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ABSTRACT. We study category bases by means of category decompositions. These enable us to

obtain a better insight into the structure of category bases.
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1. INTRODUCTION.
John C. Morgan II introduced around 1975 and has developed since then a theory of category

bases (cf. [1]). Its main feature is to present within a common frame measure and category as well

as some other point set classifications. The aim of this paper is to study category bases by means

of category decompositions. This concept is a compilation of some ideas used by Morgan
throughout his development of category bases. It has been applied in [2] and [3] to settle some

problems from category bases. An approach using category decomposition enables us to give

elementary proofs of some known theorems about category bases as well as some new ones. In
particular, we give a proof of the Morgan-Schilling theorem about invariance under operation (A) of

the family of Baire sets with respect to a category base (Theorem 1 in section 1). In section 2 we

characterize certain fields of sets which are generated by category base.s (Theorem 3). Finally, we

provide a characterization of category bases equivalent to topologies by means of lower densities

(Theorem in section 3).
Let us recall some basic definitions and concepts of the theory of category bases.

A category base on a set X is a pair (X, C) such that X is a non-empty set and C is a family of

non-empty subsets of X, called regions, satisfying the following axioms:

(1) uc=x;
(2) Let A be a region and D a non-empty family of disjoint regions which has power less than the

power of C. Then

(i) if A u D) contains a region, then there is a region B e D such that A n B contains a region.

(ii) if A O U D) contains no region, then there is a region B

_
A which is disjoint from u D.

Notice that parts (i) and (ii) of (2) can be rewritten in the following form:

(j) if A n B contains no region for each S E D, then there is a subregion of A which is disjoint

from u D.
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Also, axiom (1) can be skipped for without loss of generality, we may assume that x is a region.

Standard examples of category bases include topologies (without the empty set) or sets of positive

measure with respect to a a-finite measure.

A set E

_
X is singular if for each region A there exists a region B

_
A such that B t3 E . A

set M C_ X is meager if M is a countable union of singular sets; non-meager sets are called abundant

sets. A set Y is abundant everywhere in a region A if for every region B

_
A, Bt3 Y is abundant.

The class of meager sets will be denoted M(C). A set G C_ X is Baire if for each region A there exists

a region B

_
A such that B c G is meager or B n (X- G) is meager. The class of all Bait sets will be

denoted by B(C). If C is a topology, then M(C) is the family of sets of 1st category and B(C) is the

family of sets with the Bait property. Generally, B(C) is a r-complete field of subsets of X and

M(C) is a a-additive complete ideal in B(C).

If C is a category base on X and A is a region then CIA {B C:B C_ A} is a category base on

A; let us call such a category base the restriction of C to A. It is easy to see that

M(CIA) {EnA:E M(C)} and B(CIA)= {EnA:E e B(C)}.
2. CATEGORY DECOMPOSITIONS.

Let C be a category base on X. We say that R is a category decomposition of X if R is a

disjoint family of regions such that each region from C intersects a member of R on a set that

contains a region.
It is known (cf. [4]) that the intersection of two regions either contains a region or is singular.

This is also true for any finite number of regions. This is not true for an infinite nunber of regions

as topological examples show.

PROPOSITION 1. Let C be a category base on x and let R c_ C be a category decomposition

of x. Then:

(i) x u R) is a singular set;

(ii) if E C_ X and E rn A is singular for each A e R, then E is singular;

(iii) if E C_ X and E c A is meager for each A R, then E is meager;

(iv) if E C_ X and E O A is Baire for each A R, then E is Baire.

PROOF. (i) Let D be a region. There exist AeR and BeC such that BC_DrnA. Hence

B C_ D and Bn(X-( O R)) .
(ii) Let E be a subset of X such that E t3 A is singular for each A e R. Let D be a region.

There exists A R and B C such that B C_ D gl A. Since E VIA is singular, there exists a subregion B"
of B such that B" t3 (E V1 A) . Hence B" t3 E .

(iii) If E C_ X is a set such that E vIA is meager for each A R, then let E vI A U {Fn(A):n w},
where Fn(A) is singular for each n w and A R. By virtue of (ii), the set Fn t3 {Fn(A):A R} is

singular for each n w. Hence the set E is meager being the union of the following singular sets:

F new and ECl(X-(UR)).

(iv) Let E be a subset of X such that E t3 A is Baire for each A R. Let D be a region. There

exist A R and B C such that B C D Cl A. There exists a subregion B" of B such that B’rn (E n A) is

meager or B’tq(X-(EtnA)) is meager. Since B’rqE= B’tn(EtnA) and B’tn(X-E)= B’tq(X-(Er3A)),

property (iv) follows.

PROPOSITION 2. Let C be a category base on X such that each region contains a subregion

with property P. Then there exists a category decomposition of x consisting exclusively of regions

with property P.
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PROOF. Let C {Aa:a < }, where C[ =,. For each / < r we are going to define a region

BB so that the following are satisfied:

(1) {Ba:a _</} is a disjoint family for each/ < r;

(2) BB has property P for each/ < ,;
(3) Aa intersects some BB with < a on a set containing a region.
Let B0 be a subregion of A0 with property P. Let / < , and suppose Ba has been defined for

each a </.

If ABa contains a region for some a </, then we set BB BO. In the opposite case, since

a </ and C is a category base, there exists a subregion B of A disjoint with every Ba, a </. We
take B/ to be a subregion of B with property P. The induction is finished.

From conditions (1), (2), and (3) it follows immediately that R= {B/: <} is a required

category decomposition of x.
COROLLARY 1. Let C be a category base on X. A set E

_
X is singular if and only if there

exists a category decomposition R of X such that E C_ X- (U R).
PROOF. The "if" part follows immediately from the definition of category decomposition. To

show the "only if" part, apply Proposition 2 for the property P being "disjoint with E".
COROLLARY 2. Let C be a category base on x and let R1,R2 be two category

decompositions of x. Then there exists a category decomposition R of x which is a common

refinement of R and R2, i.e., for each A e R there exist B R and B2 R2 such that A c_ B B2.

PROOF. Let us take an arbitrary region A. There exists a region A c_ AB for some

B R1. There exists a region A2 c_ A B2 for some B2 R2. Hence the region A contains a

subregion A2 contained in B B2 for some B R and B2 R2. Hence the corollary follows from

Proposition 2.

COROLLARY 3. (= Morgan’s Fundamental Theorem [1]). Let C be a category base on X.

Then for each abundant subset Y of x there exists a region A such that Y is abundant everywhere

in A.

PROOF. Suppose otherwise. Then every region contains a subregion intersecting Y on a

meager set. By virtue of Proposition 2, there exists a category decomposition R of x consisting

only of regions that intersect Y on a meager set. By virtue of Proposition 1 (iii), Y would be a

meager set; a contradiction.

COROLLARY 4. For each category base there exists a category d,ecomposition such that each

member is either meager or abundant everywhere in itself.

PROOF. Each region is either abundant everywhere in itself or contains a meager subregion.
Hence by an application of Proposition 2 for the above property P we get the required category
decomposition.

COROLLARY 5. Let C be a category base on X. Then x can be decomposed into two sets G

and // such that // is meager and G is abundant everywhere in any region A such that A-G is

singular.
PROOF. Let R be a category decomposition of x guaranteed by Corollary 4. Then we set

H= J{BR:B is meager}tg(X-(tgR)) and G is the rest of X, i.e., G= tg{BR:B is abundant

everywhere in itself}. By virtue of Proposition (i) and (iii), H is meager. Suppose that A is a

region and A-G is singular. Let A be any subregion of A. Then A must intersect one of the

members of R, which is abundant everywhere in itself, on a non-singular set. Hence that

intersection contains a region and therefore abundant.
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COROLLARY 6. Let A be a region and let S be a Baire set such that SnA is abundant.

Then there exists a subregion B of A such that S is abundant everywhere in B yet B- S is meager.

PROOF. According to Corollary 3, there exists a region B such that S CA is abundant

everywhere in B1. Hence B c A is abundant and therefore there exists a region B2 C_ B C A. Since

S is Baire, there exists a subregion B of B2 such that either BCS is meager or BO(X-S) is meager.

Since S c A is abundant everywhere in B and B is a subregion of B1, B c S cannot be meager. Hence
B-S is meager and S is abundant everywhere in B.

A set E is an essential hull for a set S if E is a Baire set, S-E is meager, and if F is a Baire set

such that S-F is meager, then E-F is meager. J. Morgan [1] has shown that in the case of ccc

category bases, each set has an essential hull. We can show that this is true in general.
COROLLARY 7. Let C be a category base on x and Y be a subset of X. Then there exists an

essential hull, b(Y), for Y. Moreover, b(Y) is the union of a disjoint family of regions which are

abundant everywhere in themselves and a meager set.

PROOF. By virtue of Proposition 2, there exists a category decomposition R of X such that

for each A E R either A f3Y is meager or Y is abundant everywhere in A. Let R’= {A E R:Y is

abundant everywhere in A} and b’(Y)= u It’. By virtue of Proposition 1 (iv) and (iii), b’() is Baire

and the set Y-b’(Y) is meager. We set b(Y)= b’(Y)U(Y-b’(Y)). Let B" be a Baire set containing Y.

We shall show that the Baire set F b’(Y)- B" is meager.

Suppose otherwise. Then there exists A in R" such that A OF is abundant. By virtue of

Corollary 4, there exists a subregion D of A such that, in particular, D-F is meager. Since

D B" C_ D- F,D B" is meager. Since Y c_ B’,D V Y is meager, too. But this contradicts the fact that

AR’.
In 1933 E. Szpilrajn-Marczewski proved a general heorem on families to be closed under

operation (). This theorem enables us to give a simple proof of the Morgan-Schilling theorem.

THEOREM. (E. Szpilrajn-Marczewski [5]). Let K be a -field of subsets of a set X and N(K)

be the subclass of K consisting of sets all of whose subsets are also in K. Suppose that K and N(K)
satisfy he following condition:

(#) if E c_ X, then there exists a set A e K such that E c_ A and if B e K contains E then A- B . N(K).

Then K is closed under operation (A).
THEOREM 1. (J. Morgan and K. Schilling [6]). Let C be a category base on X. Then B(C) is

closed under operation (A).
PROOF. The family B(C) together with M(C) satisfies the assumptions of Marczewski’s

theorem above. Indeed, B(C) is a a-field and by virtue of Corollary 7, (#) holds since each subset

of a meager set is Baire.

REMARK. (a) The referee has pointed out that our Corollary 7 can be derived from

Theorem 15 or Theorem 16 [1; pp 35,37].
(b) Corollary 7 has recently been obtained, independently, by A. Kucia of Katowice.

3. FIELDS AND CATEGORY BASES.
A a-complete field on a set X is a non-empty family F of subsets of X such that:

(a) if R c_ f and RI < , then w R e F;

(b) if A F, then X- A F.

-complete fields are called fields and l-complete fields are called a-fields.

Let F be a field on X. A -ideal of F is a proper subfamily I of F such that:
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(i) if R

_
I and RI < t then o R is contained in a member of I;

(ii) ifAlandBFandBc_AthenBl.
,-ideals are called ideals and ,l-ideals are called -ideals.

A family R of sets is said to be ,c-saturated if it does not contain , pairwise disjoint elements.

We set sat(R)= inf{c:R is x-saturated}.
THEOREM 1. Let F be a field on X. If I is a ,-ideal of F such that sat(F-1)< to, then

C F- I is a category base on X.

PROOF. Since F # I, X C and therefore u C X. Let R be a disjoint subfamily of C and let

A be a fixed element of C. Suppose that A O B C for each B R. Since F is a field, A O B I for

each B R. Since R < sat(C) < , there exists a member D of I such that A o B C_ D for each B R.

Hence G A D C, G c_ A, and a o o R) .
Let F be a field on X. A ,-complete ideal of F is a ,-ideal I of F which is complete in the

sense that if E I and Y c_ E, then Y I.

THEOREM 2. Let F be a x-complete field on X, where > . If I is a x-complete ideal of F

such that sat(F- I) < , then C F- I is a category base on X with M(C) I and B(C) F.

PROOF. By virtue of Theorem 1, C is a category base on x with F c_ B(C) and I c_ M(C). To
prove that M(C)c_ I it is enough if we show that the ideal I contains all singular sets, since I is

complete and , > . So let E be singular. Take a maximal pairwise disjoint family R c_ C such that

E O( O R)= . Since sat(C)< and F is -complete, G X-( o R) is in F. Since R is maximal and

G F,G is singular. Since no singular set belongs to the category base, a I. Hence E I being a

subset of a.
To prove that B(C)C_ F let us take arbitrary non-meager Baire set B. Let R be a maximal

pairwise disjoint subfamily of C such that A o (X- B) I for all A R. By virtue of -completeness
of F and I it follows that the set D= O. C and that DO(X-B) I. The set B-D is Bait, too.

By virtue of maximality of R,B-D must be meager. Since M(C)= I,B=(D-E1)OE2, where

and El, E2 1. Hence B F.

A field F has the ,-cc subset property with respect to an ideal I of F if for each A F- I there

is B F- I such that B c_ A and sat({D F- I:D C_ B}) <

A family R is a decomposition of a family F C_ P(X) if R is a disjoint collection of elements of F

such that"

(i) UR X;

(2) for each A r there exist B R and C. r such that C c_ A n B;

(3) ifYc_XandYOBFforallBR, thenYF.
It is easy to see that if (X,M,g) is a decomposable measure space (cf. E. Hewitt and K.

Stromberg [7; p. 317]) and/v is the ideal of v-zero sets, then there exists a decomposition of M-

THEOREM 3. Let r be a -complete field on x and let I be a -complete ideal of F such that

F has the -cc subset property with respect to I, where , > . Then there exists a category base

C c_ r with M(C)= I and B(C)= F if and only if there exists a decomposition R of F-I with

sat({D F- I:D C_ B}) < for all B R.

PROOF. Let C c_ F be a category base such that B(C) F and M(C) I. We shall show that

each region contains a subregion B such that sat({D F- I:D C_ B}) _< . So let A C. Since M(C)= I

and I is identical with the family of all singular sets, A F-I. There exists B F-I such that

B c_ A and sat({D F- I:D C_ B1} < to. Hence B is an abundant Baire set. There exists a subregion
B of A such that B-B is meager and thus B-B belongs to I. Hence B satisfies the required
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condition.

By virtue of Proposition 2, there exists a category decomposition R" of X consisting of regions B

such that sat({DeF-l:Da_B})<_,. If E=X-(UR’), then Eel, by Proposition 1 (i). Let us

attach the set E to an element of R’. We get a decomposition of the family F- I. Indeed, R c_ F- I

and R is a covering of X. Let Y E F- I. Hence Y
_
B(C)- M(C). There exists a region A such that

A- Y is meager, i.e., A- Y is in I. Since A intersects a member of R on a set containing a region, Y

intersects a member of R" on a set from F-I. The last property for R to be a decomposition of

F-I follows immediately from Proposition (iii) and (iv).
To prove the converse implication, assume that R is a decomposition of F- I consisting of sets

B such that sat({D . F- I:D C_ B}) _< to. Define C {D . F- I:D C_ B for some B R}. It is easy to see

that C is a category base on X. The properties of C that B{C) F and M(C) I follow immediately

from Theorem 2 by a simple application of property (3) for R to be a decomposition of F- I.

Let us give one more example of a field and an ideal bearing a decomposition.

Following D. Fremlin [8], a measurable space with negligibles is a triple (X,S,I), where X is a

set, S is a a-field of subsets of X and I is a a-complete ideal generated by It3S. It is proto-

decomposable if there is W c_ S such that whenever R c:_ W is disjoint, then

(i) ues,
’(ii) if {Er:r E R} C_ I, then U{Ernr:re R}E I,

(iii) if E C_ X and E U R) E S I, then there is a non-empty v E w such that V u R) and

V-EEl.

PROPOSITION 3. Let (x,s,l) be a complete proto-decomposable measurable space with

negligibles. Suppose that w c_$ witnesses proto-decomposability of (X,S,l). If R is a maximal

pairwise disjoint subfamily of W- I, then R is a decomposition of S-I.

PROOF. It follows easily from the definition of proto-decomposable measurable spaces that

X-(U/I)E I. From the maximality of R it follows that R satisfies condition (2) for a to be a

decomposition of S-; condition (3) is shown in Fremlin’s 1Ha from [8]; to get condition (1) simply

attach X- (u R) to an arbitrary member of R.

REMARK. The last proposition is also related to a characterization for measure algebras

given in [2].
4. EQUIVALENCE PROBLEM.

Two category bases (X, C1) and (X, C2) axe equivalent if B(C1)= B(C) and M(C1)= M(C2). The

Equivalence Problem of Morgan [4] asks if each category base is equivalent to topology. Here we

elaborate further on this problem.
In the case C is a category base on X such that x M(C),C is equivalent to the topology

T {X-E: E is singular}. It is known that category bases not exceeding 1 are equivalent to

topologies (K. Schilling [9], Z. Piotrowski and A. Szymanski [10]).
PROPOSITION. Let C be a category base on X such that each region A contains a subregion

B for which the category base CIB is equivalent to a topology on B. Then C is equivalent to

topology.
PROOF. By virtue of Proposition 2, there exists a category decomposition R of X such that

CIB is equivalent to a topology TB for each B ER. Then the topology T generated by

U{TB:B R}U{X} is a topology on x equivalent to C.

From our proposition it follows that category bases that are locally of cardinality < Wl are also
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equivalent to topologies. This, in turn, generalizes Morgan’s theorem proved in [11]. Let S be a

field of subsets of a set x and let I c_ S be a complete ideal such that X I. Then EAF means that

both E- F and F- E are in I. A function q:S-S is called a lower density with respect to (cf. [12])
if for any pair A, B in S one has:

(i) q(A)AA

(2) AAB implies q(A)= q(B)

(3) q(b)- and q(X)= X

(4) q(AClB)- q(A)f3q(B)

THEOREM. Let (X,C) Be a category Base such that X M(C). Then C is equivalent to

topology on X if and only if there exists a lower density on B(C) with respect to M(C).
PROOF. Suppose that there exists a topology T on X such that (X,C) and (X,T) are

equivalent category Bases. Let B c_ X Be a set with the Baire property (in T). Then there exists

unique open set q(B) satisfying the following properties:

(i) q(B) is regularly open,

(ii) each non-empty open subset of q(B) is of 2nd category,
(iii) q(B)AB.

To define q(B) let us apply Corollary 7 with B as the set Y. We get an open set b(B) such that

b(B)AB and each non-empty open subset of b(B) is of 2nd category. We set q(B)=int cl b(B). Since

B(C) coincides with the family of all subsets of X with the Baire property, the correspondence

B--q(B) is a function from B(C) into B(C). We shall show that it is a lower density.
Since two distinct regular open sets must differ by a non-empty open set and since sets of the

form q(B) are of 2nd category everywhere in themselves we have properties (1), (2), and (3) satisfied

trivially for such defined q. It remains to show (4). Let A and B be two subsets of X with the

Baire property. Let R1,R2 be category (= topology) decompositions of X yielding b(A) and b(B),

respectively. By virtue of Corollary 2, there exists a category decomposition R of X which is a

common refinement of R and R2. Then R is a category decomposition of X yielding b(A B).
Since b(A)b(B) and b(Af3B) differ only by a nowhere dense set we get q(AtDB)=
cl [b(A)t’lb(B)] int cl b(A)tDint cl b(B)= q(A)q(B). The proof that q is a lower density on B(C) with

respect to M(C) is finished.

Assume now that there exists a lower density q on B(C) with respect to M(C). Let T be the

topology on X generated by sets of the form q(B)- N, where B B(C) axtd N M(C). Let us notice

some obvious properties of T;

(a) each meager set is nowhere dense;
(b) each Baire set has the Baire property;

(c) if B is a Baire abundant set, then int B # .
We shall show that:

(d) if E is nowhere dense, then E is meager.
For suppose otherwise. Then there exists a region A such that E is abundant everywhere in A.

Since int q(A) b, there exists a Baire set B and a meager set N such that # q(B)-N c_ q(A) and

[q(B)-N]t3E . Hence BA is abundant. By virtue of Corollary 6, there exists a region D which

is abundant everywhere in itself such that D C_ A and D-B is meager. Since q(B)AB, Dt3E is meager
which contradicts that E is abundant everywhere in A.

Property (d) together with (a) show that M(C) coincides with the collection of all sets of 1st
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category. We shall show that:

(e) if B c__ X has the Baire property, then B
_
B(C).

Let B (U-E)t3 F, where U is open and E,F are sets of 1st category. Let A be a region. We

are going to construct a subregion of A intersecting B or its complement on a set of 1st category.
Without loss of generality we may assume that A is abundant everywhere in itself and that

q(A)t3V # . Hence there exists a Baire set B and a meager set g such that # q(B1)- N C_ q(A)glU.

Hence B t3A is abundant. By invoking Corollary 4 again, there exists a region D which is

abundant everywhere in itself such that D C_A and D-B is meager. In consequence,

DO B- N C_ EU F with is a meager set because of (d).
Property (e) together with (b) show that B(C) coincides with the collection of all sets with the

Baire property. Hence C and T are equivalent.
If x is an uncountable cardinal, then any example of a x-complete field S on a set X together

with a x-complete ideal I c_ S such that sat(S-I)< x and such that there is no lower density on S

with respect to I would be a counterexample to the Equivalence Problem. This is an immediate

consequence of the Theorem in section 3 and Theorem 2 in section 2. Unfortunately, at present we

are unaware of the existence of such an example.
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