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ABSTRACT In this paper we study the existence, and continuous dependence of the solution J =

9(z,t) on a Holder space H*+"'+/3(Q )(@, = [0,1] x [0,7], 0 < 4 < 1) of a linear parabolic
b

equation, prescribing ¥(z,0) = f(z),9.(1,7) = g(7) the integral type condition [J(z,7)dz = E(1).
o
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1. INTRODUCTION.
Consider the problem of finding 9 = ¥(z, ) such that

9, = (r(z,7)9:)., 0<z<l, 0<7<T, (1.1)

9:(1,7) = g(), 0<7<T, (1.2)
¥(z,0) = f(=), 0<z<l, (1.3)

] d(z,7)dz = E(7), 0<7<T, (1.4)

with E(0) = ;f(z)d:t, for b fixed with 0 < b < 1 and r(z,7) > ro > 0 on [0,1] x [0,7].

In Ca.nn?m, Yanpin Lin [1] it is proved a result on existence, uniqueness and continuous depen-
dence for this problem. In this paper we give conditions for which the solution of (1.1)-(1.4) belongs
to a Holder space and we prove that this solution depends continuously upon the data with respect
to the corresponding Holder norms. Similar problems are considered in [2,3,5,6,8,9,10).

Notice that function ¢ satisfies (1.1)-(1.4) if and only if u(z,t) = J(z,7), with t = jﬁ’ﬁv
5
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satisfies

S

= (Z((%:—))u,) , 0<z<l, 0<t<T, (1.5)
uz(1,1) = §(t), ’ 0<t<T, (1.6)
u(z,0) = f(z), 0<z<1, (1.7)

b
/ u(z,tydz = E(1), 0<t<T, (1.8)

where E(t) = E(7), §(t) = 9(7), a(z,t) =r(z,7), T = f'—(%f.—), and E(0) = E(0) = }f(z)dz.

(A) and (B) will denote problems (1.1)-(1.4) at:)d (1.5)-(1.8), r&spectively.‘ The results on
existence, uniqueness and continuous dependence will be based on a standard fixed point argument
for a contraction defined on a subset of an appropriate functional space. We shall follow Ladyzenskaja
et al. [11] to define the spaces of Holder continuous functions:

Let Qr = (0,1) x (0,T), @r = [0,1) x [0, T]. For M >0, k = 0,1,2 and 0 < v < 1, H*+7[0, M]

shall denote the spaces of functions h = h(t) in [0, M], with [|A[|’%4*" < co; where

k
RIS = 3 IR™ I + 1AS)52,

n=0

lkllae = sup |A(2)],
te[o,M])

h(t) — h(¥)|
KIS = h(0)] + UGN
" "M l ( )I (.t’se‘[lopm It_tll'y

where A" denotes the derivative of & of order n.
For u:Qr — R, let

’

HT )= sup 1820 =80

5,5/ €[0,1) |3 -z
tefo,T)
t) — u(z,t)]
HT (W) = su lu(z,t) — u(z, )|
W)= 5B TR
t,¢'e0.T]

lullgr = sup |u(z,t)|
(=z.t)€QT

Then HYV/*(Qr) and H*"1+1/}(Q.) will denote the space of all functions u : Q7 — R such
that

lullz™”® = lullar + HE,(u) + HE,j5(u) < oo
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and
A+v/2
IallZ 7 = ullos + ludllor + lusellar + lludler
+ HZ,;_;_(u,) + HT (u) + HT (u;2) < o0,
respectively.

K = K(z,t) will denote the fundamental solution to the heat equation

K(z,t) = é,::ER,'t>0,

1
(artyn®
and 0 = 0(z,t) shall be the Theta function

O(z,t) = i K(z + 2m,t),(see [4]).

m=-—00

2. EXISTENCE, UNIQUENESS AND CONTINUOUS DEPENDENCE.
DEFINITION. A function u(z,t) on Qy is called a solution of problem (B), if
1) u and u, are continuous in Qr,
2) u,, is bounded in Qr,
3) u satisfies (1.5)-(1.8).
We notice that if u is such that u, is continuous in Qr and satisfies (1.5)-(1.7), then u is a

solution of problem (B) if and only if
a(b,t)E'(t) = a(b, t)uz(b,t) — a(0,t)u,(0,¢) (2.1)
or
E'(1) = r(b,7)9:(b,7) — r(0,7)9(0,7), (2.2)
for0<7<7, 0<t<T,provided E is differentiable.
We shall assume the following compatibility hypothesis:
H1) §(0)=f(1),
H2) a(b,0)E'(0) = a(b,0)f'(b) — a(0,0)f'(0), and the regularity conditions:
Rl) Ee HW*P0,T),§ € HF(0,T), f € H*,
R2) a,a;,a,, € H/*(Qy) and HI((a,) < oo for some § > 0.

Let Vi = {p € H<‘%’)[o, T] : ¢(0) = f'(0)}. We define a nonlinear operator F : V& — Vr as
follows: For ¢ € Vr, let u® be the unique solution in H?+"1+7/2(Q.) of (1.5)-(1.7), with u,(0,t) =
¢(t), (cf [11], Theorem 5.3 p. 320). Then we define

_ a(bvt) @ 2l
Folt) = S .0 - E)

Since u® € H**"+7/3(Q;) and (H2) holds, we have Fy € Vi, furthermore, if ¢ is a fixed point

of F then u¥ is a solution of problem (B) and conversely.
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LEMMA 2.1. There exists ¢ > 0 not depending on f,§, E, such that if 0 < T* < € then
a) ||Fe - Follr- < fllp - dlire, @b € Vi,
143 13
b) IFe - Folls < dlle - vllr 00 € Vi
PROOF. LetT*<T,ypand ¢ in Vye, h = — 9 and w = u¥ — u¥. Then

w(z,t) = -2 / 8(z,t — 7)h(r)dr +

t 1
[ [0 -t =7 + 0 + £,¢ - )} Fi6 Tyt ar, (23)
oo

with F(z,t) = (defl=albdly, ), (cf [4] p. 339).

It follows that for ¢ € [0, T"},

t
we(bt) = ~2 / 0,(b,t — T)h(r)dr

(1)

t 1
+ [ [o.o+6t-nPEndedr+[ [ 0.6 &t~ r)F(E,T)dedr
o0
= ,l + Iz + Ia.
We clearly have

T
Ihl < 2lp - ¥l [ 10:(6,7)ldr < CT" |z

Since term by term differentiation of the series in I, is possible, then we have

[ [oavs - (45 i) e

a(0,7) — a(b,7)
- o/ﬂ,(b,t -7) (—m———-) we(0, 7)dr

_ 0/ [ oto+ 6,8 =1) (g«_%ﬂ) e

Condition (R2) implies that equation (1.5) (satisfied by w) can be differentiated (see (7, Sec.
3.5]) and then w, satisfies a linear parabolic equation. Thus, by the weak maximun principle it

follows that
a(z,t)
(62).):
(cf. [7, Th. 2.3.8)).

Then |I;] < C,T*||h|lz-. Finally, if we write 0(z,t) = K(z,t) + H(z,t), with H(z,t) =
E K(z + 2m,t), then

m#0

I

lellg,. < e llp = $lir- = eMT ||hflr-, where M = wp

t 1
L = [[HG-¢&t-n)FE
o0

t 1

+ Kz(b - E’t - T)F(f, T)df dr
/]
Ji+ Ja.
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Jy can be estimated just as I3, to obtain
[Ai] < CsT*|lhlz for t < T.

To estimate J; we have to take case of the singularity of K(z,t) at (0,0).

Since 2«—:{;—:{5& < Cy|¢€ — b], then integrating by parts as before, we have

[ e R

0
t 1
+Callblr [ [ 1Kea(® - €t = 7)€ - D)ldtdr
00
S Co(T* + T hr-.

Hence jw.(b, t)| < |Ii|+|Iz|+|1a] € CT*?||h||r+,t < T*, where C depends on T, b and function
a(z,t). From this (a) follows immediately.
Now we estimate ||w.(b, )Il;.]:t-l ),

For ¢ < s we have
we(b,8) — we(bt) = —2 /o‘o’(b”)("(’ 7= h(t = 7))dr
~2 [ 0.(6,1)h(s — r)ar
+ /ol /o L0,(b+ €, 7)(F(E,s — )~ F(€,t — 7))dédr
+ [ [ 0.0+ &I, - r)dear

t 1
+ [ [ Hb— & m)(F(E s~ 7) - Fle,t - 1)dedr
+ /" Ll H (b-¢,1)F(€, s — 7)dédr

+/°‘[:K,(b—€yf)(lf‘(£,s—r)_F(E,t_T))dCdf
+/"/°‘K’(b—f’T)F(Ev’—T)d{dr

= Li4+La+Ls+Le+ Ls+ Le + Ly + Ls.

We claim that

L < MT s -, i=1,..6, (2.4)

Lol < MTBRGE s — o8, 25)
14y .

ILsl < MT}A|5ls — 13, (2.6)

where M; depends on T, b and function a(z,t), i=1,...,8.

The proof of (2.4) follows as the proof of part (a). For (2.5) we let ¢(z,t) = 3(5‘3-:—:)"-"51, then

Ly = - / K.(b,7)(c(0,5 — T)wz(0,8 — 7) — ¢(0,t — T)w:(0,¢ — 7))dr



780 I. BARRADAS AND S. PEREZ-ESTEVA

t 1
+ // Keo(b—&,7)c(€,s — 7)(w=(é, 8 — 7) — w(€,t — 7))dE dr

+ l":t(b - fv T)(wz(f:t - T)(C(f,s - T) - c(f)t - 7'))‘1{ dr

o .
o o

= L+J+ s

Since ¢(¢,t) .= O(|¢ — b]), we obtain

il < KT (A — o ¥ 2.7)
Il < K2 w7 — s+, ‘ (2.8)
and by (R2), .
= [ 1=Kt =) / et an
Hence

sl < KTl 32"+t — ). (2.9)

We obtain (2.5) from (2.7), (2.8), (2.9) and the fact that [Jw|2"**""? < MIAISF, where M
does not depend on T* (see [11] Theorem 5.4, p. 322). With a similar argument we obtain (2.6),
and the proof of the Lemma follows from (2.4) (2.5) and (2.6).

REMARK. Notice that Lemma 2.1(a) holds for any two functions , ¥ for which u®, u¥ are
well defined, u?, u? are continuous in Q. and uf,, u¥, are bounded in Q..

THEOREM 2.2. Assume that H;, H;, Ry, R; hold. Then there exists a unique solution
u = u(z,t) of Problem (B). This solution belongs to H*+"1+7/2(Q) and satisfies

s A 4 ~ M2
Il < o) {UEITCE + gl E) + 1+

PROOF. Let € > 0 as in Lemma 2.1 and T < ¢, then if we define the sequence ¢,(z) =
f'(0),pi41 = Fepi, i = 1,2..., then Lemma 2.1 implies that the sequence of restrictions {gp; |[°'T']}-‘5N
converges in C[0,T*] and in H ‘!.'F) to a function o.

Furthermore

_{_1 il 14y 14y
1657 < 3l — illed ) + lealled
=1

(43) (42)
2 — orlled + o | CF

Lo
(B + 11 + 1153

Then for u : Q7. — R defined by u = u*°, we have

IN

llal

IA

IN

: +(43) (47
37 < € (B + 16155 + 171}

Hence u is solution to the local problem. Since C; and C; depend on T* only, a global solution
u can be obtained by a standard step by step construction, and u satisfies

. 1+ Sy (2
lull3 4 < ¢ {NEIE ) + 1ale ) + 1)
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Finally, the remark after Lemma 2.1 implies that any solution of (B) in Q7 has to be u.
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