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ABSTRACT. In this paper some properties of open hereditarily irresolvable spaces are

obtained and the topology for a minimal irresolvable space is specified. Maximal

resolvable spaces are characterized in the last section.
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i. INTRODUCTION.

Let (X, T) be a topological space. For any subset A of X we denote the closure of

A respectively the interior of A with respect to l" by clTA and intA. The relative

topology on a subset A of (X,q) is denoted by T/A. If B CA CX, the closure of B

respectively the interior of B with respect to ’/A is denoted by cl /AB respective-

i y int /AB-

A space (X, %" is called irresolvable if each pair of dense subsets has a nonempty

intersection; otherwise (X,’F), is called resolvable [6]. A subset A of X is resol-

vable if the subspace (A, "/A) is resolvable. (X, ) is said to be hereditarily irre-

solvable if it does not contain a nonempty resolvable subset.

E. Hewitt has studied resolvable and irresolvable spaces in [6] where he proved

the following theorem.

i.I [6] Every topological space (X, ) can be represented uniquely as a

disjoint union X F U G where F is closed and resolvable and G is open and heredi-

tarily irresolvable.

This representation is called Hewitt representation of (X,
In [5], M. Ganster has established some equivalences on a subclass of the class of

irresolvable spaces in which open subspaces of each member are irresolvable. In

particular, he has proved that each open subspace of a space (X, ") is irresolvable if

and only if intD in dense for each dense subset D of (X,T). In section 3 of this

paper, some results are provided to illustrate the behavior of such a subclass of the

class of irresolvable spaces.

Formally we give the following definition.

DEFINITION 1.2 A space (X, T is said to be open hereditarily irresolvable

(simply o.h.i.) if each open subspace of (X, is irresolvable.
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A space (X,’U) with property R is said to be minimal R (maximal R) if for any

topology , strictly coarser (finer) than ", (X,’C’) does not have the property R

[3].
It clearly follows that for any coarser (finer) topology "C of 1[, if (X,’) is

resolvable (irresolvable) then (X, %" is also resolvable (irresolvable) and this

result may not hold for finer (coarser) topologies. Naturally the problems of

characterizing maximal resolvable spaces and minimal irresolvable spaces arise. In

this paper we have characterized maximal resolvable spaces and specified the topology

for a minimal irresolvable space. Incidentally, we have also shown that, although

the class of o.h.i, space is a subclass of the class of irresolvable spaces, the

class of minimal irresolvable spaces coincides with the class of minimal o.h.i.

spaces.
2. SOME DEFINITIONS AND PRELIMINARIES.

DEFINITION 2.1 A subset A of a space (X, 1[) is called

i) an =(-set [i0], if A intclintA,
ii) a semi-open set [7], if A = clintA,

iil) a pre-open set [9], f A = intrclrA
iv) a locally closed set [2], if A U F where U is open and F is closed in

(x, r).
Let us denote by "[, PO(X, 1[) and LC(X, T), the collections of -sets, pre-

open sets and locally closed sets in (X, %’) respectively. In [I0], Njastad has

pcuved that T forms a topology on X and .
We denote by I[ ], the equivalence class of all topologies on a set X which have

the same collection of semi-open sets as those of (X, q’). In [4], Crossley and

Hildebrand have established that is a sub semi-lattice of the lattice of all

topologies on X with the greatest element "C with respect to the usual join opera-

t ion on topologies.

A topological property preserved under semi-homeomorphisms, which are bijections

so that the image of semi-open sets are semi-open and inverse image of semi-open sets

are also semi-open, is called a semi-topological property [4].
3. SOME PROPERTIES OF 0..I. SPACES.

As a consequence of Theorem 2 and Theorem 4 in [5], it readily follows that a

space (X, ") is o.h.i, if and only if "rg=- PO(X, 1). The following theorem estab-

lishes the relationship between an o.h.i, space (X, 1[ and the locally closed sets in

THEOR 3.1. A space (X, 1) is o.h.i, if and only if for every subset A of X,
A g LC(X, "Cg).

PROOF. Suppose that (X, T) is o.h.i. Let A X. We first show that A is the

union of an open set and a nowhere dense set in (X,’[’). Now A (A tl intclA) U
(A int cl A) B LJ C, say, where B (--- A f] int cl A) PO(X,’) and

C ( A int. cl A) is nowhere dense in (X, "). If B is empty we are done. If

not, then B " and hence B U NI, where U( g is open and NI is nowehre
dense in (X,T). Thus A U U N, where U is open and N is nowhere dense in (X,’).
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Now we show that A LC(X, q7 ), clearly X A F f3 V, where F is closed in

T(X,%’) and V is open in (X, ). Now F int.F U (F-- int F) U N say,

where U is open in (X, and N is nohere dense in (X, ). Also V U N

where U is open in (X,) and N ’ is nowhere dense in (X, ). us X (U N

(U
. . .

N U"U N say, where U is on in (X,T) and N is no,ere dense in

(X, T). Now A =(XU’O(X") ilies tt A LC(X, ). nversely, supse

that for every subset A of X, A LC(X ). It suffices to prove that =
(X, ). Clearly (X,T). t A P0(X, ). en A int cl A. Since

A LC(X, ), A U F, ere U is on in (X, a F is closed in (X, .
Let x 6 A. en x int cl(U F) a there exists a -on set Gx contain-

ing x such tt Gx= int elf (UO F). nsequently, GxC cl U int cI=F.
Since U int cl int U and F el.= int cl F, it follows tt Gx clT
int U F. w it can be easily verified that int UO int F is dense in Gx.

T (X, ). isHence x intr cl intr A. us A T a consequently

cletes the proof of the theorem.

Recall that for a sce (X, T and for any subset A of X with A the

sple extension [8] oft by A is the to,fogy (A) {U U (V A) U, V - }.It is oious tt any simple extension of irresolvable sce (X, is irre-

solvable. t a sidle extension of an o.h.i, sce may not, in general, o.h.i.,

as sho by the following ele.
E 3.2. t X {.a, b, c, d, e, f .

Let ==, X, [aJ, a, bJ ,a, c} ,{a, b, c}, a, d, e, f},
{a, ., e,

ChooseA== {c, e, f.}
en T/A , A, {cj {e, f J
a (A)=TU T/A {a, e, fJ {a, b, e, f} ,a, , e, fJ

[a, b, c, e, f}.
Now it is clear that (X, T is o.h.i., since intT D is dense in (X, for any

dense subset D in (X, T ). t (X, (A)) is not o.h.i., for, choose the dense

subset D [a, c, f in (X, (A) ). Clearly int(A)D {a, J, which is not

dense in (X, (A)).
However, the follong theor holds.

T 3.3 -If_-a sce (X, T-) and the subse (A, T/A) are o.h.i, then (X,
T(A) is o.h.i.

PROF. t D X be dense in (X, (A)). en D is dense in (X, T) and since

(X,) is o.h.i., int D is dense in (X,T). Take any nonty on set U U (V 0 A)
in (X, T(A)). We are to show tt (U (V0 A)) int (A)D .. If U , we

are done. Supse U =. en V A . Now A D is dense in (A, (A)/A)
which lies tt A D is dense in (A, T/A), since (A, r/A) (A, T(A)/A). ere-
fore int T/A(A D) is dense in (A, /A), since (A, T/A) is o.h.i. Hence int(A)/A
(A D) is dense in (A, (A)/A). i.e., (V A) int (A)D . is cpletes
the proof of the theory.
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One can easily verify that if (X, T) (IXI> I) is o.h.i, then for some coarser

(Xtopology " of , fails to be o.h.i., where IXI denotes the cardinality
of X. However, we shall prove that (X, "= is o.h.i, if and only if (X, ") is
o.h.i, and using this result we shall show that the property of being o.h.i, is a

s emi-topological property.
THEOREM 3.4 If a space (X, " is o.h.i, then for any T " ] (X, is

also o.h.i.

PROOF. let D C X be dense in (X, *). Then D is dense in (X, " and

consequently int T D is dense in (X, " ). Clearly int D = . Consider any non-

empty open set V in (X, "*). Then since int.r V == , intV intD H (say). Now int.r (int. H) int D F (say) =. Therefore int , F -and
intT, F= int , D V. Hence int , D is dense in (X, "*). Thus (X, T is

o.h.i.

COROLIARY 3.5 A space (X, " ) is o.h.i, if and only if (X, ") is o.h.i.

THEOREM 3.6 The property of being o.h.i, is a semi-topological property.
PROOF. Obviously this is a topological property. Let f (X, T (Y, 0) be

a’ semi-homeomorphism and let (X, " be o.h.i. Then by corollary 3.5 it follows
that (X, is o.h.i. Now it is proved in [4] that f (X, ") ----I (Y, 0) is

a homeomorphism. Hence (Y, 0’ ) is o.h.i, and by corollary 3.5 it follows that

(Y, ) is o.h.i.

4. MINIMAL IRRESOLVABLE SPACES.
Note that if (X, (IXI> I) .contains an isolated point, then it is minimal

irresolvable if md only if q , {p} X} for soe p X. But wc ,hall pcove
that a minimal irresolvable space must contain an isolated point. To prove this we

require the following two lemmas.

LA 4.1 If a space (X, ") is irresolvable and XI> I, then " is not the
indiscrete topology.

We omit the easy proof.
LE 4.2 Let (X, - be irresolvable and let X F G be the Hewitt repre-

sentation of (X, "). If W is a honesty open subset of G the ’() {X} L
U 6 U

_
W} is a coarser irresolvable topology on X.

PROOF OFL 4.2 It is clear that O’(W) is a topology on X with ’(W) ’.
Now suppose that (X, O’(W)) is resolvable, i.e., there exist disjoint subsets D and
E of X which are dense in (X, (W)). If D*-- DW and E* EOW then D* and
E* are nonempty. Since G is hereditarily irresolvable, W is an irresolvable sub-
space of (X, ). Hence either D* or E* fails to be dense in (W, /W), say D*. So
W is not a subset of cl.r (W D). Hence there exists a honesty "-open set U
with U

_
W and UO WO D-- UD-=. But U O’(W). So we have a contradic-

t ion. Consequently, (X, (W)) is irresolvable.
THEORIM 4.3 Let (X, " ) be irresolvable with IXI> I. Then (X, " is minimal

irresolvable if and only if there exists p X such that 7 i, p X}.
PROOF. Clearly, if {, p] X for some p X, then (X, ") is ninimal

irresolvable. Now suppose that (X, "r is minimal irresolvable. If X F G be
the Hewitt representation of (X, r then G is none>ty. If G {p} for soe
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p X then by Lemma 4.2, 0<G) , { p} X} - and we are done. Otherwise,

GI > i and by Lemma 4.1 there exists a proper nonempty q-open subset W of G(G

being irresolvable and -open). If IWI > i by the same argument, there exists a

proper nonempty T-open subset V of W. By Lemma 4.2, 0(V) "[, and thus W

0"(V). According to the definition of 6"(V) it follows that W X. But tllis is a

contradiction to the fact that W is a proper subset of G. Consequently, we have

W =={p} for some p X, and by Lemma 4.2, T O-(W)={, {p} X.
As a straightforward consequence of Lemma 4.2 and Theorem 4.3 we get

THEOREM 4.4 Let (X, q: be a space with IXl > i. Then (X, "[ is minimal

o.h.i, if and only if (X, T is minimal irresolvable.

REMARK 4.5 D.R. Anderson [i] has demonstrated the existence of a large class of

connected irresolvable spaces which have no isolated points. Theorem 4.3 now

indicates the existence of irresolvables spaces whose topologies have no minimal

irresolvable subtopology.
5. MAXIMAL RESOLVABLE SPACES.

It is not difficult to see that maximal resolvable spaces exist. One of the

simple examples is the following.

EXAMPLE 5.1. Let X {a, b, c }, "[ {, X. Then (X, ) maximal resolv-

able.

In this section we investigate necessary and sufficient conditions for a space
to be maximal resolvable. We first require the following Lemmas.

L4A 5.2 Let (X, %" be resolvable and A C X be a resolvable subspace. Then

(X, T (A)) is resolvable.

PROOF OF LI 5.2 There exists a subset D of A such that D is dense in A and

int T/AD . TWo cases arises

Case I. X--clT A .
Then D is dense in (X, U and int. D . Consider the topology r(A). Clearly
D is dense in (X, T(A)) and int .r(A)D--- . So (X, "(A)) is resolvable in this

case.

Case II. X--- el.r A = .
Since open subspace of a resolvable space is resolvable, X--cI:A is resolvable.

Choose D C X--cI.rA such that D is dense in X--clTA with int /X_clzAD* .
Then D U D is dense in (X,’V) and intr(D U D - for, if there exists a, ,

0
t

nonempty r-open set 0& D U D then 0 D=0(X-- cll:A) (say) &
=int T/X-cl AD* == (since 0 A F a contradiction to the choice of D*.
Now consider the topology r (A). Clearly D D* is dense in (X, I (A)) and

int:(A)(D D*) -- for if& U (VO A) D U D*, for some U, V T then

U = and V 0 A CD D* Vr A D a contradiction, since VOA is nonempty
open in (A, r/A) and int r/AD . Hence (X, T(A)) is resolvable in this case

also.

Now we come to the main theorem of this section.

THEOREM 5.3 For a space (X,T) the following are equivalent

(i) (X, is maximal resolvable,
(ii) The set of all open subsets of X the set of all resolvable subsets of X,
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(iii) any continuous bijection f from a resolvable space (y, 6) onto (x, ) is a

homeomorphism.

PROOF. (i) -> (ii) Clearly every open subset is resolvable. Now suppose

A C X is resolvable but not open. Then by Lemma 5.2 (X, (A)) is resolvable.

Hence (X, " cannot be maximal resolvable since T(A) "
(ii) =@ (i) Suppose (X, T) is not maximal resolvable. Then there exists a topo-

1 ogy containing properly such that (X, i) is resolvable. Let U " such

that U Then U is resolvable in (X, " and hence resolvable in (X, ).

This contradicts (ii).

(i) --)(ii}: If f (Y, (X, ) is a continuous bijection then for

If(g) G 6 0, f (Y, @" ----> (X,-’) is a homeomorphism and (X, qI) is resol-

vable (since the property of being resolvable is a topological property). Since

q T and (X, " is maximal resolvable, it follows that "
(iii) (i) If (X, I is resolvable but not maximal resolvable, then there

exists a topology*’ such that (X, "/) is resolvable. The identity map I (X, "/)
(X, is a continuous bijection which is not a homeomorphism.

NOTE 5.4 By repeated application of simple extension, from any given resolvable

space one can arrive at a maximal resolvable space by using Lemma 5.2 and Theorem 5.3.

COROIZARY 5.5 let (X, be maximal resolvable. Then

(i) (X, 9 is extremally disconnected,

(ii) Semi-open sets are open in (X,
PROOF. (i) let G be open and x clG G. Since G is resolvable, so is G

and by theorem 5.3 G {X} is open.
Thus clT G J(G {x is open. Hence (X, 9 is extremally disconnected.

x clG
(ii) roof of (ii) follows as in (i).
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