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ABSTRACT. Zero-one measure characterizations of lattice properties such as normality are

extended to more general measures. For a given measure, we consider two associated "outer"
measures and attempt to obtain the "outer"-measurable sets. We also seek necessary and sufficient

conditions for the measure and outer measures to be equal on the lattice or its complement.
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1. INTRODUCTION.
Let X be an arbitrary set and a lattice of subsets of x. A() denotes the algebra generated

by , and M() those bounded and finitely additive measures on A(); MR(Z denotes those

g e M() which are/.-regular, while Ma( denotes those # e M() which axe a-smooth on . Finally

I(), IR(Z), and Ia(Z) are the nontrivial zero-one elements of M(), MR(I.), and Ma( respectively.
Many well-known lattice properties can be completely characterized in terms of I(), IR(Z) or

Ia(.t..), e.g., normal lattices, regular lattices, disjunctive lattices, etc. (see [4], [5], [3], [10], [2]). We
begin by extending many of these results to M(), MR(Z), and Ma(), especially in the case of a

normal lattice (see Section 3).
In general, if u is an arbitrary outer measure on the power set of x, it is very difficult to give a

description of the u-measurable sets, or even to give nontrivial classes of sets which are u-

measurable. In the case of #, a measure, and u it* the induced outer measure, then, of course,
classes of sets which are u-measurable are well-known. This is also the case in metric spaces with u

a metric outer measure. Here, we consider # E M() or Ma( and two associated "outer" measures

u t," and u " and attempt to obtain the t-measurable sets. A full description can be given in
case # e l(Z) or Ia( (see Section 4), and we attempt to extend some of these results to the more

general situation. We also seek necessary and sufficient conditions for various of the ,, t,’, t," to be
equal on or ’, the complementary lattice, under varying conditions on the measure and on .

Finally, in Section 5, we give lattice separating conditions between pairs of lattices 1 and/’2
in terms of/f, #" or some other "outer" measure.

We begin by giving a brief review of the basic lattice and measure theoretic terminology and
notation which will be used throughout the paper. This terminology will be consistent with

standard usage (see e.g. [1], [6], [7], [8], [9], [11]).
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2. BACKGROUND AND NOTATION.
We shall let/. denote a lattice of subsets of a set X and shall assume that the empty set and X

are in/.. 4(/.) denotes the algebra generated by/.. If/. is closed under countable intersections then
/. is said to be a &lattice. /. is said to be normal if whenever A, B /. such that A N B , there exist

C, D 6 L such that A C C/, B C D" and C" o D’= $. L is regular if for each z 6, X and A 6, such that
z A, there exist B,C 6, L with z 6, B’,A C C" and B’NC" . L is complement generated if for all

+0o
L6- L, L= A L is complement generated if for all L6, L,L f’) A’,, Ao 6, L. L is countably

|’-1 +Oo
par&compact f whenever {A0} is a decreasing sequence of lattice sets in which A }, there exists

a decreasing sequence of L" sets {B,’} such that A C Bi" for all and f] B,"---$’. If L and L2 are

lattices of subsets of X and L C L2, then 1 separates/ if whenever A,B

there exist C, D L such that A c C, B C D, and C D O; 1 semisepar&tes/-2 if whenever A 6 L
and B 6,/’2 such that A r B O, there exists (7 6, L such that B C C and A (7 0. If/-1 separates L2
then L is normal if and only if L2 is normal.

M(L) denotes the set of all bounded and finitely additive measures defined on .A(L). Without
loss of generality, we assume that these measures are non-negative. A measure/* is a-smooth on L
if L 6,/. and L $ implies a(Li) o. Ms(L) will denote the set of all bounded and finitely additive
measures which are a-smooth, and hence countably additive, on M(L). If for all A 6, t(L), ,(A)= sup

/*(L), where L C A, /,6- L, then /* is said to be /--regtdar. MR(L denotes the subset of M(L)
consisting of all L-regular measures, and MRs(L) that subset of MR(L) consisting of a-smooth, L-

regular measures, i.e., MRs(L)= MR(L)Ma(L). Ma(L denotes those measures in M(L) which are

a-smooth on L. I() denotes the subset of M(L) containing precisely the 0-1 nontrivial measures;
similarly, lit(L), is(/-), iita(L) and la( denote those subsets of MR( MS( MRs(L) and Ma(L
respectively, which are in I(L). We note that there is a one-to-one correspondence between prime
filters on/- and measures in I(L), and between L-ultrafilters and measures in lit(L). Furthermore, a

prime filter on L has the countable intersection property (i.e., the intersection of any countable
number of prime filter set is nonempty) if and only if the corresponding measure is in la(). If
#6-M(L), S(#) denotes the support of /*, i.e., S(/*)= L such that L6,L and /,(L) /*(X). If
/*,v 6. M(L) we will write /* < v(L), or /* < v on L, whenever /*(L) < v(L) for all L 6, L. One can show

(c.f. [10]) that if , 6, M(/-) then there exists a v 6, MR(L) such that/* < v() and/*(X) v(x); if/- is
normal and/* 6, I(L), then v 6, IR(L and u is unique.

Is(L) {t 6, I(L) if L Li, L, L 6, , then ,(L) in.f /*(Li)}.
i=1

Similarly,

Ms(/.) {/* 6, M(/.) if L Li, L, L 6,/., then/*(L) inf/*(Li)}.
i=1

If/. is normal and complement generated then/* Is(L implies/* 6, IRa(L) (c.f. [5]). Essentially the
same proof shows that /*6- Ms(/. implies /,6- Mira( If /. is normal, /*6- IR(/. and ,6, IR(/.’),
p < #(L), then /*(L’) sup p(A), A C L’, A, L 6, L. If L1C L2 where L separates L2 and if # 6, IR(1),
v 6- IR(L2) where v extends/*, then v is Ll-regular on L’2, and v is unique; furthermore, if # 6, IRa(L1)
then v 6, IR(/-2) Is(
3. EXTENSIONS OF SOME RESULTS TO MORE GENERAL MEASURES.

It is interesting to note how results of Section 2 generalize and extend to measures which are

not zero-one, i.e., to elements of M(/.), MR( etc. We elaborate on a number of these below.
LEMMA 3.1. Let L be normal, /*6- M(L), /* < v(/-) where v6- MR( and/*(X) v(X). Then for

L 6, L,v(L’) sup/*(A),A C L’,A 6_ L.



OUTER MEASURES AND ASSOCIATED LATTICE PROPERTIES 689

PROOF. Let t,q MR(/. ). Then for >0 and LE/., there exists L1E/.,L1C L" such that

t,(L’)-t,(L1) < e. Since is normal, there exist A, B e/. such that L C A’C B C L’. Therefore

(B) >_ (A’) > t,(A’) > t,(L1). Therefore, ,(L’)- ,(B) < .
THEOREM 3.1. Suppose /. is normal, e M(/.), t, 1, t,2 e MR(Z), p < t,l(/‘ ), p < t,2( and

(X) t,l(X) 2(X). Then ’1
PROOF. It follows from Lemma 3.1 that t,l(L" t,2(L" for all L /‘. Therefore, 1 t’2"
Let , E M(/‘). Define p(E) sup (/’), L’C E, E C X and L e/.. Our next result shows that the

supports of and p are equal if /. is regular. The definition of support is extended to p in an

obvious way.

THEOREM 3.2. If/. is regular then S(g)= S(p).

PROOF. Since p(L) < iz(L) for all L , S(p) C S(p).

Suppose there exists an : e S(p) and x $ S(g). If p(L) p(X), and L /. then : E L. But there exists

A /. such that ,(A)= g(X) and r$ A. Since /. is regular, there exist L 1, L2 such that

: L" c L2 c A’. Therefore ,(L’2) _> ,(A) ,(X). It follows that p(L’2) p(X). Therefore P(L1) p(X)

and hence r L1, a contradiction.

DEFINITION. /. is almost countably compact (a.c.c.) if g IR(/.") implies g

We now show that if/. is a.c.c, then its defining condition holds for general measures.

THEOREM 3.3. Suppose/. is a.c.c. Then MR(Z" implies , Ma(/.).
PROOF. Let A , A" , A" # , let # MR(’), and let 3g {B IA" c B for some i}.

Now {A’i} can be enlarged to an/." ultrafilter. Therefore, there exists u IR(’) such that t,(A’i)=
for all i. Since is a.c.c., t, la(/‘). Thus has the countable intersection property. Suppose

Li , and suppose #(Li)> e > 0 for all i. Since # MR(’), there exist A’ic Li, A , and A"
such that i(A’i)> el2 for all i. Now A" # for any and Li . Therefore : does not have the
countable intersection property, a contradiction.

THEOREM 3.4. Suppose 1 c 2 where/‘1 separates 2" Let # MR(Z1) t, MR(Z2) and let

extend . Then the following are true:

a) u is/.1-regular on/‘’2"
b) If t,1 MR(Z2) and Ul extends then t, Ul.
c) U MRa(I..1 implies v MR(Z2)glMa(’2).
d) MRa(Z1) and Ma(’2) C Ma(2) implies e MRa(/‘2).

PROOF. a) Let L2 2" Since v MR(2) for any e >0, there exists A2 Z2 such that

t,(L’2) < t(A2) + e, A2 C L"2. Since 1 separates 2, there exist L1, A Z uch that L2 C L1, A2 C A 1,

and Llt3A ={, i.e., A2C A1C L"1C L"2. Therefore, t,(L’2)<t,(A2)+e < t(A1)+ e.

b) If , and 1 MR(/.2) and are extensions of g, it follows from part a) that t,(L’2)= tl(L’2) for all

L2 2" Therefore 1.
c) Let MR(2) be an extension of/ MRa(Z1 ), let A" $, A 2 and let e > 0 be given. Since
is .t.l-regular on ’2, there exist BiC A’i, B , BiZ1, such that t,(A’i)<l(Bi)+e]2. Since

MRa(Z1 ), there exists BN .E such that P(BN) < el2. Thus t,(A’N) < e and hence t, Ma(Z’2).
d) From c), MR(Z2)t3Ma(Z’2)C MR(2)NMa(/‘2)= MRa(Z2).

THEOREM 3.5. Suppose is normal. Let / Ma(), t, MR(/.), /s _<t,() and /t(X)=t,(X).
Then Ma(Z’).

PROOF. Let I.," $, L for all and let e > 0.

Since t, MR(/.), there exist A e/‘ such that A $, A C L" and r,(L’i) < t,(Ai) + e/2. Since is

normal, there exist Bi, Ci /. such that Aic B’iC CiC L" for all i, where B" $ and C

Therefore, t,(L’i) < r,(B’i) + el2 <_ i(B’i) + el2 <_ <_ tt(Ci) + e/2.
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Since u Mcr(), there exists CN such that U(CN) < /2. It follows that v(L’N) < .
4. ASSOCIATED OUTER MEASURES AND LATTICE PROPERTIES.

In this section we introduce the associated "outer" measures u" and u" and compare the

behavior of u I() or I() with that of # M()or M(). We consider relationships between
and u" under added lattice assumptions.

Let u fi M(L) and let E C X. Define u’(E)= inf u(L’), where inf is taken over all L" sets such

that E C L’, L .
Let u Mtr() and let E C X. Define U"(E)=in],=lu(Li), where in.[ is taken over all L" sets

such that E C L’i,L .
It is evident that u" is a finitely subadditive "outer" measure, i.e., u" has the defining properties

of an outer measure with the exception that it is only finitely subadditive. On the other hand, u is

an outer measure. For the following reason, we assume u M() when defining u’- If u" were

defined for all u M() then in particular, if u I(L) and u I,(L) then u"= 0.

THEOREM 4.1. Let u Me(L). Then

a) U’_< U" everywhere
b) u’(X) u(X)

c) u<_u’on
PROOF. a) Clear.

b) Clearly u’(X)< u(X). Let e >0 be given. Then there exist Li. such that x O1L i, and
N

u’(X)+e > ,=r’U(Yi)" Let A’N= ,=L i. Then, ,=I;u(Li) >_i=r,u(Yi)>u(A’N)=u(x)-u(AN)’- Since

AN
, it follows that u’(x)+ e > u(x).

c) Let L fi L. Then U’(L) > u’(X)- U’(L’) u(X)- U’(L’) > u(X)- U(L’)
REMARK. Let/ c X and let u’(B) in] u(A), E C A, A A().

We note that under the assumptions of Theorem 3.4, u u" u" on 2"
The following theorem concerning supports is a generalization of a result in [5]. We omit the

proof since it is essentially the same proof given there (c.f. Theorem 4.10 [5]) and note a corollary

pertaining to

THEOREM 4.2. Let u M(L) where is regular. Let r be a monotone set function defined on

any collection of sets containing t(), where r > 0, u < r on , r < u on ’, and r(X)= u(X). Then

s()=s(u).
COROLLARY 4.1. Let u M(L), and let L be regular. Then S(u’)
Let " denote the collection of u’-measurable sets, and let Y enote the collection of

measurable sets. Theorem 4.3 presents a classification of these sets for 0-1 measures.

THEOREM 4.3. a) Let u l(L).
Then {E C X[E D L or E" D L, L L, u(L) 1}.

P
b) Let u I(L). Then ru. {E c X IE D Li or E" D o= Li’ u(Li) 1, L for all i}.

PROOF. a) Let E c x, and L .
If L C E and u(L) then u’(E) and u’(E’) 0.

If L C E’ and u(L)= then U’(E’)= and u’(E)= 0.

In either case, E

Conversely, suppose E r Then U’(E) + U’(E’) 1.
U

If U’(E) 0 then there exists L fi such that E c L" and u(L’) 0. Thus u(L) 1.

If U’(E’) 0 then there exists L 6 such that L C E and u(L) 1.

b) Let E C X,L . L,E D =L and u(Li) for all i.
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Then E’C lL’i and It(L’i)=0 for all i. Therefore It’(E’)=0 and E e’Y A symmetric argument

proves that E e *J’it., if E’D
,=l Li"

Conversely, let ECX and suppose It"(A)=It"(ANE)+p"(AIqE’) for all ACX. In particular,

=it"(X)=it"(E)+it"(E’). If It"(E) 0 then there exist Lie/, such that EC ,=lL’i and It(L/)= for all

i. Similarly, It"(E’)= 0 implies E D r L and It(Li)= for all i.
=1

The sets Is(/. and Ms(/.) provide a framework from which many of the remaining theorems of

this section rely, particularly with respect to results concerning It" and the It"-measurable sets.

REMARK. If It e M(/.) then E e " iff It’(A’) > It’(A’n E) + It’(A’n E’) for all A"
LEMMA 4.1. Let It e M(/.) and let E C X. Then E e ff if and only if It’(E)= sup It(L) where

Lc E and Le

PROOF. Suppose It’(E) sup It(L). Let > 0 be given. Then there exists L e/. such that L C E

and It’(E)-it(L)</2. Similarly, by definition of It’, there exists fiDE such that Be and

It(B’)-it’(E)< /2. Therefore, It(B’)-it(L)< and LC EC B’. Let A’e L’. Now It’(A’nE)<it(A’fB’)=
It(a’)+ it(ff)-it(A’U ff) < it(A’)+ it(L)+-it(A’UL) it(A’nL)+. Therefore, It(A’nL) > it’(A" re)-.
It follows that, It(A’)= It(A’L)+ It(A’rL’) > It(A’L)+ It’(A" rE’) > u’(A" rE)-, + It’(A" nE’) and hence

E e "J" Conversely, suppose E e Then It’(if) It(X)- It’(E). Also, if > 0, there exists L e L

such that L’D E" and It(L’)- It’(E’) < e. Therefore, It’(E)-it(L) < .
THEOREM4.4. a) Let IteM(/,). Then

1) Let It e Ia(/, ). Then ,n/.= {/; e/, lit"(/,) It(L)} iff u e Is(/,).
P

PROOF. a) Clearly follows form Lemma 4.1.

b) Let /. ,,={Le/.lit"(L)=it(L)}. Suppose *Y o /. /. Let L L, where LiLe. Suppose
It It

It(Li)=l for all i. Then Le*.r .n/.. If It(L)=O then It"(L)=O. Therefore there exist
P

Aie /,,AiI, LC,O=IA and It(A’i)=O for all i. Therefore, (LilqAi) $. But It(LifAi)= for all i,

contradiction since It e la(/,). Conversely, suppose It e Is( and L e Y -/,. Let L,L
P

CASE 1: =f L c L and It(Li)= for all i.

Then .=(L f Li) L and we may assume (L f LOt.
Since It e Is(/.), It(L) 1. Therefore It"(L) 1.

CASE 2: ,=lL C L" and It(Li)= for all i.

"i" Therefore It"(L) 0 and hence It(L) 0Then It(L’i) 0 for all and L C:
i= L

Thus *J" ./. c/. But clearly, -/. D/.

THEOREM 4.5. Suppose It e M(/.). Then/. c r iff e M
P

PROOF. Clear.

We next investigate conditions which guarantee that It" and It", or and are equal. Our
first result concerns the equality of these outer measures on

THEOREM 4.6. Let It e Ma(). If It e Ms(/,) then

PROOF. We know that It" < It" on ’. Let e > 0 be given and let L

such that L’CiU_aLi_ and It"(L’)+e/2>,=ZIIt(Li). (We assume L’iI. Therefore, L= =(LiLtL) and

(LitgL) L. Since IteMs(/.), there exists LN such that P(LNtJL)-It(L)<e/2 for some N, or

equivalently, It(L"N t3 L’) > It(L’) /2.
Therefore,

r-’ lit(L’i) > It(fiN) >- It(L’NCI L’) > p(L’) e]2u"(L’) +/ >

from which it follows that It"(L’)= It(if)= It’(if).
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THEOREM 4.7. Let Ma(/" and let /. be normal. Suppose either of the following two

conditions is true:

i) is countably paracompact.

ii) is a i-lattice.

Then " t" on/..

PROOF. i) Since/" is normal and countably paracompact, there exists v MRa(/’) such that

<, on/" and t(x) ,(x). (c.f. [11]) Therefore, on/’, ,=,’=,"<"<’. Also, since/’ is normal,
t/= " on /’.

ii) Let >0 be given and let L t. There exist Lil LC U_IL and g’(L)+ > Ett(L’i). Since/. is

6, if A’= ,=lLi then A . Since /. is normal, there exist B,C /" such that L C B’C C A’.
Therefore,

p’(L) <_ p(B’) <_ p(C) <_ I"(C) < Iff(A’) <, = p(L i) < p"(L) + .
THEOREM 4.8. Suppose/’ is and t’ Ms(/-). Then

a) p(,=l L’i) EP(L i),Li .
b) p" p" everywhere
c) *j" .=r

The following corollary follows immediately from Theorem 4.5 and Theorem 4.8 c).
COROLLARY 4.2. Suppose/’ is 6, # Ms(/’ and/’ c r Then MR(/").
The following theorem shows that set inclusion of #’-measurable sets is preserved under

inequalities with respect to the lattice/-.

THEOREM 4.9. Let 0,, M(/-),# < on/- and #(X) u(X). Then *Y c Y
PROOF. E r implies #(E) sup #(L) < sup ,(L) < ’(E), L C E, L /-. But since

v < # on/-" and hence v’(E) < #’(E).
We next note some extensions of some results which are known for zero-one measures that

require the notion of a regular outer measure. We begin by defining this concept and list some

consequences.

Let u be a finitely subadditive outer measure. Then , is regular if for every G C X, there exists

E *_rt, such that G c E and u(G) u(E).
The following properties are noted for completeness:

i) Let , be a regular outer measure. If Ell E C X, then t,(limEi)= lirn t,(Ei).
ii) Let t, be a regular, finitely subadditive, outer measure. Then E *Y, iff t,(X) t,(E) + t,(E’).

REMARK. Clearly, i) is not true if , is a finitely subadditive outer measure. For example, let

g l(/-)-Ia(/-). Then there exist Li/- such that L t/I and P(Li)= for all i. Therefore,
’(x) (x) but t’(Li) 0 for all i.

We now show that the converse of Theorem 4.6 is valid when g" is regular.
THEOREM 4.10. Let g Ma(/-). If t;= t" on/-" and if g" is regular then Ms(/-).
PROOF. Suppose tt’= it" on ’. Let LilL, Li, L . Assume there exists e > 0 such that

i(L)+e<tt(Li) for all i. Then tt(L’)-e>g’(L’i) for all and hence i(L’)-e>iim

t,"(limL’i) ’(L’) (L’), a contradiction.

We end this section with some further consequences of regular outer measures which are stated
without proof in the following theorem.

THEOREM 4.11. Let t Ma(/-) and let " be regular. Then the following hold:

a) ,c/"

b) If g" on/- then Ma(/’).
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Clearly, if E I() then u" is regular. Similarly, if p E lr() then o" is regular. Therefore, the

consequences of Theorems 4.10 and 4.11 are valid if 6 lr(/’). It is interesting to note that no

explicit use of the regular assumption of outer measures is required in proving this case.

5. ASSOCIATED OUTER MEASURES AND LATTICE SEPARATION.
In this section we investigate the effect of further lattice assumptions on various measures and

for this purpose introduce the class of measures MW(/"). Also, we investigate the effect of

assumptions concerning "outer" measures on lattice separation properties.

For E C X define (E)= in]’ p(L) where E C L,L . We note that is a finitely subadditive

outer measure.

LEMMA 5.1. Let/’1 c 2 and suppose 1 semiseparates 2" If 6 M(1) then ’> on/’2"
PROOF. Let p M(1), L2 ( 2 and e > 0. Then there exists L" D L2, L fi 1 such that

p’(L2) > (L’I)- . If 1 semiseparates 2, there exists A 1 such that/;:2 c A C L"1.
Thus,

p’(L2) > p(L’l)- >_ P(A1)- _> (L2) .
Therefore t; > on 2"

LEMMA 5.2. Let 1 c 2" If MR(/’I) then > ’ on 2"
PROOF. Let > 0 be given and let L2 /’2" Then there exists L E/’1 such that L D L2 and

(L2)>P(L1)-. Since PMR(/’l),p=p" on /’1" Thus, (L2)>P(L1)-=p’(L1)->I’(L2)-.
Therefore, < p" on/’2"

Combining the results from Lemmas 5.1 and 5.2 we have,
THEOREM 5.1. Let 1 c/’2 and suppose/’1 semiseparates/’2" If MR(1) then t;= on 2"
The following theorem gives conditions which preserve inequalities of measures when extended

to super-lattices.

THEOREM 5.2. Suppose L C L2 and /’1 separates L2. Let p _< v(L1) where

p

_
M(L1),v . MR(L1), and let r and ,X be extensions of and v to M(L2) and MR(L2) respectively.

Then r < A(L2).
PROOF. Suppose there exists L2 E/’2 such that r(L2) > ,X(L2). Let e > 0 and let

r(L2)- A(L2) > e. Since A E MR(L2), there exists A"2 D/;2, A2 L2 such that A(L2) + e > A(A’2). Since

L separates L2, there exist L1, A L such that L2 C L C A" C A"2. Therefore,

P(L1) r(L1) > r(L2) > A(L2)+ e > A(A’2) > A(L1)- v(L1),

a contradiction.

We now show that semiseparation is a sufficient condition to preserve equality of the outer

measures/;, /;" on super-lattices when the given lattice is .
THEOREM 5.3. Let L c L2 where L is , L semiseparates L2, and let g

on L then/;=/" on 2"
PROOF. If e>0 and L2_L2, there exist Li_L such that L’iDL2 and

I=l

Since 1 is , A" ,=IL’i’AI /’I"
If I semiseparates /’2 there exists B in I such that L2 C B C A"I. Now,

Therefore, " < on 2" Since " > " everywhere, the conclusion follows.

Let MW( { () (’) sup ’(A), L, A and A C

Clearly, MR(/’ C W(). Ve now prove that MR( W() when is normal.
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THEOREM 5.4. Suppose is normal. Then # E MW() implies that # E MR(Z).
PROOF. Let >0 and Le. Since eMw(), there exists L1E such that L1CL" and

(L’) -//(L1) < . Since is normal, there exist A, B e such that L C A’C B C L’.
Therefore, ’(L1)<_#’(A’)=(A’)<O(B)<u’(B)<(L" and hence, U(L’)-#(B)<e. It follows that

p E MR(Z).
The following example shows that the converse of Theorem 5.4 is not true.

EXAMPLE 5.1. Let A, BC X, AtgB# X and AnB=. Let = {,A,B, AtJB, X}. Clearly is

not normal, but MW( MR().
THEOREM 5.5. Let 1 c 2 and let 1 semiseparate 2" If ,E MW(2) and if # is the

restriction of u to A(1) then # E MW(1).
PROOF. Let > 0 and let L 1" Then there exists L2 C L" such that #(L’I)- < /(L2). Since

1 semiseparates /’2, there exists A E 1 such that L2C A C L"1. Clearly, u’(L2)<_p’(L2)<_#’(A1).
Therefore, #(L" < #’(A )"
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