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ABSTRACT. This paper utilizes the method of extremal length to study several diameter problems
for functions conformal outside of a disc centered at the origin, with a standard normalization,
which possess a quasiconformal extension to a ring subdomain of this disc. Known results on the
diameter of a complementary component of the image domain of a univalent function are extended.
Applications to the transfinite diameters of families of non-overlapping functions and an extension

of the Koebe one-quarter theorem are included.
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1. INTRODUCTION.

In this paper we utilize the method of extremal length to study several diameter problems for
functions conformal outside of a disc centered at the origin, with a standard normalization, which
possess a quasiconformal extension to a ring subdomain of this disc. Similar functions have been
studied by many authors, for example, Kithnau [4], Schober [7], and McLeavey [6]. Grétzsch [1]
studied diameter problems for normalized quasiconformal functions of subdomains of the unit disc
by an unrefined version of extremal length (for easy reference, see Kiinzi [5]).

The purpose of this paper is to extend known results on the diameter of a complementary
component of the image domain of a univalent function. Applications include transfinite diameters
of families of non-overlapping functions and an extension of the Koebe one-quarter theorem.

2. NOTATION.

We shall employ the following labels: z = z +iy, w = u+iv, ¢ = £ +in, F = U+iV. Let D represent
the unit disc, C the extended complex plane, Cl closure and qc. quasiconformal. The Jacobian
of a function F is denoted by J[F], and ® and 9 denote real and imaginary part, respectively.
For a simple closed Jordan curve v, let Int(y) and Ext(y) denote the bounded and unbounded
complementary components of € — {y}, respectively. Multiplication and translation functions are
represented by m,(w) = aw, T(w) = w — b, respectively. The following definition of a qc. mapping is

used in this study.
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DEFINITION. Let f be an orientation-preserving homeomorphism of a plane domain G which
has continuous first partials. Let D;(z0) = (If:(z0)] + |7 (20))/(1f:(20)| = |f5 (20)]). If Dy(z0) < K < o0
for all z, € G, for some K > 1, then f is K-qc. in G. If Dy(z) is bounded above by a function
K(Jz]) < K < oo, then f is said to be K(|z])-qc. in G.

The following constants appear frequently:
k=(K-1)/(K+1), az=1%k  By(K)=2" (K1), Cs(K)=Bs(K™).

For an arbitrary domain D that contains infinity, let £(D) consist of all functions f such that
f is univalent and regular in D apart from a simple pole at infinity where it has the normalized
expansion f(z) = z+ b+ b1z"1 +---. For a simple closed Jordan curve y contained in D, the class
T4 (D) consists of all functions f such that f restricted to DN Ext(y) is in Z(D NExt(y)), f restricted
to D Nint(y) is K-qc., and f is univalent in D — {7}. Note that f need not be continuous (or even
defined) on v, so one could consider f as a pair of “non-overlapping” functions defined on the pair
of domains D NExt(y) and DNInt(y). If the d (for discontinuous) is dropped from the symbol for the
above class of functions, then we require continuity on y. It is clear that £x(D) C £, (D). As a
special case, if v is the circle Cr = {|z| = R}, then let T , represent the family Tk c,(C — C(D)).

Modules of a curve family in a domain D will be used in this study, and will be denoted by
m(D) when the curve family has been specified. For reference to this item, see Jenkins [2]. The
following canonical mappings are also used. For a domain D of finite connectivity which contains
the origin, let ®, denote the circular slit disc mapping which fixes the origin and with &,(0) > 0, and
for a domain of finite connectivity which has at least two boundary continua, let ®; represent “the”
circular slit ring mapping, which is unique up to rotations. We also use the radial slit disc mapping
which fixes the origin and has positive first derivative at the origin. The existence of these mappings
is well-known, and our reference will be Jenkins [2], theorems 5.4, 5.6, and 5.5, respectively, pages
74-75.

3. DIAMETER THEOREMS.

THEOREM 1. Let D be a domain on the w-sphere which contains the point at infinity with
boundary components E; = CI(D), E,,...,E,, where the E;, for j = 2,...,n, are slits on concentric
circles centered at the origin. Let f be univalent in D, K-qc. in D; = DN {1 < |uw| < p}, regular in
Do = DN {|w] > p} apart from a simple pole at infinity where it has the expansion

flw) = aw+ao+aw 4. (3.1)

The function f need not be continuous on C, = {|w| = p}, but the complementary component of the
image domain of f corresponding to E; must contain CI(D). Then |a] > p!/X-1, with equality if and

only if f is equal to
eiv1pl/K-1y, for |w| > p,

A¢'1N’:(w) = {

eV C+gC-(K)  for 1 < |uw| < p,
where ¢,¥2 €R.

PROOF. First we note that, since our goal is to minimize |a|, we may restrict our mappings
f to those such that E{ = CI(D) and where there are no “gaps” between D}, and D), where image
domains and complementary components are denoted by primes. This statement arises from an
application of the Riemann mapping theorem combined with Schwarz’s inequality.

Let ¢(w) = log(w), where the branch chosen is that which takes imaginary values between 0 and
2x. First we cut off a neighborhood of infinity. Let D(R) = D n {|w| < R}, where R is chosen large
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enough so that the boundary components of D are contained in D(R). Next one transfers to the
logarithmic plane via the mapping ¢. Let A(R) = ((D(R)), A1 = ¢{(D1), and Ao(R) = A(R) — Cl(Ay).
The function f induces a mapping w = F(¢) on the variable ¢ as follows: start with a value of
¢ € A(R), take the corresponding value of w, perform the mapping f(w) = w*, then map this point by
the same branch of ¢. A calculation reveals that, on the segment og = {(£,n) : 0 < 7 < 2x,£ = log(R)},

F(¢) = ¢ +log(lal) + O(e™R).

We estimate the module of A’(R) for the class of curves which separate the boundary component
E; from the image of or under F.

For a lower bound, we employ a slight extension of Grotzsch’s lemma (see Jenkins[2], theorem
2.6, page 22). In our case, the domains A'(R), A}, and A)(R) are not doubly-connected due to the
additional boundary components. To adapt Grotzsch’s lemma to the present situation, instead of
employing the canonical mapping of a doubly-connected domain onto a circular ring, as in the proof
of Grotzsch’s lemma, one must employ the circular slit ring mapping ®;. With this modification,
the rest of the proof of Grotzsch’s lemma carries through. After this, we apply the quasi-invariance
of the module under a K-qc. mapping and conformal invariance of the module to show that

m(A(R)) > m(AL) + m(AY(R))
2 K™'m(A1) + m(Ao(R))
= (K~! = 1)(27) " log(p) + (27) ! log(R).

To estimate the module from above, the metric (2x)~|d¢| is clearly admissible in the module

problem, thus by employing the expansion for F on or we have

m(A'(R)) < (27)72 .// dA
A'(R)
< (27) 7 [log(la) + log(R) + O(e™®)].

Combining the upper and lower estimates and letting R tend to infinity yields the inequality of
the theorem.

The equality statement is obtained by first assuming equality holds throughout the proof and
then employing the equality statement in Grotzsch’s (extended) lemma. For w € Dy, the uniqueness
of the circular slit mapping for domains of finite connectivity (theorem 5.4, page 74, Jenkins [2]) is
used, and for w € D,, one proceeds as in Kunzi [5], page 100, Satz 3a.

We remark that the proof of the inequality in theorem 1 only depends upon the modules of A,
and Ao(R). Thus the inequality remains valid for domains of infinite connectivity, provided the set
of boundary slits do not affect the modules of A; and Aq(R), i.e., the set of boundary slits form a
minimal slit set (for reference, see Jenkins [2], page 81). The price one pays for this extension is a
sacrifice of uniqueness of the extremal mapping, since the circular slit mapping need not be unique
for domains of infinite connectivity.

We mention another extension of theorem 1. Its proof is an obvious modification of the proof of
theorem 1. For theorem 2, ¢ will always represent any integer between 1 and N, inclusive, for N any
fixed integer. Let 1= Ry < Ry < -- < Ry, denote Cg, = {|lw| = R,}, and let D, = {R,-1 < |u| < R} ND,
where D is as in theorem 1.

THEOREM 2. Let D be a domain conditioned as in theorem 1. Let f be as in theorem 1, but
now assume f is K,-qc. in Dy, f not necessarily continuous on Cg,. Then

N
1
lod > 5= TT (Re/ Ry-)!/
q=1



682 P. DEIERMANN

with equality if and only if f(w) = Ay,, .y, (w) , Where

eV RM¥TIIZ1 (R, /R, -1) % wC+ KOG C- (KD for w € Dy,

Ay, gvp(w) = {C'WHR;,‘ n;vﬂ (R]/R]_I)IIKJ w else,
where ¥1,... ,Y¥n41 ER.
The next corollary is proven by forming a Riemann sum and applying the above theorem. For
an example of this, see McLeavey [6], and for another method of proof, see Kunzi [5], page 27.
COROLLARY. Let D be a domain conditioned as in theorem 1. Let f be as in theorem 1, but
now assume that fis K(Jw|)-qc. in Dy = {1 < |uw| < p} ND, where for simplicity, we assume that K(|w|)

r=p
1 dr
—1 ar
jal > exp[ K(r)r],

r=1

is a continuous function. Then

with equality if and only if, for w = re’?, 1,92 €R,

r=rg
1 dr| . .
exp [ / ) T] evei¥r  for 1< ry<p,
f(w) = r=t r=p
1 dr
1Yz ,—1 puidel
we*¥?p~1 exp [ &0 r] for ro > p.
r=1

Now we use theorem 1 to extend a classical diameter theorem due to Grétzsch, where our
reference will be Jenkins [2], page 90, theorem 6.5. We follow the notation of Jenkins whenever
possible. It will be clear that corresponding results could be proven using theorem 2 in place of
theorem 1.

THEOREM 3. Let D be a domain in the z-sphere which contains the point at infinity with
boundary components Cj,...,Cn, with n > 1. Let v denote a simple closed Jordan curve contained
in D, with C,...,Cp, CInt(y), for n > p> 1. Let f* € £ (D), and let a continuum I' correspond to C,
under f*. Then the diameter of T attains its maximum uniquely for the functions ex(z) + ¢ and its
rotations, where c is an arbitrary constant, and ex(z) is constructed below.

PROOF. Let D* = DnInt(y), D** = DN Ext(y). One first maps D* conformally onto a circular
slit ring with C, corresponding to the circle |w| = 1, ¥ corresponding to the circle |w| = P!, for
0 < P <1, and the remaining boundary components in D* corresponding to slits on circles centered
at the origin. This mapping is ®3(z) = 1/®3(z), and is unique up to a rotation about the origin.

Next one maps D** conformally onto |w| > 1/P minus slits on circles centered at the origin,
where v corresponds to |w| = 1/P, and infinity remains fixed. The mapping is ®](z) = [P®:1(z"1)]"?,
where we assume &}(0) > 0.

Let Ao, be the function of theorem 1, with p replaced by P-1, and let g(w*) = w* + (w*)~!. Let
Q = PYVX®/(0) and define

mgogoAgpodi(z) for ze D,
ex(z) =
mqogoAggo®(z) for ze Dr.

Let T denote the horizontal slit on the real axis which corresponds to C; under the mapping
ex- Let n be such that f* = noex is an arbitrary function in £% (D). To apply theorem 1, we must
restrict our mappings n to those whose image domains are “geometrically nice.”

LEMMA 1. Assume the complementary component Y’ of the image domain of n which corre-
sponds to T is not a horizontal segment. Let a,b € Y’ be such that |a — b] equals the diameter of 1’.
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Then there exists a mapping h € £(C - T') such that the complementary component of the image
domain of h is a horizontal segment of length 4a, for some a > 0, with |a — b| < 4a.

The proof of this lemma follows easily from the Riemann mapping theorem and the classical
maximum diameter theorem for univalent functions.

Since honoex is a competitor in our problem, to maximize diameter it suffices to assume that
T’ is a horizontal segment of length 4a, which we temporarily assume lies on the real axis and is
centered at the origin. The goal now becomes to maximize o, which is accomplished by applying
theorem 1 to the function g=!om;;, 0n0omgqogoAge(w), where the branch of g-! is that which maps
onto the exterior of the closed unit disc, to yield a < Q.

The uniqueness statement is proven by removing our temporary assumption on T’ and allowing
rotations in @, and ®,, and then renormalizing by rotating the final image domain.

When &; and 3 are known, one can explicitly calculate the maximum diameter and all extremal
functions, as in the following corollary.

COROLLARY 1. Let f* € £k z. The diameter ¢ of the complementary component of the image
domain of f* satisfies ¢ < 4R'-YX_ with equality if and only if f* equals

24 (RY)V-VK -1 for |z| > R,
FM={

RV (|50 4 (R0 )1} for 1< o] < R,

and the rotations and translations e~* f£(e’z) 4 ¢, where ¢ is an arbitrary constant.
A standard manipulation of corollary 1 provides an extension of Koebe’s one-quarter theorem.
COROLLARY 2. Let f* be univalent in D, regular in {|z| < r} with a continuous K-qc. extension
to the rest of D, with an expansion in a neighborhood of the origin being f*(z) = z + az2? + ---.
Also assume that f* does not take the value infinity in D. Then the values of f* cover the disc
{lw] < 471r1-1/K} If an omitted value wy of f* is such that |wp) = 4-1r1-1/KX then f* equals

zf (1 4 22e~%9301/K-1)) for |z] < r,
fE(Z) = i 2(1/K-1
(= 2Kz (1 +em3 07D ) for k<o < 1.
Next an application of corollary 1 is proven which extends corollary 7.3, page 124, in Jenkins

[2]. It will be clear that one can also extend corollaries 7.1 and 7.4 in Jenkins [2]. First some labels

are given. Let 0 <r <1< r; < oo, let K, > 1, for i = 1,2, let
Dy ={lzl<r}, Ri={r <|z| <1}, Dy ={ra< |2}, Ra={1< |z < ra}.

Let S; consist of all functions f; such that f; is Ky-qc. in R,, with a not necessarily continuous
conformal extension to D, with expansion for z € D, being f(z) = az + a3z + -, and f; is non-
overlapping, fi({R1}) N fi({D1}) = 0. Let T, consist of all functions f; such that f; is K;-qc. in Ry,
with a not necessarily continuous conformal extension to € — Ci(D), with expansion for z € D; being
f(z)=bz+bo+ bzl + -, and f,({Ra}) N f2({D3}) = 0.

COROLLARY 3. Let f; € 51, f; € T3, with f1(D) N f(C - C(D)) = 8. Then

la/bl < r} 01D 30K,

with equality occurring only for the functions, ¢;,¢; € R, for i = 1,2, x> 0,

2C+(K)zC-(Kideidiy  for z € Ry,
B2 =

zr?C-(Ki)ciw.- M for z € D;.
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PROOF. The proof follows the same scheme as before. One forms the alleged extremal functions,
then composes them with functions such that the compositions are competitors in the extremal prob-
lem. The univalent case (Jenkins [2], corollary 7.3) combined with the Riemann mapping theorem
allows one to restrict competition to only those functions whose image domains are geometrically
nice. An application of corollary 1 then proves the theorem.

We conclude this paper with corresponding results for the minimum diameter theorem. For this
we first achieve a result analogous to theorem 1.

THEOREM 4. Let D be a domain on the w-sphere which contains infinity, with boundary
components E; = CI(D), E,, ..,E., where the E,, for j = 2,...,n, consist of slits on rays emanating
from the origin, and which are contained in {1 < |w| < p}. Let f be continuous and univalent in D
with continuous first partials in D, = DN {1 < |w| < p}, regular in Dy = D N {|w| > p} apart from a
simple pole at infinity where it has the expansion (3.1). Assume the complementary component of
the image domain of f which corresponds to E; is the closed unit disc. Let ¢(w) = log(w) be as in
theorem 1, let A, = ¢(D,), and let w = F(¢) be the mapping induced by f as in theorem 1. Finally,
for ¢ € A,, assume the induced map F satisfies

2
J[Flzl/(2(1+k’)){(u+)’ o e

oF|?
%\ } ) (3.2)

Then |a| < 1, with equality if and only if f is a rotation of D.

PROOF. As in theorem 1 we map to the logarithmic plane. We will need uniform convergence
of the expansion of F, so let ¢ > 0, let A, be the image of {1 < |w| < pe‘} N D under ¢, and let A, be
the image of A, under the induced mapping F. For ¢ € Aq = ((Do), the following expansion is valid
for F:

F(¢) = ¢ + log(a) + powers of e~¢.

Using this expansion, an upper bound for the area of A/ is given by
n=2x
Aar < / R[F(log(p) + € +in)] dn
n=0
= 2xlog(|e|) + Aa.,
where A5 denotes the area of a set S.

For a lower bound, first we must restrict our functions to those whose image domains are
geometrically nice.

LEMMA 2. Assume the complementary components of the image domain of f corresponding to
E,,...,E, do not all consist of slits on rays emanating from the origin. Then there exists a function 4,
regular and univalent in f(D) apart from a simple pole at infinity where k(W) = pW +bo+b,W =1 +---,
such that the complementary component of the image domain of h corresponding to the closed unit
disc is the closed unit disc, the other complementary components consist of slits on rays emanating
from the origin, and furthermore, |8] > 1.

The proof of this lemma is identical to the proof of lemma 1 except now the existence of h is a
well-known example of a canonical conformal mapping (see, for example, theorem 5.5, Jenkins [2],
page 74). It is also well-known that |8| > 1, strict inequality due to the assumption on the image
domain of f (see theorem 5.2, Jenkins [2], page 73).

If welet g* = hof, it is easy to see that the mapping induced by g¢* satisfies inequality (3.2). Thus

¢* is a competitor of f with a geometrically nice image domain such that |¢*/(c0)| > |f'(c0)|. Therefore
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it suffices to assume that the image domain of f has complementary components consisting of the
closed unit disc along with slits on rays emanating from the origin.

The lower bound for the area of A/ is now derived. First integrate both sides of (3.2) over
A.. Apply Schwarz’s inequality and then Fubini’s theorem to each of the integrals on the right
side of (3.2). After this, employ an obvious geometric inequality, which is where the lemma on the
boundary components of the image domain of f comes into play. The details are as follows.

Let 7, = {(£,) : 0 < € < log(p) + ¢,n = o}, then

v { T 11

2

n=2r
> (/1A€)"1 { / R([F (log(p) + € + in) — 0] dq}

n=0
2 Ap, + (2)2x log(la)), (3.3)

where we only integrate over those n’s which avoid the horizontal boundary slits.

Similarly, using vertical segments instead of horizontal segments, we get
A,

Inserting (3.3) and (3.4) into the integrated inequality obtained from (3.2) yields

(3.4)

// J[F1dA > Ap, + (1+2k/(1 + k%)) 2x log(|al).
Combining the upper and lower estimates yields the inequality of the theorem.
The proof of the equality statement is straightforward.
COROLLARY. Let f* € £ z. The diameter ¢ of the complementary component of f* satisfies
¢ > 2R'-X | with equality if and only if f* equals

z for |z| > R,
B(2) =

R-KB+(0z8-00  for 1 < |z| < R,

and the translations fZ(z)+ ¢, where ¢ is an arbitrary constant.

PROOF. Let f be an arbitrary function such that f* = f o mgx-1 0 f€ € L p, With an expansion
in {jw| > RX} being f(w) = R*"Xw+bg+bjw=1+.... Another analogue of lemma 1 is needed to restrict
our functions to those with geometrically nice image domains. The proof is the same as that of
lemma 1, except now one combines the Riemann mapping theorem with the classical minimum
diameter theorem for univalent functions.

LEMMA 3. Assume the complementary component Y’ of the image domain of f which cor-
responds to CI(D) is not a circle. Then there exists h € £(C — 1) such that the complementary
component of the image domain of & is a circle of diameter ¢. Moreover, if ¢* is the diameter of T/,
then ¢ < o°.

By lemma 3, since the goal is to minimize diameter, and since ho f* is a competitor, it suffices
to assume that f* has complementary component a circle centered at a point ¢, of radius a. So
minimizing « becomes the goal. A calculation verifies that inequality (2) of theorem 4 holds for the
induced mapping F of f. Thus an application of theorem 4 to the function my;, 0 T_. o f proves the

corollary.
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