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ABSTRACT. This paper utilizes the method of extremal length to study several diameter problems

for functions conformal outside of a disc centered at the origin, with a standard normalization,
which possess a quasiconformal extension to a ring subdomain of this disc. Known results on the

diameter of a complementary component of the image domain of a univalent function are extended.

Applications to the transfinite diameters of families of non-overlapping functions and an extension

of the Koebe one-quarter theorem are included.
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1. INTRODUCTION.
In this paper we utilize the method of extremal length to study several diameter problems for

functions conformal outside of a disc centered at the origin, with a standard normalization, which

possess a quasiconformal extension to a ring subdomain of this disc. Similar functions have been

studied by many authors, for example, Kfihnau [4], Schober [7], and McLeavey [61. GrStzsch [1
studied diameter problems for normalized quasiconformal functions of subdomains of the unit disc

by an unrefined version of extremal length (for easy reference, see Kfinzi [51).
The purpose of this paper is to extend known results on the diameter of a complementary

component of the image domain of a univalent function. Applications include transfinite diameters

of families of non-overlapping functions and an extension of the Koebe one-quarter theorem.

2. NOTATION.
We shall employ the following labels: z z + iy, w u + iv, C + i, F U + iV. Let D represent

the unit disc, the extended complex plane, C1 closure and qc. quasiconformal. The Jacobian

of a function F is denoted by J[F], and and denote real and imaginary part, respectively.
For a simple closed Jordan curve , let Int(7) and Ext(7) denote the bounded and unbouided

complementary components of - {-}, respectively. Multiplication and translation functions are

represented by m,,(w) aw, Tb(w) w- b, respectively. The following definition of a qc. mapping is

used in this study.
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DEFINITION. Let f be an orientation-preserving homeomorphism of a plane domain G which

has continuous first partials. Let D.t(zo)= (IL(z0)l + Ifr(zo)l)/(IL(zo)l- I/’-(z0)l). If D.(zo) < li < oo

for all z0 6 G, for some K > 1, then /’ is K-qc. in G. If D.(z) is bounded above by a function

K(Izl) < K < oo, then y is said to be K(Izl)-qc. in G.

The following constants appear frequently:

k (K 1)/(K + 1), a+ + k, B+(K) 2-1(K 4- 1), C+(K) B+(K-1).

For an arbitrary domain/ that contains infinity, let X:() consist of all functions y such that

f is univalent and regular in apart from a simple pole at infinity where it has the normalized

expansion .f(z) z + bo + blz- + For a simple closed Jordan curve - contained in 9, the class

X; (:o) consists of all functions f such that f restricted to n Ext(-y) is in E( n Ext(.)) j’ rcstrictedK,’y

to :O Int(,) is K-qc., and y is univalent in :O- {’r}. Note that f need not be continuous (or even

defined) on "r, so one could consider f as a pair of "non-overlapping" functions defined on the pair

of domains f Ext(,) and/ Int(7). If the d (for discontinuous) is dropped from the symbol for the

above class of functions, then we require continuity on 7. It is clear that EK,(:D) C EK,(D). As a

special case, if "r is the circle Cn {[z[ R}, then let X;.,n represent the family :EK,c(-CI(D)).
Modules of a curve family in a domain will be used in this study, and will be denoted by

re(V) when the curve family has been specified. For reference to this item, see Jenkins [2]. The

following canonical mappings are also used. For a domain :o of finite connectivity which contains

the origin, let O1 denote the circular slit disc mapping which fixes the origin and with O](0) > 0, and

for a domain of finite connectivity which has at least two boundary continua, let o2 represent "the"

circular slit ring mapping, which is unique up to rotations. We also use the radial slit disc mapping

which fixes the origin and has positive first derivative at the origin. The existence of these mappings

is well-known, and our reference will be Jenkins [2], theorems 5.4, 5.6, and 5.5, respectively, pages

74-75.

3. DIAMETER THEOREMS.
THEOREM 1. Let :O be a domain on the w-sphere which contains the point at infinity with

boundaxy components E1 C/(D), E:,...,E,.,, where the E, for j 2 n, are slits on concentric

circles centered at the origin. Let I be univalent in 9, K-qc. in D1 c {1 < Iw] </}, regular in

:O0 :O C {Iw] >/} apart from a simple pole at infinity where it has the expansion

f(to) OtO + a0 + (1110
-1 +

The function f need not be continuous on Ca {Iwl p}, but the complementary component of the

image domain of I corresponding to Ex must contain CI(D). Then [a[ >_ pxm-x, with equality if d

only if I is equal to
e*,p/x-w for Iwl > P,

ei’wc+(u)-(K) for < ]w] < p,

where , R.

PROOF. First we note that, since our goal is to minimize ]al, we may restrict our mappings

I to those su that El C/(D) and where there are no "gaps" betwn D and D, where image
domains and complentary components are denoted by prim. This statement arises from

application of the emann mapping threm combined with Swarz’s inequality.

Let (w) log(w), where the branch chosen is that which takes imaginary values betwn 0 d

2. First we cut off a neighborhood of infinity. Let (R) {]w] < R}, where R is osen large
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enough so that the boundary components of 9 are contained in/)(R). Next one transfers to the

logarithmic plane via the mapping (. Let A(R)= ((/)(R)), AI ((190, and A0(R) A(R)-

The function I induces a mapping w F() on the variable ( as follows: start with a value of

( E A(R), take the corresponding value of w, perform the mapping l(w) w’, then map this point by

the same branch of . A calculation reveals that, on the segment ai {(, ) 0 _< < 2, log(R)},

F() C + os(I-I) + o(,-).

We estimate the module of A’(R) for the class of curves which separate the boundary component

El from the image of as under F.

For a lower bound, we employ a slight extension of GrStzsch’s lemma (see Jenkins[2], theorem

2.6, page 22). In our case, the domains A’(R), A], and A(R) are not doubly-connected due to the

additional boundary components. To adapt GrStzsch’s lemma to the present situation, instead of

employing the canonical mapping of a doubly-connected domain onto a circular ring, as in the proof

of GrStzsch’s lemma, one must employ the circular slit ring mapping @2. With this modification,
the rest of the proof of GrStzsch’s lemma carries through. After this, we apply the quasi-invariance

of the module under a K-qc. mapping and conformal invariance of the module to show that

(A’(R)) _> ,(Ai) + -(,(R))

>_ K-m(A) + m(Ao(R))

(K- 1)(2r)-1 log(p) + (2r)- log(R).

To estimate the module from above, the metric (2)-1 [d(l is clearly admissible in the module

problem, thus by employing the expansion for F on aa we have

m(A’(R)) _< (2r)-2 //dA
’()

_< (-)-[og(I-I) + log(a) + O(-)].

Combining the upper and lower estimates and letting R tend to infinity yields the inequality of

the theorem.

The equality statement is obtained by first assuming equality holds throughout the proof and

then employing the equality statement in Gr6tzsch’s (extended) lemma. For w )0, the uniqueness

of the circular slit mapping for domains of finite connectivity (theorem 5.4, page 74, Jenkins [2]) is

used, and for w 6 a, one proceeds as in Kfinzi [5], page 100, Satz 3a.

We remark that the proof of the inequality in theorem I only depends upon the modules of

and A0(R). Thus the inequality remains valid for domains of infinite connectivity, provided the set

of boundary slits do not affect the modules of A and A0(R), i.e., the set of boundary slits form a

minimal slit set (for refe:ence, see Jenkins [2], page 81). The price one pays for this extension is a

sacrifice of uniqueness of the extremal mapping, since the circular slit mapping need not be unique

for domains of infinite connectivity.

We mention another extension of theorem 1. Its proof is an obvious modification of the proof of

theorem 1. For theorem 2, q will always represent any integer between and N, inclusive, for N any

fixed integer. Let R0 < R < ..-< R, denote Cn {]w] R}, and let

where z) is as in theorem 1.

THEOREM 2. Let z) be a domain conditioned as in theorem 1. Let I be as in theorem 1, but

now assume I is K-qc. in Z), I not necessarily continuous on C. Then

I-I >- (,/,_)v,
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with equality if and only if f(w) A,,. ,,,/,(w) where

A,,, ,,+,(w)
e’*+’R H=, (R/R-z)’/r w else,

where z,... ,+ E R.

The next corollary is proven by forming a Riemann sum and applying the above theorem. For
an example of this, see McLeavey [6], and for another method of proof, see Kunzi [5], page 27.

COROLLARY. Let v be a domain conditioned in threm 1. Let I be in threm 1, but

now sume that I is K(Iwl)-qc. in V {1 < Iwl < p}, where for simplicity, we sume that K(Iwl)
is a continuous function. Then

lal p- exp
[, K(r)

with equality if and only if, for w r0e*, , e R,

exp

Jz K(r)
eiei’ for < r0 < p,

l()

L,g,
for ro > p.

Now we use threm o exen elision] imeer hrem ue o r6zs, were our

reerence will be 3ekins [2], pe 90, heorem 6.5. We follow he noion of 3enkins whenev

possible. will be clear eorresponin results coul be proven usin rem 2 in place of

heorem ].

ORM 3. e be omin in he z-sphere which eonins he poJn Jnfini
bounr7 components Gz,...,G, wi ]. et 7 enote simple e]ose 3on curve

in , wih , c mt(), for, > > e " E

under 7*. hen he diameter of ins is mximum unique]7 for he uncfions (z)+

00. e D R lm() D** D R xt(). One firs mps D* conform]17 onto circular

s]i fin wih corresponding to he circle I1 t, corresponin o the circe I1 P-Z, for

0 < P < , ne reminin bounder7 components in D* corespondin to shs on c]re] centered

he ofiin. is mppn s (z) t/(z), n is unique up to roion bout te
Nex one mps D** conorml]7 onto I=1 > tIP nus slis on circtes eenere e

wee we sume (0) > 0.

e 0,0 be the function o rem ], wi p rep]ce b7 P-, n ]e (==) =* + (=*)-z. e

(=)= oo0,0o;() for ",

t m A0,0 ;(z) for z E

resfic our mppings n o hose wose image omins re =geomerc]] nice."

MMA ]. Assume te complementary compoen of e ]mge domain o n wich corre-

sponds to s no ofizon] segment. e , E ’ be suc I l equals he diameter of ’.
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Then there exists a mapping h e Z(- T’) such that the complementary component of the image
domain of h is a horizontal segment of length 4a, for some > 0, with

The proof of this lemma follows easily from the Riemann mapping theorem and the classical

maximum diameter theorem for univalent functions.

Since h n eK is a competitor in our problem, to maximize diameter it suffices to assume that

T’ is a horizontal segment of length 4a, which we temporarily assume lies on the real axis and is

centered at the origin. The goal now becomes to maximize a, which is accomplished by applying
theorem to the function g- omllaonomqogoAo,o(w), where the branch of g- is that which maps

onto the exterior of the closed unit disc, to yield a < Q.

The uniqueness statement is proven by removing our temporary assumption on T’ and allowing
rotations in 01 and %, and then renormalizing by rotating the final image domain.

When O; and o; are known, one can explicitly calculate the maximum diameter and all extrcmal

functions, as in the following corollary.
COROLLARY 1. Let 1’" e :E,R. The diameter e of the complementary component of the image

domain of f" satisfies e < 4R1-1/K, with equality if and only if y" equals

z + (R2)-lmz-1 for Izl >_
/E(z)

and the rotations and translations e-iys(esz) + c, where c is an arbitrary constant.

A standard manipulation of corollary provides an extension of Koebe’s one-quarter theorem.

COROLLARY 2. Let I" be univalent in D, regular in {Izl < r} with a continuous K-qc. extension

to the rest of D, with an expansion in a neighborhood of the origin being y*(z) z + a2z2+....
Also assume that I" does not take the value infinity in D. Then the values of J" cover the disc

{Iwl < 4-Irl-a/K}. If an omitted value w0 of y" is such that Iw01- 4-1r1-I/K, then y" equals

z/ (1 + z2e-=rO/x-l)) for Izl
fS(z)

(-z i,i)x/,-a,/(1 + -’is I,I’(’/K-a) ,=) for r <

Next an application of corollary 1 is proven which extends corollary 7.3, page 124, in Jenkins

[2]. It will be clear that one can also extend corollaries 7.1 and 7.4 in Jenkins [2]. First some labels

are given. Let 0 < r < < r < oo, let K, > 1, for 1, 2, let

Let Sx consist of MI functions ft such that fx is K-qc. in Rt, with a not necsily continuous
nformM extension to D, with expsion for z D1 ing ft(z) az + az + ..., d 1x is non-

overlapping, ((}) f((D1})= $. Let E consist of MI functions f su that is K-qc. in R,
with a not necessarily continuous conformal extension to -CI(D), with expansion for z e being
y(z) bz + bo + bz- +..., and ({}) y({V}) $.

COROLLARY 3. Let e S, I e , with (D)f- CI(D)) =$. Then

c_(u) c_(u)

with equality occurring only for the functions, 9, e R, for 1, 2, p > 0,

zC+(Ki)C-(Ki)eiOip for z e ,
zr p for z
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PROOF. The proof follows the same scheme as before. One forms the alleged extremal functions,

then composes them with functions such that the compositions are competitors in the extremal prob-

lem. The univalent case (Jenkins [2], corollary 7.3) combined with the Riemann mapping theorem

allows one to restrict competition to only those functions whose image domains are geometrically

nice. An application of corollary then proves the theorem.

We conclude this paper with corresponding results for the minimum diameter theorem. For this

we first achieve a result analogous to theorem 1.

THEOREM 4. Let /9 be a domain on the w-sphere which contains infinity, with boundary

components E CI(D), E E, where the E, for j 2,...,n, consist of slits on rays emanating

from the origin, and which are contained in {1 < Iwl < p}. Let f be continuous and univalent in/9

with continuous first partials in/9 =/ t3 {1 < Iwl < p}, regular in/90 79 t3 {Iwl > p} apart from a

simple pole at infinity where it has the expansion (3.1). Assume the complementary component of

the image domain of I which corresponds to Ex is the closed unit disc. Let ((w) log(w) be as in

theorem 1, let A ((/ga), and let F(() be the mapping induced by as in theorem 1. Finally,

for A1, assume the induced map F satisfies

0 + ("- (3.)

Then lal < 1, with equality if and only if I is a rotation of 9.

PROOF. As in theorem 1 we map to the logarithmic plane. We will need uniform convergence

of the expansion of F, so let > 0, let A, be the image of {1 < Iwl < ’} n under , and let A’, be

the image of A, under the induced mapping F. For e A0 (Z0), the following expansion is valid

for F:

F() ff + los(c) + powers of -Using this expansion, an upper bound for the area of A’, is given by

.4,,: _< / [r(log(p) + + i)] ao

where As denotes the area of a set S.

For a lower bound, first we must restrict our functions to those whose image domains are

geometrically nice.

LEMMA 2. Assume the complementary components of the image domain of f corresponding to

/2 /, do not all consist of slits on rays emanating from the origin. Then there exists a function h,

regular and univalent in f(9) apart from a simple pole at infinity where h(W)= flW+bo+baW-1 +..-,

such that the complementary component of the image domain of h corresponding to the closed unit

disc is the closed unit disc, the other complementary components consist of slits on rays emanating

from the origin, and furthermore, Itl > 1.

The proof of this lemma is identical to the proof of lemma 1 except now the existence of h is a

well-known example of a canonical conformal mapping (see, for example, theorem 5.5, Jenkins [2],
page 74). It is also well-known that I#l > 1, strict inequality due to the assumption on the image

domain of f (see theorem 5.2, Jenkins [2], page 73).
If we let g" hof, it is easy to see that the mapping induced by g" satisfies inequality (3.2). Thus

g is a competitor of / with a geometrically nice image domain such that [g"(cx)l > lY()I. Therefore
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it suffices to assume that the image domain of f has complementary components consisting of the

closed unit disc along with slits on rays emanating from the origin.

The lower bound for the area of A’ is now derived. First integrate both sides of (3.2) over

A. Apply Schwarz’s inequality and then Fubini’s theorem to each of the integrals on the right

side of (3.2). After this, employ an obvious geometric inequality, which is where the lemma on the

boundary components of the image domain of f comes into play. The details are as follows.

Let ro {(, r) 0 < _< log(p) + , o}, then

I 1
(AA,)- IF(log(p) +e + i) 0] d

Aa, + ().os(l.l),

where we only integrate over those ’s whi avoid the horizontal boundy slits.

Similarly, using vertical segmen instead of horizontM segments, we get

Inserting (a.a) aria (a.4) into the integrated inequality obtained from (a.2) yields

]]le .+ ( +/( + ’)

Combining the upper end lower estimetes yields the inequality of the threm.

The prf of the equality stetement is streightforwerd.
COROLLARY. Let I" " The dieter 0 f the complement component f I" satisfies

o R-, with equality i[ and only if I" equals

I(.)
for . ,

R-g*(gl-(l for < I1 < R,

end the trslations I()+ e, where e i en arbitrary

PROOF. Let I be bitr funeti u& that I" I -, ] " ith expsin

in {11 R} being I() R-+,+-+ ntheguefle 1 i nded rriet

our functions to those with gmegricy ni imege domn. he pmf i hee

lee 1, except now one mbine he emn mpping herem wih the elie nimum

diameter theorem for unilent functions.

LEMMA . Assume the complemeny component ’ of the imege domin f

responds C() is not e circle. Then there exists h (- ’) such thet the cmplemt

mponent of the image domein of is e circle of diameter e. Morver, if 0" i the dieter

then 0 <

By lem a, since he goal i minie dieter, end ince h I" is competitor,
ume thet I" h compleme component e circle centered e e poin e, f

miniing becomes the o. A eMcultion verifie th inequality (2) f threm 4 hld [r the

induced mepping F of I. Thus n eppliction of threm 4 to the function / T_ I proves the

corollery.
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