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ABSTRACT. We take a new approach to the generation of Jacobi theta function identities. It
is complementary to the procedure which makes use of the evaluation of Parseval-like identities

for elementary cylindrically-symmetric functions on computer holograms. Our method is more

simple and explicit than this one, which was an outcome of the construction of neurocomputer

architectures through the Heisenberg model.
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Take the physical situation of optical holography described in Schempp [1]. A square-law de-

tector encodes (in a massively parallel way) the optical path-length difference x and the phase

difference y, x,y E R, of two coherent signals of the same center frequency v 0 and ampli-

tudes , E S(R) (the Schwartz space of complex-valued C amplitude functions on the real

line, rapidly decreasing at infinity). Let H(, ;., .) be the holographic transform of the writing

a.,nplitudes and

/R d e’2"’(t x)(t), (1)H(, ;
which describes, by coherent superposition, the holographic angle encoding. It is also convenient

to define the auto-ambiguity function

H(; .,.) H(, ;., .). (2)
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According to the corollary of theorem 4 in Schempp [1], the eletnentary holograms
{H(H.,, H,,;., .)}.,_>0,,,_>0 form a Hilbert bsis of the complex Hilbert space L2(R (9 It), with

H.(t)=e-2h,,(t) (3)

the Hermite function of degree n (t.e.h.(t) is the Hermite polynomial of degree n). The elementary

holograms satisfy the Parseval-Plancherel type pixel identity

n(;/,#’)/(o;/,/’) In(,;,/)l. (4)
(.,’)ZZ (u,u’)ZeZ

The terms of this identity can be explicitly identified in two possible manners:

a) Taking advantage of the classical expression for the polynomials h.(t), like in Schempp [2]
b) Reasoning by theorem 7 in Schempp [1], which states that the elementary holograms admit the

form
(-(H,H,,;,v) ,(vCl + vl), ()

for all pairs (x,y) 6 R R, where .,,,,(X) denotes the matching polynomial in the variable X
associated to the bipartite graph Kin,.:

,,.(X) (-1)c(K.... /)X’’+"- 2’ (6)
0_<_< -,---1

and the coefficients c(K.,,,,, l) are the number of disjoint synaptic interconnects of the 2-state unit

neural network K.,,.(m > n > 0) when activated by simultaneously firing neurons. This network

has m units in one state, n in the other, and contains links between pairs in the two states, so

that only one connection, at most, departs from or arrives to eaz.h unit.

Applying combinatorial analysis, we have found the general expression

m! n!
c(K.,,.,l) C,.,tV.,t (m- l)tl! (n -1)!"

(7)

In particular, for m n we obtain

(s)c(gm,m,

Using these expressions, we recover the form of ,,. derived by the procedure a), which reds

.,.(x) (-)".!X’-"L(:-"(X), ()

where

L(’-"(X) =_ -TL.’-"(X), (t0)

being L’-"(X) the generalized Laguerre polynomial of degree n and order rn- n in the variable

X
When applying (4) to these elementary holograms, we have to evaluate both sides of the

relation

(.,,’)(z(Bz

}] -’("+"’)l-,.(vl + i/I)l. (11)
(.,.,)Ez(Bz
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These functions are actu’,dly connected with a type of theta functions, the so-called nil-theta

functions, which may be defined in a natural way on a Heisenberg compact nilmanifold (see
Auslander [3] and Mumford [4]). Different values of m and n for the preceding equality yield

special identities whose final form may be written down as odd powers of r in terms of theta-null

values 0(0,1,k) nke-’’’. (We adopt the notation O(a,r,k) =_ n’e-""2+2"**). Thus,

we obtain

l
rn 1, n 0 r/(0,1, 2) 0(0, 1,0),

m 2 n r3/(O, 6) lb[Sr2/(O, 4) --/9(0,1,0)],
32

45.16r4-=3, 2 0(0,,0) =t 0(0,,8)-40(0,,4)+20(0,,0)],

4, 3 ’0(0,, 4) t91.’0(0,,) 840’0(0,,8)
+30(0, ,) 40(0, , 0)l,, 4 0(0, , 8) [20(0, 1, ) 8240(0, , 2)

+4324320r(0, 1,8) 45945900r(0, 1,4)
+9897a(0,1, 0)],, a’0(0,,ee) [e048’0(0,,0)- z403e00(0, x,)

+338607360r(0, 1,12) 25440901200r8(0, 1,8)
+270621351000z(0, 1,4) 411288900758(0, 1,0)],

m 7, ’o(o,,e)
3 [4090(0,,e4) 440e’o(o,,eo)
16384

+3953892096r(0, 1, 16) 1092262691520r(0, 1, 12)
+82160642163600r(0, 1, 8) 874071171873900rz(0, 1,4)

+1328426658578258(0, 1, 0)],

(12)

The first of these identities amounts to the following relation between holomorphic theta series:

which is a fundamental expression in the theory of Jacobi theta functions. As for the other

identities, we have found a general and systematic way of producing them, which is much simpler
and straightforward than the one stemming from network models. In fact, the last three expression
were tually not explicitly obtained by Schempp: the necessary amount of time for it would hl
been prohibitive.

The idea behind our procedure is to take the general relationship (see, for example, Erdlyi

O(O,’r,O)= 1----0( 1, )Vc 0,-r 0 (14)

of which the previous identity is the special case r 1. The function

I(l =- O(O, , O ---0 0,- 0 =0
v,r
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is then identically equal to zero for every r. All their derivatives with respect to r vanish as wall.

Thus, by considering d-f(T 0 we get the fundamental expression

1,0 +7--@ 0,- 2 (16)rO(O, T, 2) --O O,
T

which is another theta [unction identity for arbitrary T. In particular, by setting we recover

the relation for m 1, n O. However, ting the second derivative of f(’) we obtain an identity

that just repeats the previous one in (12). Only ffter evaluating rI(r) 0 do e find the

identity for rn 2, n 1. Thus, the way of generating independent relations of this sort is to

calculate
d
--f(r) 0,for any odd integer k. (17)

(Alternatively, we ght restrict ourselves to the even derivatives well, since the information

contn in both sets of equations is the se).
Neverthelms, in order to obtn (12), the relations (17) hve to be hdled in a vy specific

mner. In ft, oncc we have derived one of thee relationships, the hight order thcta function

occurring must be put in terms of the rest, d the rult plugged into the next identity. This is

the re,on why in the expression for *+ one only gets 8(0, I, 2k) on the l.h.s. d 8(0, I, 2k-
), (0, , s), (0, , 0),..., #(0, , 0) o t ...
Ting MI this into count, we have written a DUCE progr that finds Ml the relent

identiti, for k up to arbitry vue kI. ARer evy step, e new identity is written on

the uxiliy file thetal.out. At the next iteration, the contents of this file is read by the source

progr, thus incorporating into memory the knowledge of the latt obtned relation. ActuMly,
this program fMls into the category of those that get fed from their own output. A further point

to be made is that, for the Mgebrc hdling of these expressions, REDUCE needs not know

the explidt seri form of 8(0, r, k). It is enough to supply it with the relations satisfied by the

r-deritiv, that is

k

da ,
A listiag of the source file is given in the PDUE version (Tble 1). In the exple chosen

we have tea kI 7, Mhough his vMue may be bitrily ged.
A geaerfl formula c be derived for the st d for the lt coecieats of he r.h.s of the

thet identities (12). ling these coecients a d b, rpectivdy, we hve found

" ’ 2 H(2 + ). (9)
=1

The rest of the ccients e given by more triy combinations of this se kind whcre

some of the ftors of the multi-product (either the ones from the begining or from the end) e
missing. From a prticM point of view, it is more strightforwd to rely directly on the recurrent

deriwtion d on the REDUCE progr whi yields explicitly y of the identites (up to ny

fi&te, ronable order) in a ronble ount of time.

Further resech ong this line will be med t the derivation of new identiti involving
(a, I, ), a # 0, d Mso multidimensional theta functions.
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off echo;
%kf:= %
off nat;
operator theta,f,g;
for all tau let
f(tau)=theta(O,tau,O)-i/sqrt(tau)*theta(O,I/tau,O);

for all tau,k such that fixp(k) let
df(theta(0,tau,k),tau)=-pi*theta(0,tau,k+2);

for all tau,k such that fixp(k) let
df{theta(0,1/tau,k),tau)=pi/(tau**2)*theta(0,1/tau,k+2);

for all k such that fixp(k) let
g(k)=2**(2*k-l)*sub(tau=l, df(f(tau),tau 2*k-l));

out "\reduce\redfilestheta2.out"; write gil),":=0";
out "\reduce\redfiles\thetal.out"; write g(1),’:=0
write "end"; shut "\reduce\redfiles\thetal.out";
fork:=2:kf do
begin

in "\reduce\redfiles\thetal.out";
out "\reduce\redfiles\theta2.out"; write g(k),":=0";
out "\reduce\redfiles\thetal.out"; write g(k)," =0";
write "end"; shut "\reduce\redfiles\thetal.out";

end;
shut "\reduce\redfiles\theta2.out";
on nat;
%quit;

Table i. A listing of the PCREDUCE source file.

-4*THETA(0, I, 2) *PI+THETA(0, I, 0) =0

(-32*THETA(0,1,6)*PI^3+I20*THETA(0,1,4)*PI^2-15*THETA(0,1,0) )/2:=0

-64*THETA(0, i, 10)*PI^5+720*THETA(0, i, 8)*PI^4-6300*THETA(0, I, 4 )*PI^2
+945*THETA(0,1,0) :=0

(-1024*THETA(0, i, 14)*PI^7+23296*THETA(0, i, 12)*PI^6-1441440 *
THETA(0,1,8).PI^4+I5135120*THETA(0,1,4)*PI^2-2297.295.THETA(0,1,0) )/4:=0

-1024*THETA(0, i, 18)*PI^9+39168*THETA(0, I, 16)*PI^8-8910720*THETA
(0, i, 12)*PI^6+661620960*THETA(0,1,8)*PI^4-7029722700*THETA(0, i, 4)*PI^2
+1068242175*THETA(0,1,0) :=0

(-8192*THETA(0, i, 22)*PI^II+473088*THETA(0, i, 20)*PI^10-286513920
*THETA(0,1,16 )*PI^8+78218300160*THETA(0,1,12)*PI^6-5876848177200
*THETA(0,1,8)*PI^4+ 62513532081000*THETA(0,1,4)*PI^2-
9500773607325*THETA(0,1,0) )/2:=0

-16384*THETA(0, I, 26)*PI^I3+I331200*THETA(0, i, 24)*PI^12
1768166400*THETA(0,1,20)*PI^10+1285014931200*THETA(0,1,16)*PI^8
354985374744000*THETA(0,1,12)*PI^6+ 26702208703170000*THETA(0,1,8)*PI^4
-284073130859017500*THETA(0, i, 4 )*PI^2+43173866403793125*THETA(0, i, 0) :=0

Table 2. The successive theta function identities.
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