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ABSTRACT. This paper is a study of the relationships between the asymptotic equivalence of two
sequences (linmy, /1, = 1) and three variations of this cquivalence. lor a sequence-lo-sequence
fransformation A, the three variations arc given by the ratios I8, Ax /I, Ay. S Ax (S, Ay, and
o oht [pm by, wheve Ry Az i= s (A2)aly Sz = Toc [(A2)al, and jr Az = SUPLy,, [(A2)al-
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1. INTRODUCTION.

In [2] Pobyvancts introduced the concept of asymplolically regular matrices, which preserve the
asymptotic equivalence of {wo nonncgative number scquences; that is, il the quotient z,/y, has
limit L then the quotient (Ax),/(Ay)a. of the transformed sequences also has a limit 1. Stated
svmbolically this is & ~ y implics Av ~ Ay. The frequent occurrence of terms having zero value
makes a term-by-term ratio @, [y, inapplicable in many cases. Therefore in {1] Fridy introduced new
ways of compariug rates of convergence. For  in £! he used the remainder sum, whose m-th term is
Ry =300 laal, and examined the ratio Ry /Rmy as m — oco. Lor the case where 2 is not in o
he used the sequence of partial sums of moduli which is given by Sp2 := ¥, e [ta]. [ 2 is a bounded
sequence he used the supremum of the remaining terms which is given by put = SUPLsm Il In
cach case the ratio x,/y, can be replaced by the appropriate new ratio: /Ry, .,.-:1'/ Smy, ot
st/ ptmy. The goal of the work in [1] was to study the relationship of these ratios when they tend
to zcro. In the present study we investigate the relationships of these ratios when they have limit
one. 4
2. BASIC THIESOREMS.

The following results are stated here for the convenicnce of the reader and to illustrate our
notation.

THEOREM 1. (Pobyvanets [2]). The nonnegative matrix A is asymptotically regular if and
only if for cach fixed integer m, lim,—oe tnm/ Tie; @nx = 0.

THEOREM 2. The Nérland type matrix N, is regular if and only if lim,, P, = oco.

THEOREM 3. The matrix A is a ¢o — co matrix (i.c.. A preserves zero limits) if and only if

(a) limy @ =00or kh=1,2...., and
(b) There exists a number M > 0 such that for each 7,332, lan| < M.
3. ASYMPTOTIC EQUIVALENCE.
In order to give the main results we first introduce some notation.
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NOTATIONS
Ps = {the set of all real number sequences such that =, > § > 0 for all k}
Py = {the set of all nonnegative sequences which have at most a finite
number of zero terms}
P = {the set of all sequences z such that z; > 0 for all k}

_ _ B i k<,
N, is defined by Ny[n, k] := { D if k>n
where {p,}32, is the sequence of nonnegative real numbers with pg > 0 and P, := .o Pk-
THEOREM 1. Let A be a nonnegative cg — co matrix, and let r and y be bounded sequences
such that * ~ y and z,y € Ps for some § > 0, then pAz ~ nAy.
PROOF. Since z ~ y we can write , = yn(1 + 2,) for some null sequence z. For each n we have

00
sup (Az) suP Z T
k>n

(nAz)n
~ sup (A
(nAY)n k)g( e sup Z iy
k>n i—o
sup Eak.(!/. + y-t.) sup Zak.y,lz.
= 2n =0 < 1+ k2n l-Om
su axiyi su a
e Yo tap L

0
sup Eauyglzgl
1 + 2" =0 -

é sup 2“’"

k2n =0

IN

Since y is a positive bounded sequence, z is a null sequence, and A is a cp — ¢ matrix, it follows
that lim, =2, ariyilz,] = 0, and therefore lim, ((#Az)a/(8Ay)s) < 1. In a similar manner we can
get lim, {(#Ax)n/(1tAy)n} > 1, hence lim, {(uAz)n/(Ay)n} =1, i.e, pAz ~ pAy.

THEOREM 2. If A is a nonnegative £°—¢£' summability matrix then the following are equivalent:

(1) if x and y are bounded sequences such that z ~ y and y € Ps for some § > 0,
then RAz ~ RAy;
(ii) for each m,

o0
Eakm

: k=n —
e =
PIPILY
k=n j=0

PROOF. [(ii) = (i)] The hypothesis z ~ y implies that for ¢ > 0 there exists a number J such
that if k > J then |(z+/yx) — 1] < €. Hence, for all k£ > J we have

(1-eyx S < (1+ )y (3.1)

First,

) oo J-1 o 0o
RiAz =Y (Az) £ Y Yakizi+ Y. Y akz;.

k=n k=n j=0 k=n j=J

By using (3.1) we have

R,Az < (Jiz,) i (o<m<§,x . ak,) +(1+ e)z z:ak:ll,

3=0 k=n j=0
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Hence,

J-1 0o
R, Az (?;;,"’),g (osr;naJx a"’)
< =

+1+4¢

k=n y=0
Now we claim that
o0
(:L:T. (os'}]safx-l a"’))
s, = = =0
I
=n j=0

Using (ii), we get

il PIDIY

k=n j=0

(5 (e, o))

S Sa

k=n j=0

where J is finite; hence,

0> lim

n—oo

Since A is a nonnegative matrix we have proved the claim, and it follows that

lnmsup (ﬁ"g ) <l+e (3.2)

Second, we seek a lower bound for R,Az/R,Ay. Consider

J-1 [
R,Az = Z Zak,z, > Z (0<m<).? ‘ak,) ij + E Zakaj.

k=n j=0 j=0 k=n j=J
Using Inequality (3.1) again we get
00 oo J-1
RoAz > (Z) 5 (o, o) + 1 -0F Snws = 1-0F Tanus
=0 0 1 k=n j=0 k=n j=n
Therefore
/91 o
RoAz ,z_c:)z’ Lol +(1-¢)
Ay = |35 || & & T —€
Fntly ! PIDITY
k=n j=0

( J-1 .
(1- €)§)w ,E;,OST;JX-I ax;
e

> ek

k=n ;=0

Using the previous claim we have

liminf (ﬁﬁ:) >l—c¢ (3.3)

From (3.2) and (3.3) we conclude that lim, (R,Az/R,Ay) = 1, whence RAz ~ RAy.
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To show that (i) implies (ii) we choose a fixed positive integer m and define = and y as follows:
yi := 1 for all k and

s [ O 0l E<m,
=11, i k> m.

It is obvious that the conditions in (i) are satisfied by the sequences z and y. Consider

RuAz =3 3 ez, =30 3 ay =3 3 aei— 3, 3 a.

k=n y=0 k=n j=m41 k=n j=0 k=n j=0
Thus
35
ag;j

(R,.A.‘L‘) _ 1 _ (k=u =0 ))
A - 00 00

e 5 Soun
k=n ;=0

The hypothesis that A is a nonnegative matrix implies

3 Gim

=n j=0
Hence,
00
. (RuAz . (é“""‘)
hmn"n.f RA <1-limsup [ =z—].
y n—+00 Z Eak"

k=n j=0

From (i) we get limsup,, [(22‘;__,‘ arm) [ Tizn Tito a,,j] =0, and since A is nonnegative matrix we

have
on /| =0

5 Sou|

k=n =0

lim
n—00

Hence, the proof of the theorem is complete.

In the following theorem we use another notation that was introduced by Fridy in [1] to study
sequences that converge at different rates. Now, we use the same notation to study sequences that
converge at the same rate. For sequences z and y that are not in €' Fridy used the partial sum
Sna = Lien |2i| to say that y diverges faster than z provided that Syz = o (Sny). Here we use
Sn Az ~ Sy Ay to indicate that ¥, n(AZ)n and Tocn(Ay)n diverge at the same rate.

THEOREM 3. If A is a nonnegative matrix, then the following statements are equivalent:

(a) if x and y are sequences such that z ~ y, z € P, and y € P; for some
§ >0, then Az and Ay are not in £! and SAz ~ SAy;
(b) A satisfies the following conditions:

(i) { E%’} ¢,
=0 k=0
(ii) for each m,

N
Zakm
lim |£=L— | =0.

N—oo N
2D ek

k=15=0
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PROOF. Suppose that condition (b) is satisfied and assume that z and y are sequences such
that x ~ y, z € Py, and y € Ps for some § > 0. Using condition (i), it is clear that Ay is not in
€'. Also, the fact that = ~ y implies that for each given € > 0 there exists an integer J such that

lzi/yx — 1| < € whenever k > J, or equivalently, if £ > J then
(I-eym <z < (1+€)u

From this it is easy to prove that Az is not in £!.
Now, we need to show that SAz ~ SAy. Consider

N oo N J-1 N oo
SnAz = Z Zak,.‘l.‘j = Z Zak,a:j + 2 Eak,'x,-.
k=1 j=1 k=1 j=1 k=1 j3=J

By using (3.4) we get

N J-1 N o
SNAz <Y Yakizi+(1+€)D. Y aky;

k=1 j=1 k=1 j=J
J-1
< Xs ) Y (°< <, ak,) (1 +e)z Zak,y,
)=1 k=1 -’- k=1 j=0

J-1 N
< (Zz;) Z( Joax a,,,) + (1 + €)SnAy.
=1 k=1

Therefore

SnAz Jz-:lzj ‘VN:(M i ¢ )

iy < | 5| | +(1+e).
5 S
k=1 j=0
Hence, from condition (ii) we get
SnAz
<
t}n_xgo SnAy 1+e¢,

similarly, using the left-hand inequality in (3.4) we have

N J1 N o
SnAz 2 Y Yakzi+(1—€)X X ary;

k=1 j=0 k=1 j=J
J-1. N oo N
2 (E (o<m<l.lll 1 a,,,)) E"’J +(1- C)Z E“ln?b -(1- 5)2 Eak,y,
k=1 J =0 k=1 j=0 k=1 j=0
Thus
J-1 N
z; .
SnAz ,Z;"o ! ,‘;l (osr?st}r’f-x a"’)
SnAy 2 sup y; N o tl-e
i PIPILIE
k=1 j=0
( J-1 N
(1 —-e)jz;,’ Yj ,§) (osxgasa:,x_l akj)
- & N oo :
22 o

k=1 j=0

(3.4)

(3.5)
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As before, from condition (ii) we see that the first and the third terms in the previous inequality
tend to zero as N — oo. Hence,

I SnAz
Noo SnAy
From (3.5) and (3.6) we conclude that limy_, SNAz/SnAy =1, i.e.,, SAz ~ SAy.

To prove that (a) implies (b), we first need to show the necessity of condition (ii). Thus, we
form two sequences z and y such that z ~ y and both satisfy the hypothesis in (a), but SAz and
S Ay are not asymptotically equivalent if condition (ii) does not hold. Let m be an arbitrary fixed
positive integer and define y; := 1 for all k, and

[0, if k<m,
=Y, i k>m

>1-—¢, (3.6)

It is clear that z ~ y,z € Py, and y € P;. Assume condition (ii) does not hold. For any such m we

have N oo N n N m
SyAz = z Zakj = z Eakj - E Z“kj
k=1 m41 k=1 j=0 k=1 j=0
N oo N
< Y Yaki— ) am.
k=1 j=0 k=1
Therefore,
N
. SnAs . 2, o
liminf <1-lim sup 7——.
N SNAy N—oo N &
' 2D
k=1 j=0

Since A is a nonnegative matrix and condition (ii) does not hold, we conclude that

. SnAz
lim

Jim oy < b

where SAz and SAy are not asymptotically equivalent.

It remains to show that the sequence {32, axj}32, is not in £!. Since y is identically 1, we get
(Ay)k = £20 aj, and since the sequence Ay is not in ¢!, we see that {32, ax;}i2, is not in £'.
Therefore the proof is complete. ,

In the following theorem we study the relationship between the original asymptotic equivalence
that uses term by term comparison and the asymptotic equivalence that uses the remainder sum
comparison.

THEOREM 4. If z and y are nonnegative sequences in £! such that z ~ y, then Rz ~ Ry.

PROOF. The assumption that z ~ y implies that for a given ¢ > 0 there exists an integer N

such that |z,/y, — 1] < e for all n > N.

Hence,
Rz <(14€)) yr=(1+¢€)Rny
k>n
and,
R,z > (1 —e)z yr = (1 —€)Rny.
k>n
Therefore, for alln > N, A
z
1-e) <22 < (1+¢),
(1-¢) < Ry S (1+¢)

and this implies that limp .o Rnz/Ray =1, i.e., Rz ~ Ry.

The next theorem shows the relationship between the original symptotic equivalence and the
asymptotic equivalence that uses the partial sum comparison.

THEOREM 5. If z and y are nonnegative sequences not in ¢! such that z ~ y, then Sz ~ Sy.
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PROOF The assumption that z ~ y implies that z,/y, — 1 = ¢,,, where lim,_.o, €x = 0. Since
T is nonnegative we have

Smz = Z lzal = Z(.'/n +enyn) = Eyn + Efnyn-

n<m n<m n<m n<m
Therefore,
EnlY
Sme 1+"§‘“—1+Z
Smy Z n<m Ey,}
n<m ISm
= 1+(1—Vy€)m,

where Ny is the Norland-type matrix [3, p. 45]. Since y is not in £!, Ny is regular; therefore
liMm oo (1\71/5) = 0. Thus we have limp o Smz/Smy = 1, i.e., Sz ~ Sy.

In the last result we study the rela.tnonshnp between the ongma.l asymptotic eqmvalcnce and the
asymptotic equivalence that compares the “supremum of the remaining terms.”

THEOREM 6. If z and y arc nonvanishing null sequences such that z ~ y, then pzx ~ uy.

PROOF. The hypothesis 2 ~ y implies that for € > 0 there exists an integer N such that if
k> N then

(1-e)ye <z < (1 + €y

For n > N we have
HnT = sup |zi| < (14 €) sup [yl
k>n k>2n

Hence,
limsup®n® <
n fnY
Also,
pnT = sup |zi| > (1 — €) sup |yx.
k2n k2n
Hence,

liminf 225 >1-—e
" iy
Therefore we conclude that lim, oo tnz/tay = 1, i.e., puz ~ py.
REMARK. The converse of Theorems 5 and 6 is not true i.e., there exist sequences z and y such
that Sa ~ Sy and px ~ py but = is not asymptotically equivalent to y. It is cnough here to give
the two sequences = and y and leave the proof to the reader.

(2
mer if n is odd,
T, =
1 P
oo if n is even.
(L if n is odd
n+1 ’ !
Yn = <
2 . .
. , if nis even.
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