-

ture theorem is inferred.

Suppose that there exists a smooth minimal immersion of a smooth

compact connected d- 1 dimensional manifold T without boundary in

M. Then, for some covering space p’M M there exists a

compact region O M possibly empty so that, depending on whether Q

is empty or not, M\ Q splits isometrically as either the riemannian

product Tx or T x [0,) where T is the lifting of T in M by p.

However, the requirement that T be smooth is not a natural one

from the standpoint of minimal submanifold theory. In practice, for

d > 7, it is often unavoidable for minimal hypersurfaces to possess

singularities. Our purpose in the present paper then is to remove

this assumption from the theorem above.
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In this paper, by a compact hypersurface E, we mean an integral

current in M of Hausdorff dimension d 1 It is well known that

the support, spt E, of such a E is almost everywhere (with respect

to Hausdorff measure) the union of a finite number of Lipschitz

images in M of compact d dimensional orientable riemannlan mani-

folds. In many ways, rectifiable currents are the correct setting

for the theory of minimal submanifolds, because they are closed under

taking weak limits. We refer to the books of Federer [3], Lawson
[4], and Morgan [5]. We say that E is without boundary if the d 2

dimensional current aE is identically O.

For an open set U , let E]U denote the localization of E to

the closure U of In this paper, we choose to call a current E

locally minimizing if, for each x e , there exists some neighbor-

hood U of x in such that the varifold associated to E[U is abso-

lutely mass minimizing for the variational problem supported on

Although this condition is stronger than that of being merely statio-

nary and is not a closed condition under the weak topology, it

includes the solutions to most pertinent variational problems.

Notice that It is weaker than the notion of locally minimizing as

described by Lawson in [4] where E is required to be absolutely

minimizing with respect to all variations with compact support. In
particular, our condition is satisfied by all weakly embedded smooth

minimal submanifolds. Technically, our definition has the advantage

of satisfying locally the the requirements for the regularity

heorems of Almgren [6].

MAIN THEOREM. Suppose ha here exists in a locally mini-

mizing compac hypersurface E wihou boundary in he sense described

above. Then, for some covering space p’M M, there exists a

smooth compact orienable d- 1 dimensional riemannlan manifold T and

possibly empty compac reglon O M such that M \ O splits iometri-

cally as either the riemannian product T x or T x 0,) and

spt p*E consists of disjoin smoothly embedded copies of

Notice that in particular, our Main theorem implies the follow-

ing regularity theorem.

COROLLARY. A locally minimizing compac hypersurface Ithou

boundary in a complete noncompac manifold M of nonnegative Rlccl

curvature must be regular everywhere and totally geodesic.

In this sense, we point out its relation to the works of Ander-

son [7] and Anderson and Rodriguez [8].

Of course, under our Main theorem, the Ricci curvature, in fact

the sectional curvature, of M in the direction of the linear factor

is 0. Therefore, we obtain,

COROLLARY. Suppose that M is a complete riemannian manifold of

positive Ricci curvature. If there exists a minimal compact hyper-
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surface E in M without boundary, then M itself must be compact.

This generalizes a part of our result in [9].

2. Proof.

Let M be a complete connected noncompact riemannian manifold and

let d be its dimension. We recall from D. Gromoll and W. Meyer [10]
that a ray in M is a geodesic c’[O,) M such that every segment

c[[0, b] 0 < b, is length minimizing. The function b "M R
defined by

b (p) "=, im p(p, c(s)) s
c

where p is the distance function in M is called the Busemann function

associated to c.

In [11], J. Cheeger and Gromoll prove that b is always conti-
c

nuous and that if M has nonnegative Ricci curvature, then b is
c

superharmonic. Moreover, Galloway [12] proves that T is any piece of

smooth minimal hypersurface of then b T obeys the Strong minimum
c

’principle; i.e.,

If U c T is a relatively open connected set of T and b attains

a local minimum value in U, then b is constant throughout U.
Actually, the result, Lemma (2.4) in [12], is stated for the

case M is a Lorentzian spacetime with positive timelike Ricci

curvature, but the same proof goes through for our case. Cf. also a

related result of Galloway and Rodriguez [13].

LEMMA I. Let A c M be any compact set. Then, for each end H of

M there exists a ray c in M such that c(O) e A c(s) e g for large

s, and b is nonnegative on A.
c

Here, by c(s) E for large s, we mean that for each component

E of the complement of the filtration defining the end there is a

t > 0 such that c(s) e g for all s > t
PROOF. Take a sequence of points qj in g such that p(A, qj)

> 1/i Since A is assumed to be compact, for each i, there is a

unit-speed geodesic segment c [0,1 l] M realizing the distance

between A and q Let TM M be the unit tangent sphere

bundle of Then, c(0) l -(A) while the latter is a compact

space and so the sequence of tangent vectors (0) has some sub-

sequence converging to a vector u -l{A) Then, c(s) exp su

is a ray with c(O) A and c(s) for large s. Moreover, if we

define a sequence of functions g’M
gi (p) p(p, ql) 1

then, g converge pointwise to the Busemann function bc Since gilA
is nonnegative, we obtain the lemma.

LEMMA 2. Lt c be a ray constructed for a compact set A as in

Lemma I. Then, q c(O) is the closest point in A to any point on
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fhe ray c.

PROOF. Let x () Assume that there is a point y A
which is closer to x than q. Then, p(y,x) - for some > 0

Hence, for all s > t

p(y,c(s) < p(y,x) + p(x,c(s) t- e + s- t s- e

It follows that

b (y) lira p(y,c(s)) s e

which contradicts Lemma 1.

We mention that Shioya [14] made the same observations as our

two preceding lemmas but used them for a different purpose.

Now, let E be a locally minimizing compact hypersurface in M and
let A be the support of E. Construct a ray c associated to A as in

Lem=a 1. We recall an observation of M. Gromov [15] that for any

point x A the point y A which is closest to x is a regular

point of E in the sense that there is a neighborhood U of q in M so

that spt {El is a smoothly embedded image of a piece of d- 1

dimensional smooth manifold. Therefore, by virtue of Lemma 2, we

see,

LEMMA 3. q := c(0) is a regular point of .
Let S be the connected component of q in spt and W the

smoothly embedded piece of d I manifold defining IU in a neighbor-

hood U of q. We may assume that W S. We can then apply the ]emma

of Galloway and Rodrlguez to conclude that b IW obeys the Strong

minimal principle. But, b [S k 0 and b (q) 0 SO q is a minimum
c c

point of b in S. Moreover, q is an interior point of so we
C

conclude that b 0 on But since b is continuous and S is
c c

connected, b is in fact identically 0 on S. In particular, S is

regular everywhere. Moreover, by the techniques of Kasue [I] and

Meyer [2], this induces a local splitting of M; i.e., M contains a

region R in turn containing Wn R as part of its boundary and R
splits isometrically as the product (Wo R) [0,)

Now, we recall that for purely topological reasons, there is a

covering space p:M M of M so that p-I (S) decomposes into a

finite number of connected components each of which, say divides M
itself into two connected regions with T as its common boundary.

Then, it is easily seen that, passing to the splitting of p’(R)
extends to the global splitting T [0,)

Now, let P be the region in isometric to T [0,) and let

O := M\ P. If the closure of Q is not compact, then Q contains an

end of We can construct a ray as in Lemma 1 for the compact set
T and argue as before to conclude that Q also splits as T (- ,0]
Otherwise, the closure of O has to compact. This proves the first

half of our Main theorem.
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Now, suppose that spt p*E contains a connected component

T # T. This time, we can find a geodesic segment ’[O,k] M

realizing the distance between the two compact sets T and Say

(0) E and (k) E T. Then, by Gromov’s lemma again (0) is also

a regular point of p*E Moreover, since T is now a smooth totally

geodesic submanifold, the function g:M .) o {0} defined by
/

(p) (p,

is superharmonic on M. Again, by Lemma (2.4) of Galloway [12], there

is a neighborhood V of (0) in so that glV obeys the Strong

minimal principle. By repeating the previous argument again, we

obtain that there is a region in M bounded by u T and isometric to

T x [0, k In particular, is isometric and parallel with respect

to the original Busemann function to Since spt p* is compact and

can contain only finitely many connected components, by induction,

this completes the proof of the Main theorem.

,3. REMARKS.

Geometric measure theory seem to provide us with

useful techniques in studying global properties of riemannian

manifolds. We mention a possible application of our result to the

following classical,

CONJECTURE. Suppose that M is a complete noncompact manifold

wieh positive Rlcci curvature. Then, the (d- 1)st. integral homo-

logy class Hd-t (Z) {0}
Recently, Shen [16] proved the conOecture with the additional

assumption that M is proper. However, this is a strong assumption.

With a little more work, we can show that our splitting theorem

holds for E which is not a priori minimal but is homologically non-

trivial and a solution to a certain e11iptic variational problem with

constraint on the d-dlmensional measure of F where,OF E + E’ for

some other compact hypersurface E’. For the case M is compact, it is

well known that each element of H,(Z) is in fact represented by a

locally area minimizing compact hypersurface. Unfortunately, the

.weak convergence of integral currents has not been applied much to

noncompact manifolds. However, heuristically, it seems to us that,

in many cases, the existence of such E, E’, and F is a common occur-

fence. Whenever such existence can be established, therefore, our

result implies a partial solution to the conjecture.
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