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ABSTRACT In this paper we study the existence, and continuous dependence of the solution 0

0(z,t) on a H61der space Ua’l+’d2(’,.)(-, [0,1] [0, T], 0 < 7 < 1) of a linear parabolic

equation, prescribing 0(z,0) f(z),O=(1, r) g(r) the integral type condition f O(x, ’)dx E(r).
0
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1. INTRODUCTION.

Consider the problem of finding 0 O(:, ’) such that

0 < - , (1.1)

(1.2)

(1.3)

(1.4)

with E(O) f f(z)dz, for b fixed with 0 < b < and r(z, ’) >_ r0 > 0 on [0,1] x [0, T].
0

In Cannon, Yanpin Lin [1] it is proved a result on existence, uniqueness and continuous depen-
dence for this problem. In this paper we give conditions for which the solution of (1.1)-(1.4) belongs
to a Hfilder space and we prove that this solution depends continuously upon the data with respect
to the corresponding Hfilder norms. Similar problems are considered in [2,3,5,6,8,9,10].

Notice that function O satisfies (1.1)-(1.4)if and only if u(z,t) O(z -), with f
0
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satisfies

u(x,O) f(x), 0 < z_< l, (1.7)

/ u(x,t)dx (t), 0 <_ <_ T, (1.8)
0

T
where (t) E(r), (t) g(r), a(x,t) r(x, r), T of do

(--{.,, and (0) E(O) f f(x)dx.
(A) and (B) will denote problems (1.1)-(1.4) and (1.5)-(1.8), respectively. The results on

existence, uniqueness and continuous dependence will be based on a standard fixed point argument
for a contraction defined on a subset of an appropriate functional space. We shall follow Ladyzenskaja

et al. [11] to define the spaces of HSlder continuous functions:

Let QT (0, 1) x (0, T), Q--T [0,1] x [0, T]. For M > 0, k 0,1, 2 and 0 < 7 < 1, H+[0, M]
shall denote the spaces of functions h h(t)in [0,MI, with Ilhll+’) < oo; where

k

Ilhll+’) II’OIIM / IIh’Oll),

Ilhll= sup Ih(t)l,

Ilhll -I(O)1 +

where h(") denotes the derivative of h of order n.

For u QT "-* R, let

I(t) (t’)l

lu(:, t)- t,(=’, t)l
sup.... t*., Ix

telo,rl

I,,(:, t) ,(:, t’)lHa,,..,(u) sup
-t*., It

t,t’e[o33

that

I1,,11o, sup

Then H"/(r) and H+’a+’d(-T will denote the space of all functions u" r "* R such

I1,,117,’’/ Ilull,,. + uL,(u) + H,r..,/(,,) < o,:,
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and

IIll/"’’+"/ I111, + I1,,.11, + I1=11, + I1,11,

respectively.

K K(z, ) will denote the fundental lution to the heat equation

and 0 0(z, ) shall be the Theta hnction

. EXISTENCE, UNIQUgNgSS AND CONTINUOUS DPENDENCE.
DEFINITION. A function u(z, ) on is called a solution of problem (B), if

1) u d u are continuous in Q,
2) u is unded in

3) u satisfi (1.5)-(1.8).
We notice that if u is such that u is continuous in Q and satises (1.)-(1.?), then u is a

solution of problem (B) if and only if

=(a, )g’() =(, ).(a, ) =(0, )(0, ) (.)

or

E’(’) r(b, ’)O.(b, ’) r(O, ’)O.(O, ’),

for 0 < " < 7", 0 _< < T, provided E is ditferentiable.
We shall assume the following compatibility hypothesis:

(2.2)

H1) .6(0) f(1),

H2) a(b, 0)g’(0) a(b, O)f(b) a(0,0)f’(0), and the regularity conditions:

R1) / H’+(-)[O,T, 6 H[O,T],f H+’,

R2) a, a., a.. H"/a(-T) and I’T,s(at) < oo for some 5 > 0.

Let Vr { E H(v)[0,T] o(0) f’(0)}. We define a nonlinear operator " V- V- as

follows: For So E VT, let u be the unique solution in H+’’1+"/(T) of (1.5)-(1.7), with u=(O,t)
(t), (cf [11], Theorem 5.3 p. 320). Then we define

a(b,t)
(u=(b,t):(t) a(O, t)

Since u H+’,’+’da(r) and (H2) holds, we have ’o Vr, furthermore, if p is a fixed point
of then u is a solution of problem (B) and conversely.
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LEMMA 2.1. There exists e > 0 not depending on f,,, such that if 0 < T < e then

PROOF. Let T" < T, and b in Vr-, h , and w u* u*. Then

(,) -2 / o(, )()d +
o

K(z + 2m, t), then
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can be estimated just as I, to obtain

IJl _< Ca’llhllr. for _< T.

To estimate J we have to take case of the singularity of K(z, ) at (0, 0).
Since ’0-0’’)o0,0 < C’l- bl, then integrating by parts as before, we have

IJl _< 1") l(b 1")
(b,i )(o,)1

0

+
o o

< 6’s(T + rln)llhllr..
Hence Iffi(b, )1 < IIl+l&l+l&l-< 6’Tffinllll, -< T’, where C depends on T, b and function

z, t). From this (a) follows immediately.
Now we estimate

For < s we have

+ O.(+,)(F(,.-)-(,-,.)),.

+

+ .(-,,.)(F(,.-)-F(,-,’))dd;

+ .( ,)F(, )d

L+L+L+L+Ls+Ls+L+Ls.

We claim that

IL, < MT’llbllr)l,-tl, = ,...,6,

IL, < MT"/’IIIIr’.":PI tl

ILsl < MsT’llllls-tl"
where Mi depends on T, b and function a(x,t), 1, ...,8.

The proof of (2.4) follows as the proof of part (a). For (2.5) we let c(x,t) *(,O--(b.qo(b,0 then

L. ] K.,(b, 1")(c(0, s 1")w.(O, s 1") c(O, 1")wffi(O, rI)dr
o

(2.4)

(2.6)
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J+J+Ja.

Since c(, t).= o(1 Sl), we obtain

Ig, _< K," IIllT)lt-l

n y (V),

Hence

J I( blSr..( (, )w.((, ) 0% I( blo o

(2.8)

< 211, ,11.’) + t1,11
_< c, {llll+."’-’ + IIll’ + IIfll:+’}

Then for u "QT" R defin by u u, we ha

..,+,,/, I111lull., S C, {ll#llt’ + + IlYll?+"}.
Hene u is solution o he 1o problem. Since ad dend on " only, loba lufion

u csn be obtned by & stdsrd step by step construction, d

+/

Furthermore

II. I+’Y,I+/’I I.IJl < KaT’t/’II’IIT" ,"- 1. (2.9)

We obtain (2.5) from (2.7), (2.8), (2.9) and the fact that Ilwll+."’’+’n _< MIIhll’.-P), where M
does not depend on T* (ee [] Theorem 5.4, p. 322). With a similar axgumnt we obtain (2.6),
and the proof of the Lemma follows from (2.4) (2.5) and (2.6).

REMARK. Notice that Lemma 2.1(a) holds for any two functions 0, /, for which u, u’ axe

well defined, u=, u= axe continuous in r- and u., . are b6unded in T"
THEOREM 2.2. Assume that H, Ha, R, R hold. Then there exists a unique solution

u u(x,) of Problem (B). This solution belongs to H+"’+"n(-T and satisfies

II,ll+’’’+’n _< C(T){llll’+(’,- + IIll"-’ + IIfll:+’}.
PROOF. Let > 0 in I.,emrna 2.1 and T" < ," then if we define the equence (a:)

o,r i q0. ’1 a ’.-V o ,io. ,o.
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[i]

[2]

[3]

[5]

[6]

[8]

[9]

[10]

[11]

Finally, the remark after Lemma 2.1 implies that any solution of (B) in QT has to be u.
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