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ABSTRACT. A formula is set up between a vector-valued mean and scalar-valued mecans that
enbles us translate many important results about scalar-valued means developed in [1] to
vector-valued means. As applications of the theory of vector-valued means, we show that
the definitions of a mean in [2] and [3] are equivalent and the space of vector-valued weakly
almost periodic functions is admissible.
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Scalar-valued means have been much studied. However, little has been done on the
vector-valued means. In this paper we develop the theory of vector-valued means.

In Lemma 1.4, we set up a formula between a vector-valued mean and scalar-valued
means, by which we will be able to translate many important results about scalar-valued
means developed in [1] to vector-valued means. We present these results in Sections 1,
2 and 3. As an application of the theory established in these sections, we investigate

vector-valued weakly almost periodic functions in Section 4.

§1.Means on a Linear Subspace of B(S, X)

Throughout this paper, S denotes a semigroup which need not have an identity, X
denotes a Banach space and X* is the dual space of X. B(S, X) denotes all of the bounded
functions from S to X. When X = C, we simply write B(S) for B(S, X). A denotes a
linear subspace of B(S, X) containing the constant functions. £(.A, X) denotes all of the
bounded linear mappings from A to X.

Let f € B(S,X). Then the right (respectively, left) translate R, f of f by s € Sis the
map R, f(t) = f(ts) (respectively, L, f(t) = f(st)) forall t € S.

A is said to be right (respectively, left) translation invariant if RgA = {Rf: s €
S, f € A} C A (respectively, LsA = {L,f : s€ S, f € A} C A). A is said to be

translation invariant if it is both right and left translation invariant.

Definition 1.1 [2]. A linear mapping p1 : A = X is called a mean on A provided
u(f) € @f(S), for all f € A. Denote by M(A) the set of all means on A.

If A is right (respectively, left) translation invariant, p is said to be right (respectively,

left) invariant if (R, f) = p(f) (respectively, u(L,f) = u(f)) for all s € S and f € A.
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Remark 1.2. It foliows from [1. 2.1.2] that Definition 1.1 will reduce to the definition of
a scalar valued mean when X = C.

Of course, the evaluation mapping € : S = L£(A, X), defined by

)(f)=f(s) (seS feA

is in M(A), and if p € M(A) and f € A is a constant function, then u(f) is the constant.

The following proposition is obvious.

Proposition 1.3. If A is a lincar subspace of B(S, X) containing the constant functions,
then each 1 € M(A) is in L(A, X) with ||u|| = 1.

For each z* € X*,

*A={z"f=z*0f: fe A}

is a linear subspace of B(S).

Here we have adopted the definition in [2] of a mean on A. [3] gives a definition of a
mean in terms of a scalar-valued mean on 5p(X* o A) = sp{z*A : z* € X*}. In the
next lemma, we set up a connection like this, and we will show in Theorem 1.7 that the
definitions of a mean in [2] and [3] are equivalent. We will deal with other applications in

4.
Lemma 1.4. Let A be a linear subspace of B(S,X). A mapping p: A — X is in M(A)

if and only if, for each z* € X*, there is a ¢, ;- € M(z*A) such that

*u(f) = pue-(z*f)  (f € A).

If A is right (left) translation invariant, then p is right (left) invariant if and only if the
©u,z s are right (left) invariant. Furthermore, the set @, = {py .+ : ©* € X*} is uniquely

determined by p, i.e., 9,z = Qu z- for all z* € X* if and only if p = y'.
Proof. Sufficiency. First, u is a linear mapping from A to X . In fact, for f,g € A and
a,f €C,
' p(af +09) = Puz-(z*(af +P9g))

= Puz (2 (af)) + Pu- (2°(B9))

= apue(2°f) + Bppe-(z°9)

= az*u(f) + Bz*u(g)

= z*(apu(f) + Bu(g))-

The equality is true for all z* € X*, therefore

u(ef + Bg) = au(f) + Bu(g).

We claim that pu(f) € €of(S), for all f € A. If it is not true for some f € A, by the
Hahn-Banach theorem there is an z* € X* such that
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|z*p( f)] > sup |z* f(s)] = ||=* f]|-
SES

It follows from Remark 1.2 and Proposition 1.3 that Pu,ze € M(x*A) is in (z*.A)* with
1oyl = 1. So

[z ()] = lppar (z* )] < ||2* £,
a contradiction.

Necessity. For cach z* € X*, define Pu,z+ € (z*A)* by

Puea (" f)=2w(f)  (f € A).
¢u,z+ is well-defined on z*A. For, if z* f = 0 for some f € A, then f(S) C N(z*), the null
subspace of z*, s0 @, - (z*f) = z*u(f) = 0 since p(f) € @ f(S) (Definition 1.1). Clearly

Py~ is linear on z*A. Furthermore
Puo (2" f) = 2" u(f) € z*co(f)(S) C eoz* f(S),

80 Pp o is in M(z*A).

The rest of the lemma is clear.

We can furnish £(A, X) with two topologies, both of which make L(A, X) a locally
convex topological space. One is the strong operator topology 7,, which is the weakest
topology of £(A, X) relative to which the mapping U = Uf : L(A,X) = X is continuous
for each f € A, and the other is the weak operator topology 7, which is the weakest
topology of L(A, X) relative to which the mapping U — z*U f : £(A, X) — C is continuous
for each f € A and z* € X*. These topologies can be relativized to M(A) C L(A, X).

Proposition 1.5. Let A be a linear subspace of B(S, X). Then, for 7,

(1) M(A) is convex and closed in L(A, X);

(2) co(e(S)) is dense in M(A);

(3) if S is a topological space and A C C(S,X), then €: S — M(A) is continuous.
Furthermore, if the range f(S) of f is relatively compact in X for each f € A, then M(A)

is T,—compact.

Proof.

(1) The convexity of M(A) follows directly from Definition 1.1. To show that M(A)
is closed, let {¢1o} C M(A) converge to p € L(A, X) for 7,. Then pa(f) = p(f)
for each f € A, and since po(f) € cof(S) for all o, u(f) € cof(S). Therefore,
u € M(A).

(2) Clearly, co(e(S)) € M(A). If there is a p € M(A) such that u ¢ co(e(S)), the
closure being taken in 7,, then there is an f € A such that u(f) ¢ co(e(S)f) =
¢of(S), which contradicts Definition 1.1.

(3) is obvious.
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The proof of the compactness of M(A), if A satisfies the compactness condition, is similar

to that of its counterpart in the following proposition, so we omit it.

Proposition 1.6. Let A be a linear subspace of B(S, X). Then the conclusions (1)-(3)
of the previous proposition are true for 1,,. Furthermore, if A is such that the range f(S)

of f is weakly relatively compact in X for each f € A, then M(A) is 7,,- compact.

Proof. Using Lemma 1.4, we can prove (1)-(3) in much the same way that (1)-(3) of
Proposition 1.5 we proved.

We now show that M(A) is 7,—~compact when A satifies the weak compactness con-
dition. For each z* € X*, M(z*A) is weak* compact [1, 2.1.8]. Therefore, the product

space
H = H{M(z'A) tzte X'}

is compact in the product topology.

By Lemma 1.4, the mapping u — ¢, = {@uq- :2* € X*} : M(A) - []is 1-1, and it
is homeomorphism when M(A) has the topology 7,. To show that M(A) is 7,,-compact,
it suffices to show that the image of M(A) in [] is closed.

Let ¢ = {¢;- : z* € X*} € [] and let the image {¢,_} of {ia} converge to ¢ in [].
We show that there is a 4 € M(.A) such that ¢ is the image of p and po — p in 7.

Since f(S) is weakly relatively compact in X for each f € A, by the Krein—-Smulian
theorem (1, A.10] cof(S) is weakly compact in X for each f € A. Since u.(f) € cof(S)
for all @ and z*ua(f) = @g-(z*f) for all z* € X*, there is a u(f) € cof(S) such that
z*u(f) = @g-(z*f) for all z* € X*. The map f — u(f) is clearly linear, so u € M(A).

Thus p, — p in 7, and the proof is complete.

The following theorem shows that the definition of a mean in (2] is equivalent to that

in [3].

Theorem 1.7. A mapping i« : A — X is in M(A) if and only if there is a unique
Yu € M(Sp(X* o A)) such that

o u(f) = eu(z*f) (27 €X", fEA). (L1)
Proof. The sufficiency comes from the sufficiency in the first statement of Lemma 1.4.
Necessity. By Lemma 1.4, if 4 is in M(A), then for each z* € X* there is a g, .- in
M(z*A) such that

u(f) = ua-(z*f)  (f € A).

We show first that ¢, .- is independent of z* € X*, i.e., if z}, x5 € X* and f, f, € A
are such that z1f1 = z3 f3, then ¢, .: (1 f1) = @pu 25 (23 f2).

Since u € M(A), by Proposition 1.6 (2) there is a net {X,esXals)e(s)} converging to
w for 7y; here each A\, : S — [0, 1] has finite support and satisfies ZsES Aa(s) = 1. Next,
T} ,es Aals) fi(s)) = z3(2 .5 Aal(8) f2(5)) because z} fy = =3 fa, so
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Puai (@) = oip(fi) = limz} D Aa(s)f(s)

S€ES
= limz} Y Aa()fa(s) = 23u(f2) = Pu.a; (a5 f2)-
s€S

Therefore we can define ¢, for E:’;l o,z f, € sp(X* o A) by

‘pu(z oz fi) = Eat‘pu.z: (z3 f2)-
=1

=1
It is easy to see that ¢, is in M(sp(X* o A)). Therefore ¢, has a unique extension to
Sp(X* o A) and satisfies (1.1).

The uniqueness is clear. The proof is finished.

By Theorem 1.7, we can write ¢, for ¢, ;- in Lemma 1.4.

§2. Introversion and Semigroups of Vector—Valued Means

Definition 2.1. Let A be a translation invariant linear subspace of B(S, X). For a linear

map p from A to X, define the left introversion operator T, : A = B(S, X) by

Tuf(s) =u(Lsf) (fE€A s€S)

and analogously define the right introversion operator U, : A - B(S, X) by

Uuf(s) =n(Rsf)  (f€A s€S).
If T,A C A for all u € M(A), we will say that A is left introverted; we will say that A
is right introverted if U,.A C A. A is introverted if it is both left and right introverted.
A semitopological semigroup S is a semigroup and a Hausdorff topological space in such
a way that multiplication is separately continuous, i.e., the maps s — ts and s — st from
S into S are continuous for all t € S. C(S, X) denotes the Banach space of all continuous
members of B(S, X).

Example 2.2. C(S, X) is introverted if S is a compact semitopological semigroup.
For 4 € M(C(S, X)) and f € C(S, X), we must show that T, f and U, f are continuous.
Let g € C(S) and let z € X. g(-)z € C(S,X). Theorem 1.7 implies that pu(g(-)z) =
vu(9)z and T,(g(-)z) = T,,(g9)z. Therefore T, (g(-)z) € C(S, X) since T,,,(g) € C(S) 1,
2.2.5]. Note the fact that C(S,X) = 3p{g(-)z : g € C(S), * € X} since S is compact. For
€> 0 thereis p(-) = Yi-; fi(:)., where f, € C(S) and z, € X, i = 1,2,--- ,n, such that

If—pll <e
Now p € (S, X) and
ITuf — Tupll = max le(Ls(f =)l < If —pll <&

Therefore T, f € C(S, X).
Similarly U, f € C(S,X). The proof is finished.
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Proposition 2.3. Let A be a translation invariant linear subspace of B(S. X') containing
the constant functions and Iet € : S — M(.A) be the evaluation mapping. Then
(1) for each p € M(A), T, : A = B(S,X) is a bounded linear transformation with
Tl < Hliedl;
(2) the mapping p — T, : M(A) — L(A,B(S, X)) is a bounded transformation:
(3) ifp € M(A), thenT,(z) ==z, z € X;
(4) for all s € S and yu € M(A)

T.L,=L,T,
TpRa = TR:"
Tc(s) = R,,

where R} : M(A) & M(A) is the adjoint of R,;
(5) if f € A, then {T,f : p € M(A)} is the closure in B(S,X) of co(Rsf) in the

topology of pointwise convergence on S.

The proof of the proposition above is like that for [1, 2.2.3), so we omit it.

Definition 2.4. Let A be a translation invariant linear subspace of B(S, X) containing

the constant functions, and define
Zr={veL(AX): T.AC A}
and
Zy ={une L(AX): U,AC A}.
If p€ L(A,X) and v € Zr, define pv: A — X by
w(f)=uT.f) (feA).
Ifpe Zy and v € L(A,X), define p*xv: A= X by

uwxv(f)=vUuf) (f€A).
Definition 2.5. An admissible subspace A of B(S, X) is a norm closed, translation in-
variant, left introverted subspace of B(S, X) containing the constant functions. In the case

that X = C, an admissible subspace A C B(S) is also required to be conjugate closed.
Let S be a semigroup. Define p, : S -+ S and A\¢: S = S by
pe=8t, Ag=ts (s€S).

S is called a right topological semigroup if it is a topological space and p; is continuous

forallt € S. Set
A(S) = {s € S: ), is continuous}.

An affine semigroup S is a semigroup and a convex subset of a vector space in such a
way that p, and ), are affine mappings for each t € S. The requirement that p; and ), be
affine means that if r, s € S and a, b € [0,1] with a + b =1 then

(ar + bs)t = art + bst and t(ar + bs) = atr + bts,
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where (4) denotes vector addition.
The following lemma summarizes the properties of the operation (p,v) — . The proof
is similar to that of [1, 2.2.9]. We omit the statements of the corresponding properties of

the operation (ye,v) = p*v.

Lemma 2.6. Let A be as in Definition 2.4 and let € : A - X be the evaluation mapping.
Then

(1) Zr is a linear subspace of L(A,X) containing €(S);
(2) pr € L(A,X) for all p€ L(A,X) and v € ZT;
(3) ifue L(A,X), v € Zr and s € S, we have
Ty =TuoT,,
e(s)v = Ly,
ne(s) = Rop, and
vl < lledilivll,
where L} : M(A) - M(A) is the adjoint of L,;
(4) Zr is a right topological semigroup.

The following result is essentially a consequence of the preceding lemma and Proposi-
tions 1.5 and 1.6.

Theorem 2.7.

(1) If A is an admissible subspace of B(S,X), then for 7, or T,, and multiplica-
tion (p,v) — pv, M(A) is a right topological affine subsemigroup of L(A, X),
co(e(S)) C A(M(A)) and € : S - M(A) is a homomorphism.

(2) If we also assume that f(S) is (weakly) relatively compact for all f € A, then
M(A) is also compact for (Ty,) Ts.

Let S be a compact semitopological semigroup. By Example 2.2, C(S, X) is introverted.
Hence pv, p*xv € M(C(S, X)); indeed, they are equal.
Proposition 2.8. Let S be a compact semitopological semigroup and let A = C(S, X).

Then

(1) pv = px v for all p,v € M(A);

(2) for 7, and multiplication (p,v) — pv, M(A) is a compact semitopological affine
semigroup;

(3) if S is also a topological semigroup, so is M(A) in 7,.
Proof. (1). Note that .0, = ¢, * ¢, [1, 2.2.12 (a)]. Similar to the proof of Example 2.2,
we have, for g € C(S) and z € X,

w(g(-)z) = w(Tog(-)z) = 0u(Tp, 9)T = Lupu(9)T = ppu * pu(g9)z = p * v(g(-)z).
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Therefore

w(f)=pxv(f)  (f€C(S X)),

ie, pv = p*v.
(2) is a consequence of (1) and Theorem 2.7 (1).
To verify (3), we need to show that if u, = p and v, = v for 7, then vy = pv for

7. Note that ¢, ¢, (9) = pup.(g) for every g € C(S) [1, 2.2.12 (c)]. Now, for z € X,

KaVa(g()z) = PuaPra (9)r — ‘Pu¢u(§)$ = pv(g(-)x).

Again using the fact that C(S, X) = 5p{g(-)z : g € C(S),z € X}, we have pova(f) = pv(f)
for every f € C(S, X).

§3. Invariant Vector—Valued Means

S denotes a semigroup which need not have an identity and A denotes a linear subspace
of B(S, X) containing the constant functions. Let LIM(A) (RIM(A)) denotes the set of
left (right) invariant means on A. A is said to be left (right) amenable if LIM(A) # ¢
(RIM(A) # ¢). If Ais translation invariant , we set

IM(A) = LIM(A) N RIM(A)

and call members of IM(A) invariant means. A is said to be amenable if IM(A) # ¢.
As in the scalar case, we have the following proposition, whose proof is similar to that

of [1, 2.3.5]; so we omit it.
Proposition 3.1. Let A be an admissible subspace of B(S,X) and let ¢ : S = L(A, X)
be the evaluation mapping.

(1) LIM(A) is the set of right zeros of M(A); hence if A is left amenable , then
LIM(A) is a closed ideal of M(A) contained in every right ideal.
(2) If A is right amenable, then RIM(A) is a closed left idéal of M(A).

Corollary 3.2. Let A be an admissible subspace of B(S,X). If A is left and right

amenable, then it is amenable.

Proof. If p € LIM(A) and v € RIM(A), then puv € IM(A).

Corollary 3.3. Let A be an admissible right introverted subspace of B(S, X) such that
pv = p+v for all p, v € M(A). Then A has at most one invariant mean.

Proof. By the proposition and its right introverted analog, if u, v € IM(A), then v =
WV = p*v =L

Theorem 3.4. Let A be an admissible subspace of B(S,X) such that, for each f € A,

the range f(S) of f is relatively weakly compact. Let K(f) denote the closure in B(S, X)
of co(Rg f) for the pointwise topology. The following assertions are equivalent:
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(1) A is left amenable:

(2) for cach f € A, K(f) contains a constant function;

(3) for cach f € A. and s € S.0€ K(f — Lyf).

Furthermore. if (1) holds then. for cach f € A. {u(f) : p € LIM(A)} is the set of

constant functions in K(f) .

Proof. We omit the proofs that (1)= (2) = (3) which do not use weak compactenss
hypothesis. Here we show that (3) = (1).
For cach f € A and s € S, lct

M(f.s) ={p€ M(A): Tu(f - L.f) =0}.

The sets M(f,s) arc 7,-closed, and therefore 7,-compact. For, let {p,} C M(f.s)
converge to u € M(.A). We want to show that p € M(f,s), i.e.,

Tu(f - Lsf) =0.
Note that

Tu(f = Lof)(t) = w(Lef — Les f) (L€ S)

and po(Lef —Lesf) = Ty, (f— Lsf)(t) = O for all a. Since pa(Lef —Lesf) = s(Lef — Les f)
weakly, p(Lef — Les f) = 0. That is, Tu(f — L,f) = 0.

As in the proof of [1, 2.3.11], we can show that the family {M(f,s): f € A, s € S} has
the finite intersection property. By Proposition 1.6 M(A) is 7,—compact. So

N(M(f,9):feAseS)#¢.

Let 1 be any member of this intersection, then u2 € LIM(A).

Let S be a group and let A be a linear subspace of B(S, X). For each f € A define f:
S — X by
fe=f(s"h)  (seS$),

and set

A={f:fe A}
If 4 € M(A), define i € M(A) by
BH=ulf) (FeA).

If A= A and i = p, then p is said to be inversion invariant.

Theorem 3.5. Let G be a compact Hausdorff topological group. Then C(G,X) has a

unique invariant mean p. Furthermore p is inversion invariant.

Proof. The mean u can be expressed as

u(f) = /G fdv  (f €C(G, X)),

where v is normalized Haar measure on G; the properties of u follows from those of v.
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The scalar version of the next theorem is [1, 2.3.14]; a similar result has appeared in
[3]. but there S is required to have an identity. A small modification of the proof of [1,
2.3.14] yields a proof of the present theorem.

Theorem 3.6. Let S be a compact Hausdorff semitopological semigroup. Then the fol-
lowing assertions hold:
(1) C(S, X) is left (respectively right) amenable if and only if S has a unique minimal
right (respectively, left) ideal;
(2) C(S.X) is amenable if and only if the minimal ideal of S is a compact topological
group.

§4. Vector—Valued Weakly Almost Periodic Functions

Let S be a semitopological semigroup; we do not assume S has an identity. Let
WAP(S, X) consist of those members f of C(S, X ) for which the right orbit Rgf = {R,f :
s € S} is weakly relatively compact in C(S, X).

With a proof similar to that for [1, 4.2.5], one sees that the space WAP(S, X) is a closed
translation invariant subspace of C(S,X). When X = C, WAP(S, X) is just WAP(S),
the C*-algebra of weakly almost periodic functions on S. We note that

z* o WAP(S, X) = WAP(S)  (z* € X*, =" #0).

Recall that € : § = L(A, X) is the evaluation mapping €(s)f = f(s), f € WAP(S, X).
When X = C we denote this mapping by €.

Let aSWAP denote the w* closure in WAP(S)* of coe'(S); aS™W4P is a compact affine
semitopological semigroup [1, 4.2.11].
Theorem 4.1. Let S be a semitopological semigroup and let A = WAP(S,X). The
following assertions hold:

(1) A is an admissible subspace of B(S, X);

(2) for 7, and multiplication (u,v) — pv, M(A) is an affine semitopological semigroup;

(3) if f(S) is weakly relatively compact in X for each f € A, then M(A) is T,,—~compact;

in this case A is left amenable if and only if WAP(S) is left amenable.

Proof. (1) Since A is a closed translation invariant subspace of C(S, X), to show that A is
admissible we need to show that A is left introverted, i.e., if f € A then T, f € A for all
u € M(A).

Define V : M(A) = B(S,X) by

V() =T.f (€ MA).

By Proposition 2.3 (5)
V(M(A)) = @(Rsf) (4.1)
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the closure being taken in the pointwise topology. Since f € A, co(Rs f) is weakly relatively
compact in A; in view of (4.1) this implies that V(M(A)) is the weak closure in A of
co(Rsf). SoT,f € Aforall n € M(A).

(2) By Theorem 2.7 (1), for 7, and multiplication (u,v) = uv, M(A) is a right topo-
logical affine semigroup. It follows from Theorem 1.7 that the mapping II: p = ¢, is a
Ty—w* homeomorphism of M(A) into aSYWAP. Since z*v(f) = ¢, (z*f) for f € A and
z* € X*, z*(T,f) = Ty, (z* f). It follows that ¢,, = @up,. Since () = ., [is a
homomorphism too. So M(.A) is an affine semitopological semigroup because aSWAP is.

(3) When A satisfies the compactness condition, the 7,~compactness of M(A) is a
consequence of Theorem 2.7 (2). In this case, M(A) = aSWAP. So we get the last
statement.

The proof is complete.

Remark 4.2. For f € WAP(S, X), in general f(S) C X is not weakly relatively compact.
However, if S admits an identity, it follows from the double limit property (e.g., [2, Theorem
3]) that f(S) is weakly relatively compact. Of course, if X is reflexive then f(S) is weakly

relatively compact.
Theorem 4.3. For a compact semitopological semigrooup S, WAPS, X = C(S, X).

The theorem holds because the facts of C(S,X) = 3p{f(-)z : f € C(s),z € X} and
WAP(S) = C(S) [1, 4.2.9].
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