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ABSTRACT
In this paper we study the Existence and Uniqueness of solutions for the following

Cauchy problem:
Aqu"(t) + Ar'(t) + A(t)u(?) + M(u(t)) = f(t), t€(0,T)
u(0) = ug; A2u'(0) = Az%ltl;

where A; and A, are bounded linear operators in a Hilbert space H, {A(t)}o<i<T is a

¢y

family of self-adjoint operators, M is a non-linear map on H and f is a function from
(0,T) with values in H.
As an application of problem (1) we consider the following Cauchy problem:
ka(z)u” + ki(z)u’ + A(t)u + v = f(t) in Q,
u(0) = ug; ka(2)u'(0) = ka(2)5uy
where @Q is a cylindrical domain in IR*; k; and k; are bounded functions defined in an
open bounded set  C IR®,

2

Aty =-% gi—j(aej(x,t)a%);

1,5=1

a
where a;; and a}; = Z-u;; are bounded functions on € and f is a function from (0,T)

at
with values in L?(f).
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INTRODUCTION

Let T > 0 be a positive real number and Q be a bounded open set of IR", with
smooth boundary T. In the cylinder Q = Q x (0,T), Bensoussan et al. [01], studied the

homogeneization for the following Cauchy problem:
ky(z)u” + ky(z)u' —Au=f in Q.

u(z,0) = uo(z) € ka(z)u'(z,0) = k32(z)us(2), z €N

Many authors have been investigating the existence of solution for non-linear equations

®3)

associated with problem (3),

see: Larkin [04], Lima [05], Medeiros [07-09],Melo [10], Maciel [11], Neves [12] and Vagrov
[15].

Other interesting results relative to existence of a solution for a non-linear equation

associated with the equation of the problem (3) can be found in the work of J'orgens [03]
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In this is work he proved the existence of classical solution by iterative methods for the

mixed problem associated to the equation
uy — Au+ F'(Ju)¥)u =0,

in open domain of IR®, with the hypotesis F(0) = 0 and |F’(s)| < a[b+ F(s)]* where a,b
and o« are positive constants with a < %

In Section 1, we establish some notation for the function spaces and conditions for
A1, Az, {A(t)}oci<, M and f in equation (1). In Section 2, we state our main results

and we prove the assertions made. In the final Section we make an application of problem

(1).

1. PRELIMINARIES

We will assume that standard function spaces are known: C*(Q), LP(Q); H*(1),
HE(Q), C*(0,T; X), LP(0,T; X) where X is a Banach space.

Let H be a real Hilbert space, with inner product and the norm denoted by (:,-) and
| - |, respectively.

We consider here the following assumptions:

i) A;: H — H, a positive symmetric operator

ii) A;: H — H, a symmetric operator such that:

(Ayu,u) > Bluf?, 0< BeR, forall u € H.

ii1) Let {A(t); t > 0} be a family of self-adjoint linear operators of H, such that
there exists a constant a > 0, satisfying (A(t)u,u) > alu|? for all u € D(A(2)),
where we assume that the domain D(A(t)) of A(t) is constant, i.e, D(A(t)) =
D(A(s)) Vt, s>0. It is known from the spectral theory for self-adjoint opeators

that there exists only one positive self-adjoint operator A%(t) such that:

D(A(t)) C D(A%(t)).

From assumption iii) we have, see Medeiros [09], that D(AZ(t)) is constant.

Let V, = D(A2(t)) with inner product ((-)) and associated norm || - ||;. Therefore
Il = 1A} (e)uP? > alul.

So that, V; is a Hilbert space, dense and embedded in H(V; — H), and V} is isomorphic
with V, Vit

iv) A(t) is continuously strongly differentiable.

v) For u € D(A(0)), we assume that there exists a real ¥ > 0, independent from ¢,
such that:

(A'(t)u,w) <llulls, Vtelo,T)

vi) We assume that the embedding Vo < H is compact. Therefore, the spectrum of

the operator A(t) is discret.
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Identifying H with his dual H’, we have the immersions:
Vo — H — Vj; where each space is dense on the following one.

In this work, we use the symbol < -,- >, to denote the duality between V; and Vj.

Sometimes it means an application of a Vector distribution to a real test function.
vii) Let M be an operator of V; in H satisfying the following conditions:

a) M is monotone, hemi-continuous and bounded (in the sense of taking bounded sets
of Va into bounded sets of H).

b) There exists a constant o > 0 so that
T
/ (M(u(s)),v'(s))ds > —o Vt € {0,T] and Vu € Eg
0

where Eg denotes the set {u € L=(0,T;Vo); ' € L*(0,T; H) and ||[u(0)|lo < C}

2.1 The Main Results

Theorem - 1: (Existence) Under the above assumptions (i-vii) and considering

f € L*0,T;H) (2.1)
u € Vo 2.2)
uy € H, (23)

then there exists a function u defined in (0,T") with values in V; such that:
u € L*(0,T; V) (2.4)
v’ € L*(0,T; H), (2.5)

besides this, u is a solution of problem (1) in the following way:
T T
- / (Aau(t), & (£)o)dt + / (A (2), B(t)v)dt+
0 ()
T
+ / (A} (t)u(t), A} ()8 (t)v)dt+ 26)
()
T T
+ [ ey, e = [ (50,800, voey
) o
and V ® € C}(0,T).
u(0) = uo (2.7)
Au(0) = Alvy,. (2.8)
For the uniqueness we need the following condition on M:
viii) Given C > 0, there exists K > 0, which depends on C, such that:
|M(u) — M(v)| < Klu—v|

for all u, v € V whenever ||ullo < C and ||v|lo £ C.
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Theorem - 2. (Uniqueness) Suppose that the operators A;, A;, A(t) satisfy the con-
ditions of Theorem-1 and (viii), respectively, and M maps functions of L*(0,T; Vp) into

functions of L?(0,T; H). Then, there exists at most one function u in the class
u e L®(0,T; Vo),u' € L¥(0,T; H),

and u is a solution of problem (1) in the sense (2.6) - (2.8) of Theorem-1.

Remark 2.1
From (2.4), (2.5) and (2.6) we obtain that A,u” € L?(0,T;V;) and this together with
(2.4) (2.5) imply that the initial conditions (2.7) (2.8) make sense.

2.2 Proof of the Theorems

In this part we use the followin result:

Lema 1. Let u € L%(0,T; H), v’ € L*(0,T;V]) with v, and v' € L%(0,T; Vy). Then

d
g Swv>=< u',v > +(u,v’).

For the proof of this lemma see Tanabe, [13].

We apply the standard Galerking approximate procedure. Let (w,) be a base of
D(A(0)) that it is a base of H, by density. From the assumption (i), we have ((A4; +
Al)?w,) is also a base of H; where A > 0 is a constant. Let V,,(0) be a subspace of
D(A(0)) generated by the first-m vectors wy, ..., wm, and V,2(0) the subspace generated
by first-m vectors (Ag""{‘ AI)%wl, oo (A+ /\I)%wm.

We put urn(t) = Z gum(t)w, as a solution of the approximate perturbed problem:

1=1

((Az + A1) + Artthn(t) + Atyurm(t) + (M(uam(1)), v) =

= (f(t),v), Vv € Vi(0). 29
uUrm(0) = uom; where ugy = iaimwi — Ug (2.10)
i=1
strongly in Vg
) (0) = t1xm; Where upm = iﬂ.‘,\mw.‘ (2.11)
i=1

where the coefficient B,ym denotes the coordinates of the vector Pymu;, the orthogonal
projection of the vector u; upon the subspace V,(0) in relation to the base
((Az + AI)3w,), such that:

PAmul = Z ,B:,\m(A2 + AI)%UJ..

i=1

We have that Pynu; — u; strongly in H and satisfies
|Pamtr] < jua] Vm e VA>0.

System (2.9) - (2.11) is equivalent to a system of non-linear ordinary differential e-
quations, which has a solution uym,(t) by using Caratheodory’s theorem ,see Coddington

- Levinson [02]; defined in an interval [0,t,,), with t,, < T, for each m € IV.
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2.3 - “A priori” Estimates
In (2.9) taking v = 2u),,, (t) we have:
d 1 ’ '
E'(AZ + /\I)fut\m(t)lz + 2(Alu/\m(t))u,\m(t))+

+ 2(A} (urm(t), AH()sn(0)) + 2(M (wam (1)), wpm(1)) =
= 2J(1), wpn(t))-

Using the above assumptions, we have,
t
(A2 + A ¥l (8)]? + ﬂ/ [urm(8)Pds + furm(BIF <
)
t
< 20 +{Pumal? + fuonl3 + [ (A($)urn(s), ian(8))ds+
o
1/ 2
+ = 8)|“ds.
5 [ e
From (2.1), (2.10) and (2.11), there exists a constant C(*) such that
t
(A2 + AD)Fu, ()] + ﬂ/ |uhm(3)1ds + [lurm()IIf < C+
o

+ /0 (A'(8)urm(s), uam(s))ds.

(*) Let us denote by C various constants.
It is not difficult to prove that the function g(t) = ||um(t)||? is continuous. So that

rom Gronwall's imnequaill rom Vi = Vp, an rom € assumption (v), we conclude al:
from Gronwall’s inequality, from V; 2 Vs, and from th pti lude that

lusm(®)llo < C (2.12)

independently from A > 0 m € IN and of t € [0,%,,). So that, we have
t
(A2 + AV O + B [ Ts(o)Pds + lurm (O < C (213)
0

independently from A >0, m € IV and of t € [0,1,,).
Therefore, from (2.12), (2.13) and by Carathéodory Theorem there exists a solution
in all interval [0, T).

So we obtain the following estimates:
lusmllz=rve) <C, YA>0, me IN. (2.14)
lusmllzzermy £C, VA>0, meNN. (2.15)

Where C is a constant independent of m € IV and A > 0. From the estimate (2.14) and
noting that M is bounded it follows that

"M(u,\m)lle(o'T;H) < C, V> 0, m € IN. (216)

The estimates (2.14) - (2.16), imply that there exists a subsequence of (uxm), still

denoted by (uam), and a function uy such that

uxm — uy weak-star in L*(0,T; Vp). (2.17)

u),, — uy weakin L%(0,T;H) (2.18)
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A3 (t)usm — AZ(t)uy weak-star in L°(0,T; H) (2.19)
(A2 + AW, — (A2 + Ay, weak in L2%(0,T; H) (2.20)
A, — Ay weak in L*(0,T; H) (2.21)
M(u),,) = x weak-star in L>(0,T; H) (2.22)

The fact that A%(t); A; and A, are weakly closed operators of L%(0,T; H) was used in
(2.19), (2.20) and (2.21).
2.4 - The Nonlinear Term
Since H — V{ continuously, it follows from (2.15) that:
[uhmllzzeivy) < C, independently of A >0 andm € IV. (2.23)
From (2.4), (2.23) and by the compact embedding from V; in H, it follows from the
Lemma of Aubin-Lions, see Lions [06], that:

Unm — uy strong in L2(0,T; H). (2.24)

For v € L?(0,T;V) and © > 0 a real number, by the monotonicity of M we have:

T
/ (M(ux + Ov) — M(urm), ur + Ov — uprm)dt > 0.
)

From this inequality, taking the limit m — oo and using the convergences (2.22) and
(2.24) we get:
T
| 0+ 00) = vt 20, Vo 20,70,
0
It follows, by the hemicontinuity of M, that,

M(uy) = x. (2.25)

By multiplying both sides of (2.9) by ® € C§°(0,T), integrating fromt =0tot =T,

passing to the limit and using the convergences (2.19) - (2.22) we obtain,

T T
_/ ((A2+/\I)uf\,<l)'v)dt+/ (Ayuly, Dv)dt+
oT N A ° T
+ / (A} (t)ux, A} (£)B0)dt + / (M(uy), Bv)dt = (2.26)

0

0
T
= | (f,%v)dt, ¥V @€ CP(0,T), VveV.
1]

Since the linear combinations of wy, ..., w,, are dense in D(A(0)), it follows that the
above equality, remains valid for all v € D(A(0)) and for all ® € C§°(0,T) also. So that,
u) is a solution of the perturbed problem in the sense given in (2.6).

From this we have that
(Az+ D) = —Au, — A(tur — M(w) + f € LX(0,T; V{). (2.27)

Noticing that the estimates (2.14) - (2.16) are independent of A > 0, we obtain the
same convergences (2.17) - (2.22) and also the equality (2.25) replacing u, by uy by and
uy by u.

By the above arguments, taking the limit in (2.26) we have that u satisfies (2.4)-(2.6).
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From (2.6) we have,
(Au') + Av’ + A(t)u+ M(u) = f in L%(0,T;Vy). (2.28)

(Az) € LX(0,T; V3). (2.29)

2.5 - The Inicial Conditions
The proof of the initial conditions (2.7) and (2.8) are obtained by the convergences
(2.17), (2.18). Let ® € C([0,T]) with ®(0) =1, ®(T) =0, and v € V,. Then by (2.17)

and using Lemma 1, with ®v € V,, we obtain
T
= < (Ag + Auj(0),v > —/ ((Az + A, 'v)dt+
o
T T
+/ (Aquh, Dv)dt +/ < A(t)uy, v > di+
) 0

T T
+/ (M(uy), dv)dt = / (f, Dv)dt.
0 0
Taking the limit in the above equality, we obtain

. T T
— < AZup,v > —/ (Azv', ®'v)dt +/ (A, dv)dt+
0 0
. . , (2.30)
+ / < A(t)u, ®v > dt + / (M(u), ®v)dt = / (f, dv)d.
o o 0

T
Integrating by parts — / (Aqu), ®'v)dt, observing (2.29) and using Lemma-1, we get

from (2.28) and (2.30) that:

1
< Au'(0),v >=< AZuy,v >, Vv eV

From this it follows the proof of Theorem 1.

Remark 1. We obtain the same Theorem 1 by considering:
M : L*(0,T; Vo) — L*(0,T; H)

pseudo-monotone and satisfying condition (vii) (see Lions, [06]).

3.- PROOF OF THEOREM 2

If 4 and v satisfy Theorem-1, then w = u — v satisfies:

(Aw') + Ajw' + A(t)w + M(u) — M(v) =0 in L%*(0,T;Vjy). (3.1)
w(0) =0, Aw'(0)=0. (3.2)

We’ll prove that w =0 in [0, 7).

We observe that the solution u/(t) € H and (Azu')(t) € V'. Therefore it doesn’t make
sense the duality between these vectors. In this case, we’ll use the method introduced by
Visik-Ladyzenskaja [14].

For each s with 0 < s < T, we’ll consider the function z(t) given by:

z(t):! —[ w(é)dé f 0<t<s
Lo if s<t<T

(3.3)

We have that z(s) =0, 2/(t) = w(t) for 0 <t < s and z(t) € Vj for each t € [0, T].
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t
Defining w(t) by, wy(t) = / w(y)dy, we have z(t) = w;(t) — wy(s), 0 <t <s.

Taking the duality of (3.1) with (3.3) and integrating from t = 0 to t = T, we obtain
T T T
/ < (Aw'),z > dt+/ (Alw',z)dt+/ < A(t)w,z > dt+
0 0 0
T (3.4)
+/ (M(u) — M(v),z)dt = 0.
0

We have that:

T

< (Aw'),z>dt = —%(A;w(s),w(s))

T s

(Ayw', 2)dt = —/ (Arw, w)dt.
o

T
A3(t)z2)dt =

S— — 5—

= %/o %Ilz(t)n?dt - %/o’(A'(t)Z(tLZ(’))‘“ =

1 1 [,
=~ @ua(o)F - 5 [ (AW, x0)e.
0
Substituting the above equalities in (3.4) we have:

1 1 2 * 1 Y 2
5 lAz2(s)] +/ (Arw, w)dt + 7| A3 (0)wi (s)]" =
0

= /0 "(M(u) = M(v), 2)dt — % /0 “(A)2(t), 2(2))dt.
By using hypotheses ii), iii), v), viii) in the above equality, we obtain:
glAduP +8 [ u(oPd+ S <
< [(wotisoia+ § [(eoPa< [ it ole
+ [ wolan(olar+ 2 [ 1zt

2 2
By applying the inequality ab < -’};— + ;_A’ V A > 0, in the above inequality one has:

a

s 1
3= [ oot + 3 - (G + 2] hr(o)F <
(55 +7) / lwr(t)%dt, ¥ A >0 such that §— uA >0
V]

a 1 2 _:B . — ﬂ
and —(2A+7)s>0.IfwechooseA>OSuchthatﬂ—p)\—2,thatls,/\— and

2 2u
al

so such that ; - (EIX +79)s0 = %, that is, so = m, we obtain from the above

equality:
8 [ttt + S < & 40 [ myras (35)
2 Jo 4 B 0 ’
Vs € [0, s0]. Gronwall’s inequality implies that wy(s) = 0 for all s € [0, so]. Which implies

wi(s) =0 V s € [0, so], consequently w(t) = 0 for all ¢ € [0, sq].

Using the same argument in [0, s for the Cauchy problem:
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(A2w') + Ayw’ + A(t)w + M(u) ~ M(v) =
w(sﬂ) = 0, Agwl(.?o) =0

we obtain that w(t) = 0, for all t € [so, 250]-

After a finite number of steps we conclude w(t) = 0 in [0,7] and the proof of the

Theorem 2 is completed.

3. EXAMPLES
1) Let Q2 be a regular bounded open subset of IR* and H = L*(?), V = H}(Q).

Let us define the functions ky, k; € L®(2) such that k;(z) > 8 > 0 a.e. and ky(z) >0
a.e. in ) where 3 is a constant.

We define the operators A; and A, in L?(Q2) by

(A1u)(2) = ki(z)u(z), (Azu)(z) = ka(z)u(z)
and consider

At) = E o (u._,(:c t) 7))

ny=1
being the domain of A(t) the space H2(Q)NHJ () which is dense in L%(Q); where a;; = a,;
and
aj; = gta,, € L2 x(0,T)), V1<4,j<n.
Then A(t) is a family of self-adjoint operators.

We also assume that:
n

> asle, 066 2 1(1&” + .. + &)

1,7=1
(z,t)€Q, 0<y€ Rand ¢ =(&,...,£) € R*; then, by Poincaré-Friedrichs inequality
implies that (A(t)u,u) > alul?, for all u € D = D(A(t)) and for some constant a > 0.
Noting that

MM)wmwKZ/MW)mum;—ga

i,3=1
being a;; € L*(Q), we have that there exists the }il}l(t — to)"'(A(t)u — A(to)u) in norm
i
of L*(Q2).
Therefore A(t) is contmuously strongly differentiable.
Being A'(t) = Z a; (au(z t)a ) with af; = a); € L®(Q) V1<, j <n, we

1,5=1
have |(A'(t)u, u)| < supessq|a,-j(a:, t)||u||H1, where we used Cauchy-Schwarz and Poincaré-

Friedrichs inequalities. Then we obtain (A’(t)u,u) < 7lju||?, where || - || denote the norm
in H}(Q) N H¥().

1t is well known that H}(Q) N H%(92) — L*(2) compactly.

Let F : IR — IR be the function defined by F(s) = s®, and M : H}(Q) — L*(Q) a
operator defined by (Mu)(z) = F(u(z)).

Due to the properties of F it follows that M is monotone, hemicontinuous bounded

and

/Ot(M(u(s)),u'(s))ds > -0, Vte[0,T]
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for all u € E. where E. is the set {u € L>(0,T; H}()), u' € L*(0,T;L*)) and
Jlu(0)|| < C}. The constant o depends an C.

Let us prove the two last properties. Being
ol = [ (M@l = [ o)z =
Q Q

[ @tz = o
it follows from Sobolev inequalities, Hy(Q) < L(Q) with 1 %— 1 (n > 3). Therefore
q n
H}(Q) — L5(Q) (n=23) and, |Mu|? < c||ul|®. So that, M is bounded.
Let g(7) = / F(r)dr. Then g(r) >0, V7 € R, and for u € E,,

[}

/:(M(U(S)), u'(s)ds = /0t A“3($73)g%($,3)dxds —

/0‘ A F(u(z,S))g‘Z(x,s)dzds = /0‘ /ﬂ z—Z‘(u(x,S))dzds _
= [ atutz0)dz ~ [ atutz0)de > - [ atutz,0))dz =

= —i‘/‘;[u(zyo)]‘dm = —i—[) |“($,0)||u($,0)|3dz >

> [ /ﬂ |u(z,0)|2dzr. [ /n |u(z,0)|6dzr > —o.

Therefore one has studied the existence and uniqueness of solutions of the mixed problem

for the equation
ky(z)u” + ki (2)u' + A(t)u +u® = f.

2)In the same scheme we have analogous results for the equations
ka(z)u" + ky(z)u’ + A()u+ M(u) = f
where (Mu)(z) = F(u(z)) here F(s) is defined by

. s
F(s) = { sign(s)yoz s #0
0 if s=0
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