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ABSTRACT. In this paper some properties of open hereditarily irresolvable spaces are
obtained and the topology for a minimal irresolvable space is specified. Maximal
resolvable spaces are characterized in the last section.

\KEY WORDS AND PHRASES. Resolvable, irresolvable, minimal topologies, maximal topolo-
gies.
1992 AMS SUBJECT CLASSIFICATION CODES. 54A10.

1. INTRODUCTION.

Let (X, T) be a topological space. For any subset A of X we denote the closure of
A respectively the interior of A with respect to T by cl_ A and int.A. The relative
topology on a subset A of (X, T) is denoted by T/A. If B € AC X, the closure of B
respectively the interior of B with respect to T/A is denoted by cl T/AB respective-
ly int T/AB’

A space (X, T) is called irresolvable if each pair of dense subsets has a nonempty
intersection; otherwise (X,T), is called resolvable [6]. A subset A of X is resol-
vable if the subspace (A, T/A) is resolvable. (X, T) is said to be hereditarily irre-
solvable if it does not contain a nonempty resolvable subset.‘

E. Hewitt has studied resolvable and irresolvable spaces in [6] where he proved
the following theorem.

THEOREM 1.1 [6] Every topological space (X, T) can be represented uniquely as a
disjoint union X = F U G where F is closed and resolvable and G is open and heredi-
tarily irresolvable.

This representation is called Hewitt representation of (X, T).

In [5], M. Ganster has established some equivalences on a subclass of the class of
irresolvable spaces in which open subspaces of each member are irresolvable. In
particular, he has proved that each open subspace of a space (X, T) is irresolvable if
and only if int D in dense for each dense subset D of (X,T). In section 3 of this
paper, some results are provided to illustrate the behavior of such a subclass of the
class of irresolvable spaces.

Formally we give the following definition.

DEFINITION 1.2 A space (X, T) is said to be open hereditarily irresolvable
(simply o.h.i.) if each open subspace of (X,T) is irresolvable.
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A space (X, T ) with property R is said to be minimal R (maximal R) if for any
topology t’, strictly coarser (finer) than T, (X,T') does not have the property R
[3].

It clearly follows that for any coarser (finer) topology <'of T, if (X,T) is
resolvable (irresolvable) then (X, v') is also resolvable (irresolvable) and this
result may not hold for finer (coarser) topologies. Naturally the problems of
characterizing maximal resolvable spaces and minimal irresolvable spaces arise. In
this paper we have characterized maximal resolvable spaces and specified the topology
for a minimal irresolvable space. Incidentally, we have also shown that, although
the class of o.h.i. spacesis a subclass of the class of irresolvable spaces, the
class of minimal irresolvable spaces coincides with the class of minimal o.h.i.
spaces.

2. SOME DEFINITIONS AND PRELIMINARIES.
DEFINITION 2.1 A subset A of a space (X,T) is called

i) an o -set [10], if A c intcl int A,
ii) a semi-open set [7], if A ¢ cl int.A,
iii) a pre-open set [9], 1f A C int_cl_ A,
iv) a locally closed set [2], if A U N F where U is open and F is closed in

X, T).

Let us denote by ‘r“, PO(X, T) and LC(X, T), the collections of o -sets, pre-
open sets and locally closed sets in (X, T) respectively. In [10], Njastad has
pruved that ’t‘“ forms a topology on X and T > T.

We denote by [ T ], the equivalence class of all topologies on a set X which have
the same collection of semi-open sets as those of (X, T). In [4], Crossley and
Hildebrand have established that [ T ] is a sub semi-lattice of the lattice of all
topologies on X with the greatest element ~™ with respect to the usual join opera-
tion on topologies.

A topological property preserved under semi-homeomorphisms, which are bijections
so that the image of semi-open sets are semi-open and inverse image of semi-open sets
are also semi-open, is called a semi-topological property [4].

3. SOME PROPERTIES OF O.H.I. SPACES.

As a consequence of Theorem 2 and Theorem 4 in [5], it readily follows that a
space (X, T) is o.h.i. if and only if T~ == PO(X,T). The following theorem estab-
lishes the relationship between an o.h.i. space (X, T) and the locally closed sets in
x, 7).

THEOREM 3.1. A space (X, T) is o.h.i. if and only if for every subset A of X,
A€ Lo, T).

PROOF. Suppose that (X, T) is o.h.i. Let A ¢ X. We first show that A is the
union of an open set and a nowhere dense set in (X, U). Now A = (A N intycl,A) U
(A~ inty cly A) =B U C, say, where B (= A N int ; cl o A) € PO(X, T) and
C (= A ~ int, cl, A) is nowhere dense in (X, T ). If B is empty we are done. If
not, then B € <* and hence B = U U Nl’ where U(#= @ ) is open and N1 is nowehre
dense in (X, T). Thus A = U U N, where U is open and N is nowhere dense in (X,T).
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Now we show that A € LC(X, - ), clearly X — A = F N V, where F is closed in
(X, T) and V is open in (X, 't‘a(). Now F = int.F U (F— int . F) = Ulu Nl, say,
where U’ is open in (X, T ) and N’ is nowwhere dense in (X, T). AlsoV == uu N” ,
where U” is open in (X,T) and N” is nowhere dense in (X, T ). Thus X—A == W'un’yn
(UlU N = v u N*, say, where 0¥ is open in (X,7T) and N* is nowhere dense in
(X, T). NowA =(X——U~:Bn (X——N*) implies that A € LC(X, ). Conversely, suppose
that for every subset A of X, A € LC(X, T* ). It suffices to prove that sz PO
(X, T). Clearly ©’c PO (X,T). Let A€ PO(X, T). Then AC int . cl A. Since
A € LC(X, T*), A=UNF, vhere U is open in (X, Tq) and F is closed in (X, '1’.'03.
Let x € A. Then x € int~ cl(UNF) and there exists a T-open set G, contain-
ing x such that G ¢ inty clg (UN F). Consequently, G, C cle UN int o cl.F.
Since UC into cly inty U and FDcl . int, clo F, it follows that G, c cly
int U N F. Now it can be easily verified that int.. UN int, F is dense inG,.
Hence x € int . clo int A. Thus A e % and consequently , T == PO(X, T ). This
completes the proof of the theorem.

Recall that for a space (X, T ) and for any subset A of X with A ¢ T , the
simple extension [8] of T by A is the topology T(A) == {U uwana) :0,ve ’C’}.

It is obvious that any simple extension of an irresolvable space (X, T ) is irre-
solvable. But a simple extension of an o.h.i. space may not, in general, be o.h.i.,
as shown by the following example.

EXAMPLE 3.2. Let X = {a, b, c, d, e, £}

Let T =={g, X, {a}, {a, b} ,{a, c} ,{a, b, c},{a, d, e, £},
{a, b, d, e, f},{a, c, d, e, t}} .
| Choose A== fc,e, f},
Then T/A = {8, A, fc} , {e, £} ,
and T(A) =TU T/AU{ia, e £{,{a b e £},{ac,e f},

{a, b, c, e, f}} .

Now it is clear that (X, T ) is o.h.i., since int, D is dense in (X, T ) for any
dense subset D in (X, T ). But (X, T(A) ) is not o.h.i., for, choose the dense
subset D = {a, c, f} in (X, T(A) ). Clearly int D = {a, ¢ }, which is not
dense in (X, T(A)).

However, the following theorem holds.

THEOREM 3.3 If_.a space (X, T ) and the subspace (A, T/A) are o.h.i. then (X,

T(A) ) is o.h.i.

PROOF. Let D C X be dense in (X, T(A)). Then D is dense in (X, T ) and since
(X,T) is o.h.i., int, D is dense in (X, T). Take any nonempty open set U U (VN A)
in (X, T(A)). We are to show that (UU (VN A)) N int ‘L'(A)D # 0. If U5 @, we
are done. Suppose U =f&. Then VN A 5= &. Now AN D is dense in (A, T(A)/A) ;
which implies that A N D is dense in (A, T/A), since (A, T/A) == (A, T(A)/A). There-
fore int ‘L'/A(A N D) is dense in (A, T/A), since (A, T/A) is o.h.i. Hence int‘t‘(A)/A
(A N D) is dense in (A, T(A)/A). i.e., (VN A) N int (AP # @. This completes
the proof of the theorem.
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One can easily verify that if (X, T) (|X|> 1) is o.h.i. then for some coarser
topology <’ of T, (X, T’) fails to be o.h.i., where |X| denotes the cardinality
of X. However, we shall prove that (X, T ) is o.h.i. if and only if (X, %) is
o.h.i. and using this result we shall show that the property of being o.h.i. is a
semi-topological property.

THEOREM 3.4 If a space (X, T ) is o.h.i. then for any TE€[ T1,(X, T") is
also o.h.i.

PROOF. Let D € X be dense in (X, T*). Then D is dense in (X, T ) and
consequently int . D is dense in (X, T ). Clearly int_r*D # @. Consider any non-
empty open set V in (X, T*). Then since inty V == @, int V  int. D == H (say)
+ 4. Now int (int_s H) N int. D ==F (say) = 4. 'Iher:fore int 4« F » g and
int_x Fc intT* DN V. Hence intr* D is dense in (X, ¥ ). Thus (X, T ) is
o.h.i.

COROLLARY 3.5 A space (X, T ) is o.h.i. if and only if (X, T%) is o.h.i.

THEOREM 3.6 The property of being o.h.i. is a semi-topological property.

PROOF. Obviously this is a topological property. Let f : (X, T ) — (Y,0") be
a semi-homeomorphism and let (X, ¥ ) be o.h.i. Then by corollary 3.5 it follows
that (X, T*) is o.h.i. Now it is proved in [4] that £ : (X, T®) — (Y, 6) is
a homeomorphism. Hence (Y, " ) is o.h.i. and by corollary 3.5 it follows that
(Y, 6) is o.h.i.

4. MINIMAL IRRESOLVABLE SPACES.

Note that if (X, T ) (|X|> 1) contains an isolated point, then it is minimal
irresolvable if and only if T = {4, {p} » X} for some p € X. But wc shall prove
that a minimal irresolvable space must contain an isolated point. To prove this we
require the following two Lemmas.

LEMMA 4.1 If a space (X, T) is irresolvable and |X|> 1, then T is not the
indiscrete topology.

We omit the easy proof.

LEMMA 4.2 Let (X, T ) be irresolvable and let X == F U G be the Hewitt repre-
sentation of (X, T). If W is a nonempty open subset of G then o"(W) = {X} U
{U €T :UC W} is a coarser irresolvable topology on X.

PROOF OF LEMMA 4.2 It is clear that 6°(W) is a topology on X with 6(W) & T.
Now suppose that (X, &(W)) is resolvable, i.e., there exist disjoint subsets D and
E of X which are dense in (X, 6°(W)). IfD*=+DAW and E* == E (1 W then D* and
E¥ are nonempty. Since G is hereditarily irresolvable, W is an irresolvable sub~
space of (X, T ). Hence either D* or EX fails to be dense in (W, TAM), say D*. So
W is not a subset of cl, (W N D). Hence there exists a nonempty < -open set U
withU € W and UNWND =UND =4, But U & 6 (W). So we have a contradic-
tion. Consequently, (X, 6(W)) is irresolvable.

THEOREM 4.3 Let (X, T) be irresolvable with |X|> 1. Then (X, T ) is minimal
irresolvable if and only if there exists p € X such that T == {ﬂ, {r} » X} .

PROOF. Clearly, if T = {#, {p} , X} for some p € X, then (X, T ) is minimal
irresolvable. Now suppose that (X, T ) is minimal irresolvable. If X == F U G be
the Hewitt representation of (X, T ) then G is nonempty. If G == {p} for some
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p € X then by Lemma 4.2, 6°(G) = {}1, {p) , X}== T and we are done. Otherwise,
|G| > 1 and by Lemma 4.1 there exists a proper nonempty T -open subset W of G(G
being irresolvable and T -open). If |W| > 1 by the same argument, there exists a
proper nonempty T -open subset V of W. By Lemma 4.2, 6“(V) == T, and thus W €

6°(V). According to the definition of 67(V) it follows that W == X. But this is a
contradiction to the fact that W is a proper subset of G. Consequently, we have
W ={p] for some p € X, and by Lemma 4.2, T = &(w):{.d, {r} » X}.

As a straightforward consequence of Lemma 4.2 and Theorem 4.3 we get

THEOREM 4.4 Llet (X, T ) be a space with |X| > 1. Then (X, T ) is minimal
o.h.i. if and only if (X, T ) is minimal irresolvable.

REMARK 4.5 D.R. Anderson [1] has demonstrated the existence of a large class of
connected irresolvable spaces which have no isolated points. Theorem 4.3 now
indicates the existence of irresolvables spaces whose topologies have no minimal
irresolvable subtopology.

5. MAXIMAL RESOLVABLE SPACES.

It is not difficult to see that maximal resolvable spaces exist. One of the
simple examples is the following.

EXAMPLE 5.1. let X == {a, b, c}, T ={#, X}. Then (X, T) maximal resolv-
able.

In this section we investigate necessary and sufficient conditions for a space
to be maximal resolvable. We first require the following Lemmas.

LEMMA 5.2 Let (X, T ) be resolvable and A € X be a resolvable subspace. Then
(X, T(A)) is resolvable.

PROOF OF LEMMA 5.2 There exists a subset D of A such that D is dense in A and
int ‘t/AD = g. Two cases arises :

Case I. X—cl A= g.

Then D is dense in (X, T) and int , D = #. Consider the topology T(A). Clearly
D is dense in (X, T(A)) and int ‘l‘.’(A)D =g. So (X, T(A)) is resolvable in this
case.

Case II. X— cl . A *+ 4.

Since open subspace of a resolvable space is resolvable, X—<cl A is resolvable
Choose p* C X—cl A such that p* is dense in X—cl A with 1nt T/X-cl AD = .
Then D U p* is dense in (X, T) and int (D UubD ) —ﬂ ; for, if there exists a
nonempty T -open set ocpubd® , then 0 N D+¢=)0(\(X— cl, A) = o (say) +ﬂ
=>int T/X-cl AD =+ @ (since 0N A =g);a contradlctlon to the choice of D
Now consider the topology T (A). Clearly D U D* is dense in (X, T(A)) and
int (DUD)—If; forlfﬂ-#UU(VO A)CDUD*, for some U, V € T then
U= ﬁ and VhACDUD =vnaAc D ; a contradiction, since VN A is nonempty
open in (A, T/A) and int ‘r/AD = g, Hence (X, T(A)) is resolvable in this case
also.

Now we come to the main theorem of this section.

THEOREM 5.3 For a space (X,T) the following are equivalent :

(i) (X, ) is maximal resolvable,
(ii) The set of all open subsets of X == the set of all resolvable subsets of X,
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(iii) any continuous bijection f from a resolvable space (Y, 67) onto (X, T) is a
homeomorphism.

PROOF. (i) => (ii) : Clearly every open subset is resolvable. Now suppose
A C X is resolvable but not open. Then by Lemma 5.2 (X, T (A)) is resolvable.
Hence (X, T) cannot be maximal resolvable since T(A) 2T
(ii) =» (i) : Suppose (X, T) is not maximal resolvable. Then there exists a topo-
logy <’ containing T properly such that (X,’t.") is resolvable. let U € -’ such
that U ¢ T . Then U is resolvable in (X, "CI) and hence resolvable in (X, T ).
This contradicts (ii). ,
(i) =) (iid): If £ : (Y, 6©) — (X, T) is a continuous bijection then for T =

{f(G) : G € 6‘} , £ :(Y,6) —-)(X,‘r') is a homeomorphism and (X, 't'/) is resol-

vable (since the property of being resolvable is a topological property). Since
7'>7T and (X, T ) is maximal resolvable, it follows that T’'= T .
(iii) =» (i) : If (X, T ) is resolvable but not maximal resolvable, then there
exists a topology'r;a‘c such that (X, 1’) is resolvable. The identity map I : (X, T/)
—3 (X, T ) is a continuous bijection which is not a homeomorphism.

NOTE 5.4 By repeated application of simple extension, from any given resolvable
space one can arrive at a maximal resolvable space by using Lemma 5.2 and Theorem 5.3.

COROLIARY 5.5 Let (X, T ) be maximal resolvable. Then

(i) (X, T) is extremally disconnected,

(ii) Semi-open sets are open in (X, T )

PROOF. (i) Let G be open and x € cl,.G - G. Since G is resolvable, so is G v{x}
and by theorem 5.3 G U {x} is open.

Thus cl ¥ 6= UGu {x} ) is open. Hence (X, T ) is extremally disconnected.

xe cl. G

(ii) Proof of (ii) follows as in (i).
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