Internat. J. Math. & Math. Sci. 791
VOL. 16 NO. 4 (1993) 791-794

THE CAUCHY PROBLEM OF THE ONE DIMENSIONAL SCHRODINGER EQUATION
WITH NON-LOCAL POTENTIALS

I.LE. KOUGIAS

Department of Mathematics
University of Patras, Patras, Greece

(Received July 16, 1992)

ABSTRACT. For a large class of operators A, not necessarily local, it is proved that the Cauchy
problem of the Schrédinger equation:

20)
dz7

+Af(2) = 82f(z), F(0)=0, F(O)=1

possesses a unique solution in the Hilbert (H,(A)) and Banach (H,(A)) spaces of analytic functions
'in the unit disc A = {z: | 2| < 1}.
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1. INTRODUCTION.
Let C[0,x] be the Banach space of continuous functions on the interval [0,7). The norm of an

element f(z) of that space is defined by
HFll = sup  |f(2)].
z €[0,x)

Assume that 4 is a linear bounded operator on [0,7] not necessarily local, i.e., 4 need not be
the multiplication operator by a continuous function a(z). It may, for instance, be an integral
operator on C[0,x]. It is known that the Schrédinger equation:

2
- 5-;1;+ Af(z) = 621 (2) (1.1)
possesses a unique solution in C[0,r] satisfying the initial conditions:
f0)=0, f(O)=1 (1.2)

< 1 —?car [1]

Also it is known [1] that the solution is bounded for every s in the region:

provided that |s| >¢, || A]l,c, =maz

G={s|s| 2ac, |l All, a>1}.

The purpose of this paper is to prove similar results for the initial valued problem [(1.1),(1.2)]
in the Hardy spaces H,(A) and H.(A). These are the spaces of analytic functions:f(z)=
n°§° 1°"zn_ Lin the unit disk A = {z: | z| < 1}, which satisfy respectively the conditions:
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no}?l | oy 2 < o0 and ”cﬁl |ap| < oo or equivalently the conditions:

sup IQI | f(rei',) | 249 < 00 and sup ,[2! | f(rew) | dY < oo,
1J0 o<r<1 J0

o<r<
for re'd =
2. REDUCTION OF THE SCHRODINGER EQUATION.
d
LD 4 s = 2100 (2.1)

in Hy(A)(H(A)) to an abstract operator form. (We follow the method prescribed in [2] and [3]).
Let H denote an abstract separable Hilbert space with an orthogonal basis {e,,}{° and let V
be the unilateral shift operator on H, i.e.,

ViVe,=e n=1,2,--~,V*:V*cn=e”_l, n#l, V*el=0

n+1
is the adjoint operator of V.

Every function f(z) ="°§°lanz"“1 in Ho(A) can be represented as follows: f(z) =(f,,f), where
(-, -) means the scalar product in H and f, = ”Ogolz"_ le,,, |z] <1 are the eigenelements of V*.

The space H, is the Banach space which consists of those elements f= ni‘,’la népy 10 H,
(overbar means complex conjugate), that satisfy the condition"o};:> N (fren) | < oo This space under
the isomorphism f(2) = (f,, f) is isomorphic to H;(A).

The norm in H; is denoted by: [ f|l;= noél |(fien)|. To any open set or dense linear
manifold E in H(H;) corresponds an open set or dense linear manifold E in Ho(A)(H,(A)).
Suppose that 4 is a mapping in Hy(A)(H,(A)) and 4 is a mapping in H(H;). Then if the relation
Af(z)=(f,Af) holds Vf €E, we call A the abstrax:t form of A. For example if A4 is the
differential operator 4 ;:5 in Hy(A), ie., Af(z)—d #(z) , then 4 = (C,V* 2=c o(Co +IV*2, where C,
is the diagonal operator C,e, = nep,n=1,2, - - (see for details in [2] and [3]).

Every bounded operator on H,(A)(H) is defined on H,(A)(H;) and maps, in general, elements
of H (A)(H,) into Hy(A)(H).

The following properties follow easily:

(i) Hyis invariant under the operators V,V* and |V ||{ = ||V*||; =1, where || A||| means
the norm of an operator on H 1

(ii) H, is invariant under every bounded diagonal operator De, =dye,,n=1,2,--- on H
and |Dlly= I DIl = supldg].

(iii) For every element f(z)= "ogolan M~ lin H 1(4) the uniform limit of the sequence
'___}'_515 iVi -1 e, lim ; gl a; vi—1 exists and defines a bounded operator f*(V)=a 1+a@gv +63V2
+ .. on H;. Moreover || f*V)|I;=IIfll;

(iv) The null space of V*¥ in H belongs to H I

Now we write equation (2.1) in the form:

—§+52f(z) Af(z)=0. (2.2)

The abstract form of equation (2.2) is the following:

(CoV*)?-Af=0 (2.3)
or
(vV*2-BiAf =0, (2.4)
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where 4, =4 —s2I and B, is the diagonal operator on H:Be, = e n=12,---.

1
n(n+1)
This means that equation (2.2) has a solution in Ho(A)(H,(A)) satisfying the conditions

£(0) =0, £(0) = 1 iff equation (2.4) has a solution in H(H) satisfying the conditions:

(fieq)=0, (fieg) =1 (2.5)

Note that H | is imbedded in H in the sense that f in H implies f in H and || fIl < 1S 1]
3. SOLUTION OF THE CAUCHY PROBLEM [(2.4), (2.5)] IN H AND H,.

THEOREM 1. The equation (V* - Ill] V=0 has at least one solution in # which satisfres
the condition (f.¢)) =0.

PROOF. Set f=Vg, then (Vg.e)=(y.V*¢)=(g.0)=0. Also (v"z—lflﬁl)(r,n:o inplies
VHI-VBjAV)g=0.

Thus (1 -VB{A4V)g = ce;.
Now since B, is compact, V and A4 bounded the operator VB4V is compact and the Fredholn
alternative implies that either: (/-VBj4V)g=0 for ¢#0 or (I—VBIZIV)‘1 exists and it is
bounded.

In the first case g#0 is a solution of equation (2.4). In the second case we have
g=c(I-VBjA V) ley£0forc#0. D

Theorem 1 implies that the Schrodinger equation (2.1) has at least one solution in Hy(A)
which satisfies the condition f(0)=0, for every real or complex s, and every bounded linear
operator A on Hy(A).

THEOREM 2. I ||4;|| <2, then equation (2.4) has a unique solution in H which satisfies
the conditions (2.5).

PROOF. Set f = e2+V2g, then obviously (f,e;) =0 and (f,e;) =1. Also from equation (2.4)
we get: —BiAjeq+Ig—BjA 1V2g = 0 which implies that

(I-BjAVYg =B 4 e, (3.1)

(i) If Ajey=0, then e, is the unique solution in H which satisfies the initial conditions,
since (I — B;4 1V2)g =0 implies that ¢ =0.

(1) If 4 ey #0, then from equation (3.1) since || By || =% and || 4 || <2, we easily get that
It B4 1V2 | <1. Hence the inverse of (I —BIZIV2) exists and it is bounded on H. Therefore
9=(I-BjA 1V2) - lBl}i 169 9# 0 and g is uniquely defined. O

There has been defined, in [3], a class of bounded operators on H(H,) which have the so-
called “k-invariant property.” + Abstract forms of local potentials of the form: Af(z) = a(z)f(z) are
included in this class.

The importance of such operators is due to the fact that if 4, is k-invariant on the space H,,
then the operator 4, =1- V2BIZI leaves invariant the space H; and when restricted on it, has a
bounded inverse (see [3], Theorem 3.2).

DEFINITION. A bounded operator 4 on H is called k-invariant iff its adjoint 4* has the
property: A%e; € M, 1 where M; is the subspace spanned by {ej,eq, - - ey k—1}
i=12-.-..

Such operators are the diagonal operators in the basis {e,}{°, analytic functions of the shift
V, algebraic combinations of the above and polynomial functions of V* of degree less than .

In accordance with the above definition a bounded operator A on Hy(A)(H(A))) is called 2-
invariant iff its adjoint A* has the property: A*:ie{l,z,2% - --,2'}, where {1,222 - - -,2'}, is the

i

subspace of Hy(A)(H,(A)) spanned by the elements 1,2,22,- - -, 2.
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For example the operator:

A= Af(z) = af(2) + () + Hf(2) - £(0))
is a 2-invariant self adjoint operator on Ho(A).

THEOREM 3. The Cauchy problem:

& ’ $IC) 1 age) = 21() (3.2)

f@=0, f(0)=1, (3.3)

where 4 is any 2-invariant operator on H 1(A), has a unique solution in H,(A) for every s € C.
This solution is bounded for every :z in the unit disc.
PROOF. The abstract form of (3.2) is:

(v*2-B,A +s2B))f =0 (3.4)

and the conditions (3.3) are equivalent to

(fre) =0, (freg) =1 (3.5)

Setting f = ey + v2g which obviously satisfies the initial conditions (3.5) we get:

(I - By(A - stV ?)g = By (A& - s2)e,. (3.6)

The operators V,V* and B, leave the space H, invariant. The same holds for the operator
(I-By(4 —s2)¥'2), which restricted on H, has a bounded inverse (see [3], Theorem 3.2). Also
B(4 —s2)e2 =h € Hy and the unique solution of (3.6) is given by: ¢=(I-Bj(4 - s2)2) = 1p,

For every /()= & an" = € Hy(&) we have: 1£(2)1 < E lanl = 1)1l g () <o I21 <1
This shows that the solution predicted by the theorem is bounded for |z| <1. D
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