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ABSTRACT. Let I be a Fuchsian group acting on the upper half-plane U and having signature
{p, n, 05 vy, vg, - -+, vk 2p =24 }:1(1-—)>0

Let T(T') be the Teichmiiller space of . Then there exists a vector bundle B(T(I')) of rank
3p-3+n over T(T) whose fibre over a point t€ T(T) representing T, is the space of bounded
quadratic differentials By(T,) for T;. Let Hom(T,G) be the set of all homomorphisms from T into
the Moebius group G.

For a given (t.¢)€ B(T(I')) we get an equivalence class of projective structures and a
conjugacy class of a homomorphism x € Hom(I',G). Therefore there is a well defined map

&:B(T(T'))—Hom(T,G)/G,

@ is called the monodromy map. We prove that the monodromy map is a holomorphic local
homeomorphism. The case n=0 gives the previously known result by Earle, Hejhal and
Hubbard.
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1. INTRODUCTION.

Let T be a finitely generated Fuchsian group acting on the upper half plane U such that U/T
is a Riemann surface of finite genus p with a finite number of possible punctures and ramification
points n and with a finite number of possible analytic boundary curves m. Let {z,, zo, - - -, z,} be
the set of points on U/T that are either punctures or ramification points. let vj be the
ramification index of =~ l(z h where

nU-U/T

is the natural projection map, and we set v;=oo for punctures. Then the sequence
{p,n,m,v,vq, - - -,vy,} is called the signature of the group TI.

In this paper, we consider T to be a Fuchsian group acting on the upper half-plane U and
having signature {p, n, 0, vy, vg, - - -, vp}; 2p -2+ 2 (l-——) >0.

Let T(T) be the Teichmiiller space of T. Then there ex1sts a vector bundle B(T(T)) of rank
3p—3+n over T(T') whose fibre over a point representing T, is the space of bounded quadratic
differentials By(T;) for ;. Let Hom(I,G) be the set of all homomorphisms from I into the
Moebius group G.
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For a given (t,¢)€ B(T(I')) we get an equivalence class of projective structures and a
conjugacy class of a homomorphism ¢ € Hom(T,G). Therefore there is a well defined map
®:B(T(T'))—Hom(T,G)/G.

¢ is called the monodromy map. We prove that the monodromy map is a holomorphic local
homeomorphism.

The case n =0 gives the previously known result by Earle, Hejhal and Hubbard. Falting [6],
Gallo and Porter [7] have similar results for n > 0. The monodromy map restricted on each fibre
is known to be injective by Kra [11]. As a generalization of this result for a Fuchsian group I
with signature {p, n, m, vy, vy, -, vp}; n>0, m>0, author has proven a uniqueness theorem in
[15]. A similar result has been proven by Gallo and Porter [8].

In Section I, we discuss some well known interesting properties of Moebius transformations
and with their help, we find the set of regular points in Hom(T,G). This technical result is needed
to prove the main result in Section II. In Section II, we prove that the monodromy map is a
holomorphic local homeomorphism.

SECTION 1. Let A}, By, Ay, By, -+, Ap, Bp, Cy, Cy, - - -Cy, be a fixed set of generators of I
satisfying the relations n )

.HI[A,.,B‘] _H Cj=landCy=1, j=m+l,---n,

i= ji=1

where [4;, B;]=4; B; Ai_l B,-_1 and Cy, Cy,- -, Cp, are the parabolic generators and C, .
Cm DY -Cy, are elliptic generators with periods V41! Ym0 Vi respectively.

A homomorphism x € Hom(T,G) is completely determined by 2p + n Moebius transformations

X(4,) = S;

X(Bi) = Ti

X(Cj) = Wj»
i=1,2---,mand j=m+1, m+2,- -, nsatisfying the relations

P n v
st [[W;=1and Wi =1 j=m+1, m+2,---n
1=1 j=1

Let P be the set of all parabolic transformations and E ; be the set of all elliptic
transformations with a fixed multiplier K%; K?V’ =1, j=m+1, m+2,--., n. Let Hom*(I,G)
consist of homomorphisms preserving parabolic transformations and the multipliers of the elliptic
transformations. Then for x € Hom*(T,G),

XC;)=W;eP,j=12---,m

=WjEEj,j=m+l,m+2,- cen.

Hence {$,,T,59, Ty, - - Sy TpWyWo, - Wy} is a point in G2pxP"‘xEm+ 1%Em 4o
X Ep. We denote {S),T},- - +,5pTp Wy, -+ -, Wp} by {S,T;,W;} and G*Px P™xE, | 1x---xEy,
by Gap,n for short.

Following lemma of Gardiner and Kra [9], we show that P and each E ; are two-dimensional
submanifolds of G. We also determine the tangent space of P or E ; at any point.

At this point, let us introduce the adjoint representation u — uf of S$L(2,C) in @, the Lie
algebra of SL(2,C) (that is the tangent space of SL(2,C) at identity I) which is defined by
ud = AdA(u), ue@, Aec SL(2,C) where AdA:§ — § is the differential at I of the map
SL(2,C)3x—A" Lo xo A€ SL(20)
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Explicitly,
A A_loet“oA—I=A—l

u =lim-————l—-—————— ouo A
t—0

A parabolic transformation with fixed point z # co can be written as an element of SL(2,C) as
(l +pz —pz?

P 1-pz
map

); p # 0, which is unique up to multiplication by —1 [14]. We consider the natural

nSL(2,C)— G

which is two-to-one and unramified.

Each parabolic transformation corresponds to two matrices in SL(2,C), one of which has trace
2 and the other has trace —2. Thus =~ 1(P) consists of two disjoint sets P+ and P, where

P+ =the set of elements in SL(2,C) with trace 2\{I},

P~ =the set of elements in SL(2,C) with trace —2\{-1}.
We prove the following lemma which has been proven by Gardiner and Kra in [9] in a slightly
different manner. We shall adopt the calculations from [9)].

LEMMA 1.1. Let f:SL(2,C)—C be the mapping defined by

f(z)=trz.

If u € ker (df) (B) with Be P, then there exists a v € § such that
B

u=v- —v

PROOF. 7 is holomorphic. Let Be P*. Then there exists an A € SL(2,C) such that

1 p
A~ lBa=
01

SL2,C)3BE A~ BAesSL2,0).

We consider the function

Since F is a holomorphic isomorphism,
u € ker d(f o F) (B) ¢ (dF) (B) u € ker (df) (FB).

Moreover, for ve g, B € SL(2,C), A€ SL(2,C)

B A_,BoA_

U=V —v U

-1
oA =i 7'BA

A
—vy; vy = v,
and JURS Y
(dF) (B) (u) = uf.
Thus it suffices to assume that B =((1, f) For u =(: _Z)G g,

f(Be'™) - £(B)
[Be) - 1(5)

Ao DE 1"‘_‘:,)+ 0}-1 §)

f{(l +at:;pct "‘+”(}::tt))+ ° (t)}—2
t

(dF) (B) () = lim

=lim
t—0

I
i3

= lim 24+ pct—2
=lm =
= pc.

Thus if u € ker(df)(B),c = 0; that is, u= (‘(" _Z) We check that there exists a v = (‘: _::)e g such
that

a b 1 a b ad b
=B~ B-
since 0 - ' —d ' —d
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1 p a b a b —pc —cpP+2
01 ¢ -d ¢ -d 0 cp

We choose ¢’= —$,a"= ";:” , and b arbitrarily. This completes the proof of the lemma.
In the above calculation for (df)(B) with B = (‘l) f) we notice that, for u € g,

(df) (B) (u) = pe.
Since p#0, c#0, (df) (B) is surjective. Again the differential of the map F: z — A~ 1 z4,
z € SL(2,C), A € SI(2,C) is surjective. Hence (df) (B) is surjective for any Be P+. Therefore, df
has maximal rank at each point of Pt that is, P+ is the set of regular points of f in £~ 1(2) and
hence Pt is a submanifold of SL(2,C) of dimension 2 by the implicit function theorem.
Moreover, for Be P,
Tg(Pt) = ker (df) (B).

Hence from the above Lemma we conclude that

TB(P+)={ueg; u=1vB ~ for some v € g}.

Similarly, we can show that P~ is a submanifold of SL(2,C) of dimension 2 and for Be P,
Tg(P™)={ueg; u =vB — v for some v € §}.

Since Pt and P~ project to P in G, P is a submanifold of G of dimension 2. Thus we prove the
following:

COROLLARY 1. P is a submanifold of G of dimension 2. Moreover, for g € P,

Tg(P)= {u€@; u=v9—vfor some v e §}.
An elliptic transformation g with the fixed points z and y can be written as
PR
where k2 is the multiplier of g, k2#1. Choosing a positive square root of k2, we write k2 =ﬁ.
Then solving the above equation we can write in the matrix form
! zfk—yk  zy(k-1/k)
g_z—_y(l/lc—k sk —y/k )

which is unique up to multiplication by -1 [14]. If ¥2= —1, the above expression for g is
symmetric in z and y.

Let E be the set of all elliptic transformations with the multiplier k2. Each elliptic
transformation in E corresponds to two matrices in SL(2,C), one of which has trace k+1/k, and
the other has trace —(k+1/k). Hence if k2 # —1, » ~ }(E) consists of two disjoint sets E+ and
E —, where

Et =the set of elements in SL(2,C) with trace k+ 1/,

E~ =the set of elements in SL(2,C) with trace —(k+ 1/k).

If k2= — 1,7~ }(E) is just one set; we denote it by E°, where E°=the set of elements in
SL(2,C) with trace zero. As before, we have the following:

LEMMA 1.2. Let f:SL(2,C) — C be the mapping defined by

f(z) = tr(z).

If u € ker(df)(B), with Be E Y, then there exists a v € § such that
B

u=v —v

PROOF. The idea of the proof is same as it is in the Lemma 1.1. Without loss of generality
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we assume that B = (8 1 /Ok) Then for u = (: _:)e 6.

k 0 1+at bt kE 0
o)™ )0k )
0 1/k) \¢t 1 —at 0 1/k
t
k(1 +al) kbt ko0
f{(l/kct 1/k(1 —-at))+ ° (t)}-f (o 1/1:)
t

i (£ 1/E) +at(k = 1/k) + o(t) - (k + 1/k)
=% t

(@) (B) (w) = lim

=lim
t—0

= a(k — 1/k).

Hence if u € ker(df) (B),a =0; that is, u= 0 b} We check that there exists a v=(%. b)e g such
c 0 ¢ -a
that

0 b
B~ luB—v=
c 0
E 0 R
Since B = B~ lvB-v= 0, 9 b/ -1 Wechooseb':——g ,¢ =—=°—and
0 1/k c(kc-1) 0 1/k% -1 k-1

arbitrarily. This completes the proof of the lemma.

Once again, we observe that (df)(B) is surjective for B€ E*, since a # 0 and k2 # 1. Hence at
each point of E+df has maximal rank, and hence E+ = f = 1(k +1/k) is a submanifold of SL(2,C)
of dimension 2. Moreover,

T(E*) = ker(df)(B).
Hence
TB(E+)= {ueﬁ;u:vB—vfor some v € §}.
Similarly, we can prove the same results for E~ as well as for E°. When k2# ~1, E* and E~
are submanifolds of SL(2,C). Since E* and E~ project to E in G, E is a submanifold of G. When
k2= - 1,E° is a submanifold of SL(2,C). Hence E = E°/ +1 is a submanifold of G. Thus we prove
the following.
COROLLARY 2. E is a submanifold of G of dimension 2. Moreover, for g € E,
Ty(E) = {u € §;u = vJ — v for some v € g}.

We introduce a function F on Gap,n defined by

P n
F(S;TuW )= s I w j
i=1 ji=1
This is a complex analytic function from Gap.n into G. The subset

R={(S;TuW ;) €Gyp i F(SuTyW ;) =1}

is then a complex analytic subvariety of Gop,ni the mapping
Hom*(T,G) 3 x—(x(4;), X(B) x(C;)) € Gyp,

identifies Hom*(T',G) with this subvariety and thus establishes a complex structure on Hom*(T,G).
Gzp’n is a complex analytic manifold of dimension 6p+2n. We show that the subset of
Hom*(T',G) consisting of those homomorphisms x for which x(I') are non-elementary is the set of
regular points in R. The case when n=0 has been discussed by Gunning in [10]. Following
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Gunning we can find d,F at x = (S, T;, W,)€Gyp o The tangent space of Gop,n 8t the point y is
denoted by T, (G, pon)- Then

TX(G2P.YI) g g2 H gw .

=1
where gwjz ij(P) for j=1,2,---,mand g, =T, .(Ej) for j=m+1,.--,n
Let (X1, Xg, - . Xp Y, Yo, -+, Y, 21,29, - -+, Zy), denoted by (X;Y,2)) for short, be a point in
g?P,;]J]gw

Then by definition, . 1Z.
r(s,c‘xi, TeMi W) J)- HSpTo W ))
dyF(X,Y;,2) = lim ]

In other words, d, f(X,.Y,,Z ;) is the coefficient of t in the Taylor expansion of
. . tZ .
F(Sic‘x',T'c'Y'.W e 7).
J
After a long calculation we find that

P P
dyF(X,Y,2)) = ,Z Ads; T lk H+ l[s,,, )1 — AdS))Y; — (I - AdT})X;)
= =1

+ z Ad ]‘[ Wi(Z))
i=1 =j+1
which is essentially same as the expression obtained in Gunning [10] except the second term.
We define an action of I' on § as follows:
For ue § and y €T, we define
u-y =u-x(7) = Adx(7)(u).
We rewrite the above expression in the following way,
P 1 1 P n n
dyF(X,Y;,2;) = Y (x; Bi-n+yu-a))-A7 B I (4LBI+ Y z; Y ¢
i=1 k=i+1 i=1 7 k71
We want to check when d, F is surjective. To do that we follow Ahlfor’s method in (2], $5). We
introduce notations Ry = I and
R;= A ByA] 'B{1...4B,A7 1B}

R, i=R,CiCqy--C;

P+J
% _ “1p-1
A;=R; B 'R;
- —1p-1
Bi=RiAi Ri_Y

1 . .
=R, CiRp ;i (1<i<pl<j<n)

Then 4, B -,C . are generators of I. Moreover,

Q

dyF(X,Y;,2;) = Zx ATIRZ (-4 + EY B RV B;-D+ Zz R;j,
i=1 i=1

We suppose that the map

dyF: %P x Zlg -~
J_

is not surjective. Then there exists a nonzero linear functional v* on § that vanishes on all the
subspaces §-(4;-1), §-(B;-I) and §-(C; -DR;}i=0-Ry}AC;-D=9-(Cj-D. I &
annihilates v-(A-1) and v-(B-1I) for all ve@, it annihilates v-(AB-I)=v-A(B—I)+v-(A-1).
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Since {4;,B;,C ;) is a system of generators of T, it follows that v* annihilates v-(A-1) for all V € ¢
and all A€T.
We assume first that there is a loxodromic element x(A4), A €. We may take
x(A)(2) = K2z | k2] #1.

1
0 -1
12
Forv=(? _%)eguv-(A-I)= q'(Ic )
(r p) r(k2-1) 0

Therefore, v* must be multiple of the linear functional that maps any v on its first entry. It
follows that the first entry of v- (B -1I) is zero for all ve § and all BeT. We take x(B)(z) =%i—§.

g (1) ) and ( (1) g ) Then we get af = v6 = 0. This is true only

and apply the above result on v=
when x(B) is a multiple of z or 1/z.

Next, we assume that there is a parabolic element x(4),4 € . We take

x(A)(z)=z+1.
Then for v = (,’-’ ._'{,)e Gv-(A-I)= (‘0' 2p,.— r). Therefore, v* must be a multiple of the linear
functional that maps any v on its third entry. It follows that v-(B—I) has zero third entry for all
veq, all BeT. As before, we assume that x(B)(z) = %%i—g, and apply the above result on
v =( (l) g ) and ( g (1‘ ) We get v =0,a2 = 1. This is true only when x(B)(z) = z + 8% 8’ #£0.

Finally, we assume that there is no loxodromic or parabolic element in x(T); that is, all
elements of x(T) are elliptic. Hence x(T) is finite.

Combining all these we conclude that d,F is surjective if none of the following statements
holds.

(i)  x(r) is finite;

(ii) all elements of x(I') are multiples of z or &

(ii1) all elements of x(T') are of the form z—z+ 8,8 #0.

Thus we have the following.

PROPOSITION. Let Ry be the subset of Hom*(I,G) consisting of those homomorphisms x
for which x(I') is nonelementary; that is, x(T) is not a finite extension of an Abelian group. Then
Ry is a complex manifold of dimension 6p +2n - 3.

REMARK. It follows from condition (iii) that the above proposition also holds when x(T) is
some of the elementary groups.

SECTION 2.

DEFINITION. Let a group I' act discontinuously on a domain Q C C. We denote by Q,(T)
the complex vector space of quadratic differentials for I; Qy(®,T) consists of functions ¢,
holomorphic on Q satisfying (¢ o )72 = ¢ for all y€T.

We denote by B,(,T) the subspace of Qy(Q,T) consisting of bounded quadratic differentials
for T; B,(Q,T) consists of ¢ € Qo(2,T) for which

SupAg 21 6(2) |} < oo
where X, is the Poincaré metric on Q.
DEFINITION. A deformation of I' is a pair (f,x), where f is a holomorphic local
homeomorphism of U into € and y is a homomorphism of T into G, the group of all Moebius

transformations, satisfying
for=x(7)o fforall yerl.
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The local homeomorphism f also describes a projective structure on the Riemann surface
U/T (provided T is torsion free). We also call f a projective structure on U/T. We call two
projective structures f and g equivalent if g = Aof for some Moebius transformation A. There is a
one-to-one correspondence between the set of equivalence classes of projective structures on U/T
and the space of quadratic differentials Qo(U,T).

DEFINITION. Let w be a quasiconformal selfmap of U, normalized by the conditions
w(0) = 0,w(1) = 1, and w(oo) = co. w is compatible with the group I if wo yow ™! is conformal for
every y€T. Two such quasi-conformal self maps of U, w; and w, are equivalent if they coincide
on the real line.

The Teichmiiller space T(I') of T is the set of equivalence classes [w] of normalized quasi-
conformal self maps of U which are I-compatible.

Let L, (U) denote the complex Banach space of bounded measurable functions u on U. let
Loo(U); be its open unit ball. Let Ly(U,T) be the subspace of L(U) consisting of x satisfying

u(v(2))7'(z)/7'(z) = u(z) for all y €T and z in U.

Let Loo(U,T) = Loo(U)y N Leo(U,T).  For every q.c. self map w of U, its Beltrami coefficient,
B=w,/wy € Loo(U);. Every p€ Lo(U), determines a unique normalized self map w of U satisfying
w, = pwz, Ahlfors [1]. We denote this w by w,,. It is easy to check that w, is I-compatible if and
only if pe L, (U,T). T(I) can be endowed with the quotient topology associated with the
surjective map p—[w,]. T(T) with this topology, can be realized as a bounded open set in
B,(U*,T). Since it is an open set in By(U*,T), T(T) is a complex manifold modeled on B,(U*,T)
and has dimension 3P -3 + n when T is of type (p,n,0).

We take p € Lyo(U,T); and extend it to be zero on the rest of €. There exists a unique q.c.
self-map w of € fixing 0,1,00 which has Beltrami coefficient 4 on U and which is conformal on U*,
Ahlfors 1. We denote this w by w”.uw#|p, hence w#|U* depends only on [w,], Ahlfors [1].
Therefore, w(U) depends only on [w,]. We denote wh(U) by D(t), where t=[w,]€T(). The
boundary of w”(U) is w#([R). The group w”I(w*)~! fixes this boundary which is a Jordan curve.
Hence the group is quasi-Fuchsian. We denote w”T(w”)~! by I'(t). The Bers’ fibre space F(t)
over T(T) is the set of pairs (t,z) with t € T(T), z € D(t).

For each ¢t € T(T), there exists a quasi-Fuchsian group I(t) and a Jordan domain D(t) = w¥(U).
To each t, we associate the complex vector space By(D(t),I(t)) of bounded quadratic differentials
for I(t). We form B(T())= U By(D(1),I(t)) as a fibre space over T(T). B(T(T)) forms a
complex vector bundle of rank %;g):i+n over T(I). We denote the points of B(T(T)) by (¢, 4(t))
where ¢(t) € By(D(t), (1))

Each ¢(t) € By(D(t),I'(t)) determines a holomorphic local homeomorphism

f(z,8): D(t)—C

such that the Schwarzian derivative of f,5f = (f/f') = 1/2(f"/f")%, is 6. We notice that (i)
S(f o v) = Sf, for vt € I(t), and hence (ii) f o ¥ =7 o f for some 7€ G. Both (i) and (ii) follow
from properties of Schwarzian derivatives. The map y—7 determines a homomorphism x, from
I(t) into G.
Let ©*:7—+? be the isomorphism of T into I'(t) induced by w”. We take x = x, o ©¥. Thus
we get a homomorphism x of T into G induced by f o w* and we have
fowtoy=x(y)o fout for all yeT. (2.1)

For A€G, f and A o f have the same Schwarzian derivative ¢. Since replacing f by A4 o f has the
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effect of replacing x by AxA ~!, we have a well defined map
®:B(T(T')—Hom(T,G)/G.

We call ¢ the monodromy map. We prove the following:

THEOREM 1. The monodromy map is a holomorphic local homeomorphism.

We want to study the local behavior of ®. For this purpose we fix the origin t; € T(T) so
that D(tg) =U and I(ty) =I. We consider the vector space W of the functions u:C—C satisfying
the following conditions.

u(z) = (Im 2)% $(z), z €U, for some ¢ € By(U,T)

=0, outside U.

Let W, be the-subset of W consisting of u with [|p| o < 1. For each u€ W, there exists a unique
quasi-conformal self map w = w” of C, fixing 0,1,00, and such that w has the Beltrami coefficient u
in U. Moreover, wk(U) is a Jordan domain and wHI(w*) ~ 1 is a quasi-Fuchsian group fixing wh(U).
There exists a neighborhood W of zero in W, which provides a local coordinate at t; in such a
way that for every ¢ in a sufficiently small neighborhood of ¢, D(t) is the Jordan domain w*()
and TI'(t) is the quasi-Fuschian group wPT(w#)~! for some p € W,. We choose W so small that a
point zj € wH(U) for all u € W, whenever zj € U.

Now for peW, and ¢ € By(wh(U),wHT(wH)~ 1y we consider the Schwarzian differential

" fll
Sf=(7)—l/2 (-f—,)z=¢ (22)
Let g = g4 be the unique solution of (2.2) satisfying
9(2g) = 0,9'(zg) = 1,9"'(z9) = 0. (2.3)
Any function f satisfying Sf=¢ is given by f=A o g for some A€G. Hence for pe W, and
¢ € By(wh(U), whTwh ™ 1), we have from (2.1).
Aogouwl(y(z))=x(7)o Aogowh(z)forall yeT, z€U.
We take h= A o g o w”. Then h is a C®-function satisfying h o y = x(y) o h for all y€T. Since
g depends on ¢ and w" depends on the Beltrami coefficient p,h is a function of A,u and ¢. Hence

equation

so is x. We denote the map
G x B(T(T)) 3 (A, p,¢)—x € Hom(T',G)
by #*. We shall show that &* is holomorphic. To prove this we need some Lemmas which have
been proved already in Earle {5]. These Lemmas do not need adjustment for the parabolic or
elliptic elements in I'. Hence we state these lemmas without proofs.
LEMMA 2.1 (Earle [5]). Let A,u,¢ be functions of a complex variable r such that
A(z,7) € G, p(2,7) € W) and ¢(z,7) is in B2(w“(U),w“I‘w"-l) forall r; | 7| <e.
We assume that
A(z,7) = Ag(2) + TA(2) + o(7)

B(zT)= Tis(z) + o(7) (24)
#(z,7) = d(2) +7é(2) +o(7), |T]| <e.
where Ag(z) = A(2,0),4((2) = #(2,0) and the dot denotes the derivative with respect to r at r=0.

We set py(2) = p(2,0) = 0.
Then h has a power series expansion
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h(z,7) = ho(z)+rh( Y+o(r), for |7] <€ (2.5)

where hy(z) = h(z,0) and h(z)
LEMMA 2.2 (Earle [5]).
Let h‘:hio. Then h* =02 A=i=6=0.

With the help of Lemma 2.1 it can be proved that x depends holomorphically on A.u and ¢. To

_6‘r|‘f_

show this we need the following:
LEMMA 2.3 (Earle [5]). Let A,u,¢ satisfy (2.4) and let h satisfy (2.5). Then x(v),y €T, has
the following power series expansion
X(7) = xg(1) + 7x() +o(r) for [r| <e (2:6)
and for all y €I’ where
X(1)(hg(2)) = (hgen) (2)(R*(M)7'(2) T ' = k¥ () z € U. (2.7)
The Lemma 2.3 has the following
COROLLARY 4. x(y)=0for yeT if and only if »* =0in U.
We need some adjustments to prove the corollary for the presence of parabolic elements. We
include the proof.
PROOF. In (2.7) we use hyoy = x4(7) o hy and we get

X(7)(ho(2))

aation | N I () (2) -1 = Bt
X0(7) (h () ho(z)(h (7( ))7( ) h*(2)).

x(1)(z)
xp(7)'(2)
Now we assume that () = 0 for all y €. Then h*(y(z))7'(z) ~ ! = h*(2), for all y€T,z€U. Hence
h* is a C*°(-1) differential for I. We shall show that h* is actually holomorphic in U under the
assumption, that x(y) =0 for all yeI. We intend to apply Stoke’s theorem on U/T. Since U/T
has punctures, Stoke’s theorem cannot be applied directly. We follow Bers [3] to handle this

Since is a polynomial and hy(U) is open, x(7) =0 if #* =0in U.

situation. U/T has m punctures. Thus one can construct a fundamental domain D for T
containing m cusped regions belonging to punctures.

We draw in each cusped region a smooth curve C; s=1,2,---,m so that (i) C4 joins two
points ¢, and (5 on 9D which are identified by an element of I, and (ii) C; and C, do not meet,
for s #s'. In this manner we obtain a relatively compact subset D* of D which is bounded by
part of 4D and the curves C,Cy, - - -Cp.

For any ¢ € By(U,T),h*¢ is a C*°-differential for T.

Let ¢ be arbitrary. By Stoke’s theorem we have

IJDt d(h*¢dz) = IaD‘ h*édz = f: JCS h* dz;

s=1
the integrals along two identified sides on 9D cancel each other, since h*¢dz is I-invariant. The
integral [ [ D,.d(h*dzdz)—»j' § pd(h*¢dz) whenever (,—a,; a, is the fixed point of the parabolic

transformation A, identifying ¢; and ¢;. Hence we can show that

[ f d(h*¢dz) =0

by showing that I:m J h*¢dz =0, for s = 1,2, -
It suffices to assume ‘that s =1, Ay (z)=z+1 and a; = co. Then the cusped region belonging to oo is
the region



MONODROMY MAP 705

Us={:€C;0 < Rez< |, Imz>c}
Hence

Jc h*edz = J‘ h*(z + ib)dz, (2.8)

where (| =ib;b > ¢, hence (| =1+1b. Since ¢ € By(U,T),4(z + 1) = é(z) which implies that ¢(z) has a

Fourier series expansion
o, 9]

¢(z)— Z 21rmz zel.

Since su;;} {(1mz)2 | ()|} < o0,ap, = 0 for n < 0. Hence ¢(z) = § a,,e2’"."“
z€ n=1

Therefore,
|¢(z +ib)| < Const.e ~ 27b, (2.9)
Since h = fow!,h = fy(z)i + f and hence
R* =0+ f* (2.10)
where w is given by the following integral (see Ahlfors [1], chap. V)

N (Q)d¢ A dT
() = " “u C-aC-10

It is known (Kra [13], chap. IV) that

w(z) =0(]z|log|z|) as z—o0,

and hence 1
|i(z+ib)| < canst.(.’l:2 + l)2)2 log(::2 + bz) as b—oo. (2.11)
Finally, we shall find a growth condition on f*. For this purpose, we study the behavior of f* in
the cusped region U,.
From (2.1) it follows that

fow”oAlo(w”)_lzx(Al)of. (2.12)
Let A, =w! o A o (w*)~1. Then 4, is parabolic, since A, is parabolic. Since w* fixes 0,1 and
oo, A, fixes oo, and takes 0 to 1.
Hence A, (z)=2z+1 for all 7. Moreover, x(4,) is parabolic if 4 is parabolic by Kra [12]. Let
B.(z)= 7—_177;' where P, is the fixed point of x(4,); and hence B=o.

Then
Brox(A) o By {2)=z4b,, b #0.

We replace f by B, o f so that x(4,) is replaced by B, o x(4,) o B;” 1 and we get from (2.12)

BrofoA, =B, ox(Al)oB.,._loBTof. (2.13)

We take F = B, o f and check that £ r ?— since B=0.
From (2.13), we have

F o Ar(z) = By o x(A)) o By Lo F(2);
F(z+1) = F(2)+ b,z € wH(U).

Differentiating with respect to z we get F'(z +1) = F'(2).

Therefore, F'(z) is periodic in z and has a Fourier series expansion

[o.¢] .
Flzr)= ) ag(n)e?™™2 2 e wh(U). (2.14)
o0

n= —
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Now we follow the arguments of Kra [13] keeping in mind that F is a function in two variables :
and r. Thus from (2.14) we get

F'(z,7) = ag(7) + f: ay(r)e2™*2, where ag(r) = b, £0. (2.15)

Moreover,

+1
by = ag(r) = J:z F/(z,7)dz, and

+1 .
a(r)= I :z e~ 2kTizpi(s 1)y, 7€ wh(U).

Integrating (2.15) we get
X . ar(r
F(z,7) = bz 4+ kz_:lck(f)ez“’", ep(r) = -ﬁ?,)- (2.16)

b, and cy(r) are holomorphic in r, hence they have power series expansions in r which are
uniformly convergent in A, = {r; || <¢}. Thus from (2.16), taking derivative with respect to r
at r =0, we get
F(z)=bz+ i ékezﬁh. zeU.
k=1

We know that
By o x(A4)) o By 1(z) = z+b; that is,

By o X(A})(z) = Br(z) +b.

Differentiating with respect to r at r =0 we get

B(xg(A)(2)x(A)) = B(z) +b = b,
since B=0. Thus x(4,) =0 implies that b = 0, and we have
o] .
Fy= Y & 72 cev.
k=1
From (2.16), we also get
oy ,
Fj(z)= F'(z0)=by+ Y c,(0) &27¥2, s €.
k=1
Hence
Fz) _ R, orik: . 2xikzy—1 _ 2 4 2wikz
_——= éLe (bg + cp(0)e )Tt = dge .
Fy(2) kz=:l k 0 kgl £ kz=:1 ¥
Hence we have
[o.9] ik
X 2)=F*2) = Z dke2’" Z zel. (2.17)
k=1

From (2.17) it follows that
| f*(z +1ib)| < const.e™ 2nb, (2.18)

We recall that in the integral (2.8)
h*¢ = (f*+i)p = f*¢ +ws.
From (2.10), (2.11) and (2.18) we conclude that

1
(22 + 172)71031(:!:2 + b2)

| h*(z + ib)¢(z + ib) | < const.(e ™ dxb | 3
£27b

)—0 as b—oo
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and hence

* s 1. N Oy
lim Jfl h ¢dz_£t1‘nm]0 h*(z + ib)(z + ib) = 0.

—00

Thus we have
I Id(h‘d)d:) =0; that is,
D
JJh';(b dzAdz =0.
D

From (2.10) we know that h*; = w; = ji, hence we have

J de: Adz =0 for any ¢ € By(U,T) (2.19)
D

Since s e W for pe W, we have that

js(z) = (Im 2)%8 (2),z € U, for some ¢ € By(U,T).

We now take ¢ = ¢ in (2.19). Then we have

”(lm 2?1 69(2) | 2dzAdz =0
D

¢ = 0=>js = 0= = 0=>h*; =0.

Hence h* is holomorphic in U. Furthermore, h* = f*. Thus h* is a (- 1) differential for T.

Following Kra [13], we define

*

ordph
red ord h* = , for pev,
P Tyl

(ITpl is the order of the stabilizer of P.)

and for each cusp a, of T, red ord, h* = r if the Fourier series expansion of h* at oo is
£ a,

h*(z) = io: ay 27ikz 4 20, zeU
- k v Gp ’ .
k=r

Since h* is holomorphic in U, red ordph* >0 if peU. From (2.17)

red ordash‘ >1fors=1,2,--.,m
Thus 3 red ordph* >0, where Dy is a fundamental set in U for I'. But
p€Dy
n
E_ red ordph" =-(2p-2)+ Z ! __1/17)
pE Do ji=1

by Kra [13], and it is negative since 2p -2+ i (1 —,—,‘7) >0.
1=1

This contradiction leads to the conclusion that h* =0. This completes the proof of the
corollary.

PROOF OF THE THEOREM. For an arbitrary point t € T(T'), there exists a map taking ¢
to a given point ¢, € T(T). This map is a holomorphic homeomorphism by Bers [4]. Hence it is
sufficient to prove the theorem in a neighborhood of the origin ¢, € T(T).

We have noticed earlier that, in a neighborhood of t;, @ is induced by #*. #* is holomorphic
by the Lemma 2.3. The Lemma 2.2 and the Corollary of the Lemma 2.3 together imply that the

differential of ®* is injective. It is known that x preserves the parabolic elements and the
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multipliers of the elliptic elements in I'. Moreover, x(T) is nonelementary by Kra [12]. Hence the
image x of ®* is a manifold point in Hom(I',G) by the Theorem 1. Since G x B(T(I')) and Hom(T',G)
have the same dimension 6p + 2n -3, ®* is a local homeomorphism. Replacing (I,t,¢) by (4,t,4) in
G xB(T(T)) has the effect of conjugating x by A. Hence we conclude that & is holomorphic and a
local homeomorphism in a neighborhood of ¢;. This completes the proof.
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