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ABSTRACT. We take a new approach to the generation of Jacobi theta function identities. It
is complementary to the procedure which makes use of the evaluation of Parseval-like identities
for elementary cylindrically-symmetric functions on computer holograms. Our method is more
simple and explicit than this one, which was an outcome of the construction of neurocomputer
architectures through the Heisenberg model.
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Take the physical situation of optical holography described in Schempp [1]. A square-law de-
tector encodes (in a massively parallel way) the optical path-length difference z and the phase
difference y, z,y € R, of two coherent signals of the same center frequency v # 0 and ampli-
tudes p,¥ € S(R) (the Schwartz space of complex-valued C*® amplitude functions on the real
line, rapidly decreasing at infinity). Let H(p,;.,.) be the holographic transform of the writing
amplitudes ¥ and ¢

Hip,¥5.,) = [ dt ™™ (t - 2)(2), M)
which describes, by coherent superposition, the holographic angle encoding. It is also convenient
to define the auto-ambiguity function

H(;,.) = H($, ¥5,.)- (2)



806 E. ELIZALDE AND A. ROMEO

According to the corollary of theorem 4 in Schempp (1], the elementary holograms
{H(Hm, Hy;.,-)}m>0m>o0 form a Hilbert basis of the complex Hilbert space L*(R @ R), with

Ho(t) = e 5 ha(t) (3)

the Hermite function of degree n (i.e. h,(t) is the Hermite polynomial of degree n). The elementary
holograms satisfy the Parseval-Plancherel type pixel identity

> H@wp)H(oipu)= 3 |HGem ) ()
(un')EZOZ (uw')eZBZ
The terms of this identity can be explicitly identified in two possible manners:
a) Taking advantage of the classical expression for the polynomials h,(t), like in Schempp [2]
b) Reasoning by theorem 7 in Schempp (1], which states that the elementary holograms admit the
form

H(H, Hyi 7,7) = %e‘—"%@%,ﬂ(mz +igl), 5)

for all pairs (z,y) € R @ R, where ¢, .(X) denotes the matching polynomial in the variable X
associated to the bipartite graph Ko, »:

$mn(X) = 2 (~D'e(Kma, hX™7, (6)
ogig[®42]
and the coefficients ¢(Kp, »,!) are the number of disjoint synaptic interconnects of the 2-state unit
neural network K,,,.(m > n > 0) when activated by ! simultaneously firing neurons. This network
has m units in one state, n in the other, and contains ! links between pairs in the two states, so
that only one connection, at most, departs from or arrives to each unit.
Applying combinatorial analysis, we have found the general expression

m! n!

Aooms) = Cont¥ot = Gy G — 1y ™
In particular, for m = n we obtain
_ (mY?
Homm: ) = T 00 ®
Using these expressions, we recover the form of ¢, derived by the procedure a), which reads
2
$ma(X) = (~1)PmIX™ e T L™ (X?), 9)
where .
L& (XY) = T LT (XD, (10)

being L™ "(X?) the generalized Laguerre polynomial of degree n and order m — n in the variable
X2

When applying (4) to these elementary holograms, we have to evaluate both sides of the
relation

S (e W g (i + i) b (VI + i4)

(u.1')EZBZ

= ¥ e W (Ve + i (11)

(n.n')€ZDZ
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These functions are actually connected with a type of theta functions, the so-called nil-theta
functions, which may be defined in a natural way on a Heisenberg compact nilmanifold (see
Auslander [3] and Mumford [4]). Different values of m and n for the preceding equality yield
special identities whoae final form may be written down as odd powers of 7 in terms of theta-null

values 0(0,1,k) = z n*e~™ . (We adopt the notation 0(a, T, DERDY nke~"Tn¥2mne) Thys,

n=-00 n=-0oo

we obtain

p—

m=1n=0 x6(0,1,2) —0(0 1,0),

.l:-

m=2n=1 =%(0,1,6) = [81r20(0 1,4) - 6(0,1,0)],

_2"
m=3n=2 7%0(0,1,10) = 4—4[167r‘0(0 1,8) — 140726(0, 1,4) + 216(0, 1,0)],

m=4,n=3 776(0,1,14) 1024[2561r‘*6v(0 1,12) — 158407%6(0, 1, 8)

+166320726(0,1,4) — 252456(0, 1,0)],

1105234[2561r30(0 1,16) — 582407°6(0, 1, 12)

+432432076(0, 1, 8) — 45945900726(0, 1,4)
+69819756(0,1,0)],

821:;12[204&"’0(0 1,20) — 12403207%4(0, 1, 16)

+3386073607°6(0, 1,12) — 25440901200746(0, 1,8)

+2706213510007%0(0, 1,4) — 411288900756(0, 1,0)),
m=7n=6 x9%0(0,1,26) = %[4096 129(0,1,24) — 54405127°9(0, 1, 20)

+39538920967%6(0, 1, 16) — 109226269152076(0, 1,12)
+8216064216360076(0, 1,8) — 874071171873900726(0, 1, 4)
+1328426658578256(0, 1,0)],

m=5n=4 =%9(0,1,18)

m=6,n=5 ='10(0,1,22)

(12)
The first of these identities amounts to the following relation between holomorphic theta series:
_l_ = —rn’ = Z nle —mn2 (13)
r
4W n=-0o n=-—0oo

which is a fundamental expression in the theory of Jacobi theta functions. As for the other
identities, we have found a general and systematic way of producing them, which is much simpler
and straightforward than the one stemming from network models. In fact, the last three expression
were actually not explicitly obtained by Schempp: the necessary amount of time for it would had
been prohibitive.
The idea behind our procedure is to take the general relationship (see, for example, Erdélyi
(51) . .
0(0,7,0) = -6 (0.0, (14)

of which the previous identity is the special case 7 = 1. The function

F(r) = 6(0,7,0) — —\}?o (o }o) =0 (15)
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is then identically equal to zero for every 7. All their derivatives with respect to T vanish as well.
Thus, by considering o f(7) = 0 we get the fundamental expression
1 1 g 1

-7!'0(0,1',2) = —-Wa (0, ;,0) + mo (0,1—_,2) , (16)

which is another theta function identity for arbitrary 7. In particular, by setting 7 = 1 we rccover

the relation for m = 1,n = 0. However, taking the second derlvatlve of f(r) we obtain an identity

that just repeats the previous one in (12). Only after evaluating d 3 f (r) = 0 do we find the

identity for m = 2,n = 1. Thus, the way of generating independent relatlons of this sort is to
calculate "

:l—;:f(r) 1 =0, for any odd integer k. (17)
(Alternatively, we might restrict ourselves to the even derivatives as well, since the information
contained in both sets of equations is the same).

Nevertheless, in order to obtain (12), the relations (17) have to be handled in a very specific
manner. In fact, once we have derived one of these relationships, the highest order theta function
occurring must be put in terms of the rest, and the result plugged into the next identity. This is
the reason why in the expression for #2*+! one only gets 6(0,1,2k) on the L.h.s. and 6(0, 1,2k —
2),6(0,1,2k — 6),6(0,1,2k — 10),...,6(0,1,0) on the r.h.s.

Taking all this into account, we have written a REDUCE program that finds all the relevant
identities, for k up to an arbitrary value k;. After every step, each new identity is written on
the auxiliary file thetal.out. At the next iteration, the contents of this file is read by the source
program, thus incorporating into memory the knowledge of the latest obtained relation. Actually,
this program falls into the category of those that get fed from their own output. A further point
to be made is that, for the algebraic handling of these expressions, REDUCE needs not know
the explicit series form of (0,7, k). It is enough to supply it with the relations satisfied by the
T-derivatives, that is

d
;1;0(0, k) = —n0(0,7,k+2),

d 1 s R
EO(O,;,k) = 20007,k +2). (18)

A listing of the source file is given in the PCREDUCE version (Table 1). In the example chosen
we have taken k; = 7, although this value may be arbitrarily changed.
A general formula can be derived for the first and for the last coefficients of the r.h.s of the
theta identities (12). Calling these coefficients a and by, respectively, we have found
. 2 -
L [2 (ﬂ) - 1] kHl(2j+1). (19)
4 2 =
The rest of the coefficients are given by more tricky combinations of this same kind —where
some of the factors of the multi-product (either the ones from the begining or from the end) are
missing. From a practical point of view, it is more straightforward to rely directly on the recurrent
derivation and on the REDUCE program which yields explicitly any of the identites (up to any
finite, reasonable order) in a resonable amount of time.
Further research along this line will be aimed at the derivation of new identities involving
9(a,1,k), a # 0, and also multidimensional theta functions.
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off echo;
$kf:=7;
off nat;
operator theta,f,qg;
for all tau let
f(tau)=theta(0,tau,0)-1/sqrt(tau)*theta(0,1/tau,0);
for all tau,k such that fixp(k) let
df (theta(0,tau,k),tau)=-pi*theta(0,tau,k+2);
for all tau,k such that fixp(k) let
df (theta(0,1/tau,k),tau)=pi/(tau**2)*theta(0,1/tau, k+2);
for all k such that fixp(k) let
g(k)=2%*(2%k-1)*sub(tau=1, df(f(tau),tau,2*k-1));
out "{reduce\redfiles\theta2.out"; write g(1),":=0"
out “\reduce\redfiles\thetal.out"; write g(1),":=0
write "end"; shut "\reduce\redfiles\thetal.out";
for k:=2:kf do
begin
in "\reduce\redfiles\thetal.out";
out "\reduce\redfiles\theta2.out"; write g(k),":=0";
out "\reduce\redfiles\thetal.out"; write g(k),":=0";
write "end"; shut "\reduce\redfiles\thetal.out";
end;
shut "\reduce\redfiles\theta2.out";
on nat;
fquit;

z~

.
’
.
’

z

Table 1. A listing of the PCREDUCE source file.

-4*THETA(0,1,2)*PI+THETA(0,1,0):=0
(-32*THETA(0,1,6)*PI~3+120*THETA(0,1,4)*PI~2-15*THETA(0,1,0))/2:=0

-64*THETA(0,1,10)*PI~5+720*THETA(0,1,8)*PI~4-6300*THETA(0,1,4)*PI"~2
+945*THETA(0,1,0):=0

(-1024*THETA(0,1,14)*PI~7+23296*THETA(0,1,12)*PI~6-1441440*
THETA(0,1,8)*PI~4+15135120+THETA(0,1,4)*PI~2-2297295*THETA(0,1,0))/4:=0

-1024*THETA(0,1,18)*PI~9+39168*THETA(0,1,16)*PI~8-8910720*THETA
(0,1,12)*PI~6+661620960*THETA(O,1,8)*PI~4-7029722700*THETA(0,1,4)*PI"2
+1068242175*THETA(0,1,0):=0

(-8192*THETA(0,1,22)*PI~11+473088*THETA(0,1,20)*PI~10-286513920
*THETA(0,1,16)*PI~8+78218300160*THETA(0,1,12)*PI"6-5876848177200
*THETA(0,1,8)*PI~4+ 62513532081000*THETA(0,1,4)*PI"2
9500773607325*THETA(0,1,0))/2:=0

-16384*THETA(0,1,26)*PI~13+1331200*THETA(0,1,24)*PI~12—
1768166400*THETA(0,1,20)*PI~10+1285014931200*THETA(0,1,16)*PI"8-
354985374744000+THETA(0,1,12)*PI~6+ 26702208703170000*THETA(0,1,8)*PI"4
-284073130859017500*THETA(0,1,4)*PI~2+43173866403793125*THETA(0,1,0):=0

Table 2. The successive theta function identities.
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