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:\IIS’I’ilAC’I’ This paper is a stltdy of the relatioship. betweeu the. asymptol,ic equivalence of two
,.q(.((.s (lil..r,,//,, 1) an(I tlree variatios o1" Iis e(I,ivaleuc(’. I’)r a se(i,(rce-to-seqec,
I’af(rnal,i() /I, the hre(" variatios are give by I1(. ratios IC,,A.r/IC,,Ay.S,,,/I.r/S.,AII. a(l

/,,,, ,t., //, .1, w,,.,’. ,,,A- := E,,>., I(A’).I, ,5’,,,A: ,<,,, I(A’),,I, a,,d ,,,,A: sup.>,,, I(,’l:),,I.

I(I’Y WORI)S AND PIIRASES. Asymptotically regular. Asymptotic equivalence, NGrlan(l-type

19!)2 AMS CLASSIFICATION (?:ODES. Primary 40C,05.

1. N’I’IlO1)U C.TION.
I,t [2] lob3’vaels i,l,rocluced Ihe concept of o.yml,lo/ically ,’cgu/t’ ualrics, wlich preserve llo

asypl,otic equivaleuce of Iwo nonncgtive mtmber sequences; that is, if the quotiet
lii.t 1,1. I,le quotieut (A.r),,/(Ay). of the trausfored sequeuces also has a linit l.
svl)olically his is .r g iml)li.s A J" Ag. 1’1’ fr’qu(’t occtll’l’(’llCC of tel’IllS havig zero value
ak,’s a erla-by-tcrm ra.t,io :r./y. inapplicable in nany cases. Therefore iu It] Fridy introduced ew
ways of conprig rates of convergence. For ." iJ le used le rem.inder sum, whose --tl tcru is
t,, := ;?,,, I.1, and examined the ratio R.,:/I,,,/as ,,, . For hc case where
h. us,d the seqtcuce of partial sums of moduli which is giw.u by ,S’’ .<., I.r.I. If x is a bounded
seqence he used the SUlrcmum of the remaining terms wlich is givc b t.,t supn, It.I. In
e.cl cre the ratio z,,/g can be replnced by the appropriate new ratio: 1 r/l.,g,
tt,,,.r/ItmY. The goal of the work in [1] was to study the relationship of these rtios when they tend
to zero. In the present study we investigate the relationships of these ratios when they have limit
Olle.

2. II,Sl(’ ’l’11EOI/EMS.
’1’1’ Ibllowig r.sult,s are stated here for the covetieuce of tire reader aud to illustrate our

’I’IIEOI(I’;KI 1. (l’obyvauel [2]). The nonnega.tivc mlrix A is sylptoically regulnr if nd
(,lv il" Ibr each fixed integer m, lim a..,/. a. O.

I’Ill.;OIIE! 2. q’he N6rlad ype natt’ix , is reglar if and oly if lira. 1
’I’III’;OIIEM 3. q’he matrix A is a c0 Co matrix (i.e.. A preserw.s zero limits} if and only if
{a) lin,, a,, 0 for k 1,2 and
(t,) There exists a number M > 0 such that for eacl n,E I-.1 < M.

3. ASYMPTOTIC EQUIVALENCE.
lu order to give the main results we first introduce some notation.
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NOTATIONS:
P {the set of all real number sequences such that x > 5 > 0 for all
P0 {the set of all nonnegative sequences which have at most a finite

number of zero terms}
P {the set of all sequences x such that xk > 0 for all k}

if k<n,/’, is defined by/,[n, k] := e.
0 ,if k>n,

where {p}.o is the sequence of nonnegative real numbers with po > 0 and P. "= =oPt.
THEOREM 1. Let A be a nonnegative co-co matrix, and let z and y be bounded sequences

snch that .r y and x, y P for some # > 0, then pax tAy.
PROOF. Since x y we can write z,, y.(1 + z) for some null sequence z. For each n we have

sup (Az)t sup
k>_n k>_n i=O

sup (Ay)t
_>n sup a,iyi

k_n i---0

sup ,a,(/, +
>. --o < 1

sup
k>_n i=o

sup _,a,iyilz,
k_n i---0

sup Eakiyi
k>_n i=O

sup _a.iyilzil
k>_n i=O

sup
k_n i--O

Since y is a positive bounded sequence, z is a null sequence, and A is a co-co matrix, it follows
th,t im. E’S-_o ’,,1,1 0, and therefore lira. ((/,A.z),,/(/,Ay).) < 1. In a similar manner we can
get lin,, {(/A),,/(/,A),,} > 1, hence lira,, {(IAz)./(,Ay),,} 1, i.e, l,Az pA.

THEOREM 2. If A is a nonnogative/oo_ summability matrix then the following are equivalent:
(i) if .r. and are bounded sequences such that x y and y e P for some > 0,

then RAx RAg;
(ii) for each m,

k= j=o /

=0.

PROOF. [(ii) (i)] The hypothesis x implies that for > 0 there exists a number J such
that if k E J then I(x/y) 1] < e. Hence, for all k E J we have

(1 )y < x _< (1 + (3.)

First,

By using (3.1) we have

tL,Ax <
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Hence,

Now we claim that

Using (ii), we get

where J is finite; hence,

k=, \o_<.t<J-

k=n j=O

lira

k=n j=O

=0.

J-I akj
\kmn /

k=n

=0,

(=( max a))
0 > lira

k=n j=O

Since A is a nonnegative matrix we have proved the claim, and it follows that

(PAz)limstp k R,,Av
< 1 + e.

Second, we seek a lower bound for Az/Av. onsider

k=n j=O k=n j=O k=n

Using Inequality (3.1) again we get

Therefore

R,,Ax > a: ( min ak + (1 e) _,a,.iV.i (1 e)
j=O kfn kffin jffiO kffin

R,,Az
R,,Av

/o miuz
O<j<J-1

Using the previous claim we have

max akj(1 e)Vj=o |’-=o<j<J-,_

E EakJ
\ k=n j=o

liminf (P’Ax > 1-
\PAv/-

From (3.2) and (3.3) we conclude that lira, (R,,Az/R,,Ay)= 1, whence RAz RAIl.

(3.2)

(3.3)
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To show that (i) implies (ii) we choose a. fixed positive integer m and define z and y as follows:
y for all k and

-=f 0, if k_<m,
k 1, if k>m.

It is obvious that the conditions in (i) are satisfied by the sequences z and V. Consider

Thus

k=n j=O k=n j=m+l k=n j--O k=n j--O

k=n j--0

The hypothesis that A is a nonnegative matrix implies

\k--n /

k=n j=O

]-Ience,

lim inf (PAz) < 1 lim sup ] ._Z..

I.k=n =o
From (i) we get limsup [(,a=)/=, 0a] 0, d sin A is nonnegative matrix we
have

lim
(’)

=0.

k=n =0

Hence, the proof of the theorem is complete.

In the following theorem we use another notation that was introduced by Fridy in [1] to study
sequenccs that converge at different rates. Now, we use the same notation to study sequences that
converge at the same rate. For sequences and V that are not in P Fridy used the partial sum
.5’tcz ’=< Ixl to say that V diverges faster than x provided that Sux o (SNv). Here we use
StvAz SvAv to indicate that E,_<N(Az) and E.<_v(Av). diverge at the same rate.
THEOREM 3. If A is a nonnegative matrix, then the following statements are equivalent:
(a) if x and V are sequences such that z V, z P0, and P for some

> 0, then Az and AV are not in P and SA:r SAv;
(b) A satisfies the following conditions:

(i) a ’ P;
1=0 k=O

(ii) for each m,

=0.
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PROOF. Suppose that condition (b) is satisfied and assume that z and V are sequences sud
that x y, z E P0, and y E P for some 6 > O. Using condition (i), it is clear that Ay is not in
t". Also, the fact that z y implies that for each given e > 0 there exists aaa integer J such that
Ix,/yk- 11 < e whenever k > J, or equivalently, if k > J then

(1 -)yk _< xk _< (1 + (3.4)

From this it is easy to prove that Az is not in P.
Now, we need to show that SAz SAy. Consider

N N d-I N

SvA:r E Eat,z.i E Ea’.xJ + E Ea,j:r’J
k=l j=l k=l j=l k=l

By using (3.4) we get

< z:
k--1

N

a,) + (1 +)
k=l jffi0

zi) ’( max at,j)+(1 +e)SlvAy.
kj=l k=l \O_<.l_<d-

Therefore

zj max a
N +( +)"

k=l

Hence, from condition (ii) we get

lim
SuAz < 1 + ,t.-.o. SAv

similaa-ly, using the leR-hd inequMity in (3.4) we have

N d-I

k=l j=O k=l jmJ

Thus
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As before, from condition (ii) we see that the first and the third terms in the previous inequality
tend to zero as N oo. Hence,

SNAxlira > , (3.6)
N- SNAy-

From (3.5) and (3.6) we conclude that limN--.oo SNAX/SNAy 1, i.e., ,.,CAm SAy.
To prove that (a) implies (b), we first need to show the necessity of condition (ii). Thus, we

form two sequences x and y such that x y and both satisfy the hypothesis in (a), but SAx and
SAy are not asymptotically equivalent if condition (ii) does not hold. Let m be an arbitrary fixed
positive integer and define yt := for all k, and

=J’ o, if k<_m,
1, if k>m.

It is clear that x y, x P0, and y Pt. Assume condition (ii) does not hold. For any sucli m we
have

N N N

k----I m+l k-I j--O k=l j=O

Therefore,

N N

k=l =0 =1

N

liminf SNAx <l_limsup NN SNAy. N--,oo

ai
k=l j--O

Since A is a nonnegative matrix and condition (ii) does not hold, we conclude that

lim
St:Az < 1,

N-- SNAy

where SAx and SAy are not asymptotically equivalent.
It remains to show that the sequence {j__0 atj}’= is not in . Since y is identically 1, we get

(Ay)t d=o ati, and since the sequence Ay is not in t, we see that {__o atj}=0 is not in tt.
Therefore the proof is complete.

In the following theorem we study the relationship between the original asymptotic equivalence
that uses term by term comparison and the asymptotic equivalence that uses the remainder sum
comparison.
THEOREM 4. If x and y are nonnegative sequences in t such that x V, then/ix Ry.
PROOF. The assumption that x V implies that for a given, > 0 there exists an integer N

such that [x./v,,- I[ < for all .. > N.
Hence,

and,

Therefore, for all n E N,
k>

(1-e) < /---3- < (1 +),PV
and this implies that limn--.oo Rz/tv 1, i.e.,

The next theorem shows the relationship between the originM symptotic equivalence and the
ymptotic equivalence that uses the partial sum comparison.
THEOREM 5. If x d V are nonnegative sequences not in such that x V, then Sx
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PROOF The assumption that z y implies that z./y. e., where lim,,-.oo e,, O. Since
is nonnegative we have

Therefore,

n<m Z YnS,.,,z
1+ =1+S,,,y y,,

+ yt:

where y is the NSrland-type matrix [3, p. 45]. Since y is not in tt,y is regular; therefore
limm.-.oo (rye) 0. Thus we have lim,,_, Smx/S,,,y 1, i.e., Sx Sy.

In the lt result we study the relationship between the original asymptotic equivalence and the
symptotic equivalence that compares the "supremum of the remaining terms."

TIIEOREM 6. If x and y arc nonvanishing null sequences such that x y, then x y.
PROOF. The hypothesis a’ y implies that for > 0 there exists an integer N such that if

k > N titan

For n > N we have

Hence,

Also,

Hence,

sup I1 _< ( + e) up lyl.
k>n

limsup/,,__._z _< + e.

g.z p I1 -> ( e) p lull.
k>n

liminf t,___z > 1- e.

Therefore we conclude that lim,..., I,,z[l,.,y 1, i.e., Itz y.
REMARK. The converse of Theorems 5 and 6 is not true i.e., tlaere exist sequences nnd such

ht Sz Sy and ltz try but is no ymptotically equivalent to . It is enough here to give
he two sequences x and y and leave the proof to the reader.

n+l
ifnisodd,

1
if n is even.

n+l
ifnisodd,

2
if n is even.
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