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ABSTRACT. A formula is set up between vector-vMued mean and scMax-valued that
enbles translate many important results about scalar-valued means developed in [1] to
vector-valued means. As applications of the theory of vector-vMued means, .how that
the definitions of mean in [2] and [3] are equivalent and the space of vector-valued weakly
almost periodic functions is admissible.
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Scalar-valued means have been much studied. However, little has been done on the

vector-valued means. In this paper we develop the theory of vector-valued neans.

In Lemma 1.4, we set up a formula between a vector-valued mean and scalar-valued

means, by which we will be able to translate many important results about scalar-valued

means developed in [1] to vector-valued means. We present these results in Sections 1,

2 and 3. As an application of the theory established in these sections, we investigate

vector-valued weakly almost periodic functions in Section 4.

l.Means on a Linear Subspace of/3(S, X)

Throughout this paper, S denotes a semigroup which need not have an identity, X
denotes a Banach space and X* is the dual space of X. B(S,X) denotes all of the bounded

functions from S to X. When X C, we simply write B(S) for B(S,X)..4 denotes a

linear subspace of/3(S,X) containing the constant functions. :(.4, X) denotes all of the

bounded linear mappings from ,4 to X.

Let f /3(S,X). Then the right (respectively, left) translate R,f of f by s S is the

map R,f(t)= f(ts) (respectively, Lf(t)= f(st)) for all S.

A is said to be right (respectively, left) translation invariant if RsA {R,f s

S, f ‘4} C ‘4 (respectively, Ls‘4 {L,f s S, f .4} C .4). A is said to be

translation invariant if it is both right and left translation invariant.

Definition 1.1 [2]. A linear mapping I A X is called a mean on A provided

#(f) Cdf(S), for all f ‘4. Denote by M(‘4) the set of all means on .4.

If ,4 is right (respectively, left) translation invariant,/z is said to be right (respectively,

left) invariant if #(Rf)= #(f) (respectively, #(Lf)=/(f)) for all s S and f ‘4.
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Remark 1.2. It. follows fi’()n [1.2.1.2] that Definition 1.1 will reduce to the definition of

a scalar valued mean when X C.

Of course, the evaluation ml)l)ig e" S --/(.,4, X), defined by

.(s)(f) f(s) (s S. f A)

is in M(.A), and if/L M(A) and f A is a constant function, then #(f) is the constant.

The following proposition is obvious.

Proposition 1.3. /f J[ is a lincm" subspace of 13(8, X) containing the constmit fimctions,

then each t’ M(A) is in (A,X) with IIll- 1.

For each x* X*,

z*A {z*/= z* o I I A}

is a linear subspace of B(S).

Here we have adopted the definition in [2] of a mean on j[. [3] gives a definition of a

nean in terms of a scalar-valued mean on p(X* o 4) -p{x*.4 x* X* }. In the

next lemma, we set up a connection like this, and we will show in Theorem 1.7 that the

definitions of a mean in [2] and [3] are equivalent. We will deal with other applications in

4.
Lemma 1.4. Let A be a linear subspace of B(S,X). A mapping A - X is in M(A)
if and only if, for each x* X*, there is a o,. M(x*.4) such that

x,*#(/) qo,,:r,. (x,* f) (f .,4).

If A is right (left) translation invariant, then # is right (left) invariant if and only if the

o.,. ’s are right (left) invariant. Furthermore, the set o. {o.,. x* X*} is uniquely

determined by #, i.e., o.,. o,,,. for all x* X* if and only if # #’.

Proof. Sufficiency. First, # is a linear mapping from 4 to X. In fact, for f, g j[ and

*#(af + fig)

v.,.. (*(f)) + v,,.. (*(/a))

v,.. (*f) +/,.("

*(#(f) + :,(a)).

The equality is true for all * X*, therefore

.(-f + :a) .(f) +/.().

We claim that #(f) --Sf(S), for all f A. If it is not true for some f A, by the

Hahn-Banach theorem there is an * X* such that
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I’#(f)l > sup I’f()l II’YlI.

It follows from Remark 1.2 and Proposition 1.3 that o,,. (5 M(z*,4) is in (x*‘4)* with

I1.,..-II 1. So

a contradiction.

Necessity. For each z* (5 X*, define qo,,. (5 (z*‘4)* by

o,. (x’f) x’It(f) (f (5 ‘4).

q0,, is well-defined on x*A. For, if x*f 0 for some f (5 A, then f(S) C N(x*), the null

subspace of x*, so o,,.(x*f) x’It(f) 0 since #(f) (5 "5"5f(S) (Definition 1.1). Clearly

qo,,, is linear on x*‘4. Furthermore

.,. (*f) *,(’) e *(I)(s) c x*f(s),

so o,. is in M(x*‘4).
The rest of the lemma is clear.

We can furnish (A,X) with two topologies, both of which make (‘4,X) a locally

convex topological space. One is the strong operator topology 7-, which is the weakest

topology of (,4, X) relative to which the mapping U - Uf (,4, X) ---r X is continuous

for each f (5 ‘4, and the other is the weak operator topology Tw, which is the weakest

topology of (‘4, X) relative to which the mapping U x*Uf Z:(A, X) C is continuous

for each f (5,4 and x* (5 X*. These topologies can be relativized to M(‘4) C (,4, X).

Proposition 1.5. Let ,4 be a linear subspace of 13(S, X). Then, for ’
(1) M(A) is convex and closed in (A,X);

(2) co(e(S)) is dense in M(‘4);

(3) if S is a topological space and ,4 C C(S,X), then e: S M(,4) is continuous.

Furthermore, if the range f(S) of f is relatively compact in X for each f (5 A, then M(A)
is T,-compact.

Proof.

(1) The convexity of M(‘4) follows directly from Definition 1.1. To show that M(‘4)
is closed, let {Ita} C M(‘4) converge to # (5/(‘4, X) for r,. Then It(f) - #(f)
for each f (5 ‘4, and since #a(f) (5 -d-dr(s) for all a, It(f) (5 -6"6f(S). Therefore,

(2) Clearly, co(e(S)) C M(A). If there is a # (5 M(A) such that # (e(S)), the

closure being taken in T, then there is an f (5 ,4 such that It(f) -(e(S)f)
-6f(S), which contradicts Definition 1.1.

(3) is obvious.



230 C. ZHANG

The proof of the conpactncss of M(‘4), if .4 satisfies the compactness condition, is similar

to that of its counterpart in the following proposition, so we omit it.

Proposition 1.6. Let .4 be a linem" subspace of B(S, X). Then the conclusions (1)-(3)
of the previous proposition m’e true for To. Furthermore, if.4 is such that the range f S)
of f is weakly relatively compact in X for each f .4, then M(.4) is Tw-comtact.

Proof. Using Lemma 1.4, we can prove (1)-(3) in much the same way that (1)-(3) of

Proposition 1.5 we proved.

We now show that M(.4) is To-compact when .4 satifies the weak compactness con-

dition. For each x* X*, M(x*A)is weak* compact [1, 2.1.8]. Therefore, tim product

space

1-[ 1-I{M/’/
is compact in the product topology.

By Lemma 1.4, the mapping # qo, {qo,,. :x* X*} M(.4) -+ 1-[ is 1-1, and it

is homeomorphism when M(A) has the topology To. To show that M(A) is T,--compact,

it suffices to show that the image of M(A) in I-I is closed.

Let o {. x* X*} 1--[ and let the image {qo, of {#} converge to qo in I-I.
We show that there is a # M(.4) such that o is the image of # and #, # in To.

Since f(S) is weakly relatively compact in X for each f .4, by the Krein-Smulian

theorem [1, A.10] -6f(S)is weakly compact in X for each f ,4. Since #(f) -6f(S)
for all a and x*#(f) - ,.(x*f) for all x* X*, there is a #(f) -C-6f(S) such that

x*#(f) ,.(x*f) for all x* X*. The map f -> #(f)is clearly linear, so it M(.4).
Thus # # in ’,o, and the proof is complete.

The following theorem shows that the definition of a mean in [2] is equivalent to that

in [3].

Theorem 1.7. A mapping i A - X is in M(A) if arid only if there is a unique

M(-g-p(X* o ,4)) such that

x*#(f) :,(x’f) (x* X*, f ,4). (1.1)

Proof. The sufficiency comes from the sufficiency in the first statement of Lemma 1.4.

Necessity. By Lemma 1.4, if # is in M(‘4), then for each x* X* there is a qo,,, in

M(x*A) such that

x*/.z(f) qo,,:.(x*f) (f ‘4).

We show first that T,,,. is independent of x* X*, i.e., if x, x X* and f, f2 A
are such that xf xf, then q,, (xf) ,, (xf2).

Since # M(.4), by Proposition 1.6 (2) there is a net {E,es A(s)e(s)} converging to

# for T; here each , S [0, 1] has finite support and satisfies ]es A,(s) 1. Next,

X(EsS)(s)fI(8)) x(EsS/\c,(s)f2(s)) because xtf xf2, so
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p. (fl) lL(fl) lix ()fl()

Therefore we can define qou for -,,’1 c,x f, E sp(X* o .,4) by

:I :I

It is easy to see that ou is in M(sp(X* o A)). Therefore ou has a unique extension to

pp(X* o ‘4) and satisfies (1.1).

The uniqueness is clear. The proof is finished.

By Theorem 1.7, we can write qou for qou,, in Lemma 1.4.

2. Introversion and Semigroups of Vector-Valued Means

Definition 2.1. Let .4 be a translation invariant lineax subspace of 13(S, X). For a lineax

map # from .4 to X, define the left introversion operator Tu .4 - 13(S, X) by

T,f(s) p(L.f) (f .4, s S)

and analogously define the right introversion operator U A - 13(S, X) by

Uf(s) #(Rf) (f .4, s

If T,.4 C .4 for all/z M(.4), we will say that .4 is left introverted; we will say that A

is right introverted if Uu.4 C .4..4 is introverted if it is both left and right introverted.

A semitopological semigroup S is a semigroup and a Hausdorff topological space in such

a way that multiplication is separately continuous, i.e., the maps s ts and s - st from

S into S are continuous for all
_

S. C(S,X) denotes the Banach space of all continuous

members of 13(S, X).

Example 2.2. C(S, X) is introverted if 5’ is a compact semitopological semigroup.

For # M(C(S,X)) and f C(S,X), we must show that T,f and Uf are continuous.

Let g C(S) and let x X. g(.)x (S,X). Theorem 1.7 implies that #(g(.)x)

o,(g)x and T,(g(.)x) T,,(g)x. Therefore T,(g(.)x) C(S,X) since T(g) C(S) [1,
2.2.5]. Note the fact that C(S,X) p(g(.)x g C(S), x X} since S is compact. For

e 0 there is p(.) -,1 f,(.)x,, where f, C(S) and x, X, 1, 2,--. n, such that

Ill- pll < -
Now p e C(S, X) and

liter- ZPll max II(L(f- P))II < IIf- Pll < e.
sES

Tro T,, C(S, X).
Similarly U,f C(S,X). The proof is finished.
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Proposition 2.3. Let -4 be a trmislation invariant linem" subspace of 13(S. X) containing
the constant functions and let S - M(-4) be the evaluation mapping. Th.n

(1) rot each lz E M(-4), T, -4 - B(S,X) is a bounded lineaa" trm.,f(,rmation with

(2) the mapping # - Tu M(-4) - (-4,/3(S, X)) is a bounded traasfi,nnation;

(a) ir e M(), then Tu() , X;

(4) for t s e s d e M()

where R M(A) M(A) is the lomt or
(5) if f A, then {T,f p e M(A)} is the c/ose in B(S,X) of co(Rsf) in the

topolo of pointwise convergence on S.

The proof of the proposition above is like that for [1, 2.2.3], so we omit it.

Definition 2.4. Let -4 be a translation invariant linear subspace o( /3(S,X) containing

the constant functions, and define

zr { e (A,x) T.A c A}

and

Z {# e Z:(.,X) U,,A c St}.

If lz e (-4, X) and t, e ZT, define #u: -4 - X by

/.w(f) p(T,f) (f . .).

If I e Zty and u e -.(-4, X), define p u: -4 -- X by

# .(f) .(v,.f) (I e ).
Definition 2.5. "An admissible subspace .4 of B(S,X) is a norm closed, translation in-

variant, lef /ntroverted subspace of B(S, X) conta/n/ng the constant functions. In the case

that X C, an admissible subspace A C B(S) is a/so required to be conjugate closed.

Let S be a semigroup. Define p, S - S and ,k S S by

st, A ts s E S).

S is called a right topological semigroup if it is a topological space and pe is continuous

for all S. Set

A(S) {s S: A, is continuous}.

An alfme semigroup S is a semigroup and a convex subset of a vector space in such a

way that pt and At are affine mappings for each S. The requirement that p, and A be

affme means that if r, s 6 S and a, b E [0, 1] with a + b 1 then

(at + bs)t art + bst and t(ar + bs) air + bts,
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where (+) denotes vector addition.

The following lcmma summarizes the properties of the operation (t, u) -- lt. The proof

is similar to that of [1, 2.2.9]. Wc omit the statements of the corresponding properties of

the operation (It, u) It u.

Lemma 2.6. Let be in Definition 2.4 d let X be the evahmtion mapping.

() z ,,. sspacc of C(A,x) connn ();

(2) c(A,x) fo,- c(A,x) d Z:
(3) if e (A,X), u ZT and s e S, e have

%=%oT,.

(s)u

h L;. M(A) M(A) i th djoi.t or L
(4) ZT is a right topologicM semigroup.

The following result is essentily a consequence of the preceding lemma and Proposi-

tions 1.5 d 1.6.

Theorem 2.7.

(1) If A is missible subspe of B(S,X), then for q or , d multiplica-

tion (U,u) Uu, M(A) is a right topologicM ne subsemigroup of

co(e(S)) C A(M(A)) d e: S M(A) is a homomorphism.

(2) If e Mso sume that f(S) is (ely) relatively compt for M1 f A, then

Let S be a compt semitopologie semioup. By Exple 2.2, C’(S, X) is introverted.

Hence Uu, U * u 6 M(C(S,X)); indeed, they e equ.

Proposition 2.8. Let S be a compt setopologicM semigroup d let A C(S,X).
Then

() rot q d multiplication (U,u) Uu, M(A) is a compact semitopologicM ne

semioup;

(3) if S is Mso a topologicM semioup, so is

Proof. (1). Note thatu u * [1, 2.2.12 (a)]. Simil to the proof of Exple 2.2,

we have, for 9 6 C(S) d x X,
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Therefire

i.e., lW It * u.

(2) is a consequence of (1) and Theorem 2.7 (1).

To verify (3), we need to show that if lt, -4 # and u, -4 u for ’s then It,u, -4/w for

’s. Note that o,o oo (9) -4 ouo(9) for every 9 - C(S) [1, 2.1.12 (e)]. Now, for x E X,

#..(a(.)) .oo (a)* -, ,(a), uu(a(.)*).

Again using the fact that C(S,X) p{g(-)x g C(S),x X}, we have

for every f C(S, X).

3. Invariant Vector-Valued Means

S denotes a senigroup which need not have an identity and ‘4 denotes a linear subspace

of 13(S,X) containing the constant functions. Let LIM(‘4) (RIM(A)) denotes the set of

left (right) invariant means on ‘4. ,4 is said to be left (fight) amenable if LIM(‘4)

(RIM(A) ). If ‘4 is translation invariant we set

IM(A) LIM(A) gl RIM(A)

and call members of IM(‘4) invariant means. ‘4 is said to be amenable if IM(‘4) # .
As in the scalar case, we have the following proposition, whose proof is similar to that

of [1, 2.3.5]; so we omit it.

Proposition 3.1. Let A be an admissible subspace of B(S,X) and let e S -4 I:(‘4, X)
be the evaluation mapping.

(1) LIM(‘4) is the set of right zeros of M(.4); hence if ,4 is left amenable then

LIM(A) is a closed ideal of M(A) contained in every right ideal.

(2) /f,4 is right amenable, then RIM(‘4) is a closed ere iddal of M(A).

Corollary 3.2. Let ‘4 be an admissible subspace of B(S,X). If .4 is left and right

amenable, then it is amenable.

Proof. If # e LIM(A) and u RIM(A), then #u E IM(‘4).

Corollary 3.3. Let .4 be an admissible right introverted subspace of B(S, X) such that

# # u for all #, M(‘4). Then .4 has at most one invariant mean.

Proof. By the proposition and its right introverted analog, if #, u IM(.4), then

Theorem 3.4. Let A be an admissible subspace of B(S, X) such that, for each f A,
the range f(S) of f is relatively weakly compact. Let K(f) denote the closure in B(S,X)
of co(Rsf) for the pointwise topology. The following assertions are equivalent:
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(1) .A is left anwnalle:

(2) for ea’l f E A. K / contains a constant f,mction;

(3) for each / e A. and s S. t) K(f-Lf).

Fu’thermore. if (1) holds then. for each f A. {#(f) It LIM(A)} is the set of

constant fimctions in K f

Proof. We omit the proofs that (1) (2) (3) which do not use weak conpactenss

hyl)othesis. Here we show that (3) (1).

For each f A and s S, let

g(f. ) {# e M(A): T,(I- L,f)= 0}.

The sets M(f, s) are -closed, and therefore z-eompact. For, let

converge to It M(A). We want to show that p M(f,s), i.e.,

Note that

T,(I L,f)(t) (Lf L,f) (t e S)

d (LtI-Lt.]) T. (f -L,l)(t) 0 for 1 a. Since (LI-L,I)

wetly, p(Lf L,f) 0. That is, T(f L,f) O.

As in the proof of [1, 2.3.11], we c show that the fily {M(f, s): f A, s S} h

the finite intersection property. By Proposition 1.6 M(A) is T-compact. So

Let p be y member of this intersection, then p2 LIM(A).

Let S be a group and let A be a line subspe of B(S, X). For each f A define ]
SXby

]()=/(-) ( e S).

and set

If It E M(A), define/2 E M(A) by

It(f) (f E ).

If ft. ,4 and/2 It, then It is said to be inversion invariant.

Theorem 3.5. Let G be a compact Hausdorff topological group. Then C(G,X) has a

unique invariant mean It. Furthermore # is inversion invariant.

Proof. The mean It can be expressed as

It(f) =/G fd. (/ C(G,X)),

where t is normalized Haar measure on G; the properties of It follows from those of t.
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The s(’alar wwsio,l of tl,: next tlw,orcm is [1, 2.3.14]; a simil res,dt h; alpem’ed in

[3], but tl.,re S is reqfircl to lmw an identity. A small modification of the lroof of [1,

2.3.14] yiehls a proof of the l)resent theorem.

Theorem 3.6. Let S be a compact Hausdorff semitopologicM semigrop. Then the fol-

lowing sscrtions hold:

(1) C(S, X) is left (respectively right) amenable ifd only if S h a mdqw minimM

right (respectively, left) ideal;

(2) C( S, X) is nenablc if and only if the minimM ideM of S is a compact topdogicM

group.

4. Vector-Valued Weakly Almost Periodic Functions

Lct S be a scmitopological senigroup; we do not assume S has an identity. Let

W‘47a(S,X) consist of thosc mclnbers f of C(S,X) for which the right orbit Rsf {Rf
s S} is wcakly rclativcly compact in C(S, X).

With a proof similar to that for [1, 4.2.5], one sees that the space 4;‘47(S, X) is a closed

translation invariant subspace of C(S,X). When X C, )/V‘479(S,X) is just

the C*-algebra of weakly almost periodic functions on S. We note that

* o wp(s,x) w.v(s) (* x’, " # o).

Recall that e: S -+ (A,X) is the evaluation mapping e(s)f f(s), f WAP(S,X).

When X C we denote this mapping by e’.

Let aSw’r’ denote the w* closure in WAT’(S)" of co’(S); aSw’r’ is a compact affine

semitopological semigroup [1, 4.2.11].

Theorem 4.1. Let S be a semitopological semigroup and let .4 W.479(S,X). The

following assertions hold:

(1) .4 is an admissible subspace of B(S,X);

(2) for r, and multiplication (#, u) - #, g(.4) is an afline semitopological semigroup;

(3) ill(S) is weakly relatively compact in X for each f .4, then M(.4) is %-compact;

in this case .4 is left amenable if and only if W.479(S) is left amenable.

Proof. (1) Since .4 is a closed translation invariant subspace of C(S,X), to show that .4 is

admissible we need to show that .4 is left introverted, i.e., if f .4 then Tf .4 for all

I M(.4).

Define V: M(.4) B(S,X) by

V(#) Tf ( M(.4)).

By Proposition 2.3 (5)
V M(.4) -6-5(Rsf), (4.1)
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the closure being taken in the pointwise topology. Since f E ‘4, co(Rsf) is weakly relatively

compact in ,4; in view of (4.1) this implies that V(M(‘4)) is the weak closure in .4 of

co(Rsf). So T,f A for all It M(.4).

(2) By Theorem 2.7 (1), for T, and multiplication (#,,) #t,, M(.4) is a right topo-

logical affine semigroup. It follows from Theorem 1.7 that the mapping II p , is a

%-w* homeomorphism of M(.4) into aSw’a’. Since x*,(f) tp,(x*f) for f .4 and

x*
_
X*, x*(T,f) T,(x*f). It follows that o, o,o,,. Since H(#t,) o,, H is a

homomorphimn too. So M(.4) is an affine semitopological semigroup because aSw’a’ is.

(3) When .4 satisfies the compactness condition, the r,,,-compactness of M(.4) is a

consequence of Theorem 2.7 (2). In this case, M(‘4) - aSw’a’. So we get the last

statement.

The proof is complete.

Remark 4.2. For f
_
VA’P(S, X), in general f(S) C X is not weakly relatively compact.

However, if S admits an identity, it follows from the double limit property (e.g., [2, Theorem

3]) that f(S) is weakly relatively compact. Of course, if X is reflexive then f(S) is weakly

relatively compact.

Theorem 4.3. For a compact semitopological semigrooup S, W.4PS, X C(S,X).

The theorem holds because the facts of C(S,X) pp{f(.)x f or_ C(s),x . X} and

W.4P(S) C(S)[1, 4.2.9].
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