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ABSTRACT

In this paper we study the Existence and Uniqueness of solutions for the following

Cauchy problem:

A2u"(t) + alu’(t) + a(t)u(t) + M(u(t)) f(t), E (O,T)
(1)

u(0) u0; A2u’(O) aut;
where A1 and Az are bounded linear operators in a Hilbert space H, {A(t)}o<t<T is a

family of self-adjoint operators, M is a non-linear map on H and f is a function from

(0, T) with values in H.

As an application of problem (1) we consider the following Cauchy problem:

k2(x)u" + k(x)u’ + A(t)u + u3 f(t) in Q,
(2)

(0) u0; ()u’(0) ()1/2,,,
where Q is a cylindrical domain in q4; k and k are bounded functions defined in an

open bounded set f C Fi,

0 0
a(t) i //(a,i(z, t)-i);

0
where aii and aij -uii are bounded functions on 1 and f is a function from (0, T)
with values in/_,(f).

KEY WORDS AND PHRASES: Existence of weak solutions, Nonlinear equation,

Cauchy problem, Existence and Uniqueness.

AMS Subject Classifications:35L15

INTRODUCTION

Let T > 0 be a positive real number and f be a bounded open set of ’, with

smooth boundary I’. In the cylinder Q x (0, T), Bensoussan et al. [01], studied the

homogeneization for the following Cauchy problem:
k2(z)u" + kl(z)u’- Au f in Q.

(3)
u(z, O) uo(z) e k2(z)u’(z, O) k1/22(z)u(z), z E f

Many authors have been investigating the existence of solution for non-linear equations

associated with problem (3),

see: Larkin [04], Lima [05], Medeiros [07-09],Melo [10], Maciel [11], Neves [12] and Vagrov

Other interesting results relative to existence of a solution for a non-linear equation

associated with the equation of the problem (3) can be found in the work of Jgorgens [03]
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In this is work he proved the existence of classical solution by iterative methods for the

mixed problem associated to the equation

in open domain of fl,z, with the hypotesis F(0)= 0 and IF’(s)l _< a[b+ F(s)] where a, b

and a are positive constants with a < 5"
In Section 1, we establish some notation for the function spaces and conditions for

A,, As, {A(t)}o<_t<_T, M and f in equation (1). In Section 2, we state our main results

and we prove the assertions made. In the final Section we make an application of problem

(1).

1. PRELIMINARIES

We will assume that standard function spaces are known: Ck(), L(Q); Hk(Ft),
H0(gt), C(0, T; X), LV(0, T; X) where X is a Banach space.

Let H be a real Hilbert space, with inner product and the norm denoted by (., .) and

I" [, respectively.

We consider here the following assumptions:

i) As :H H, a positive symmetric operator

ii) A1 H H, a symmetric operator such that:

(Alu, U) > fllu], 0 < 3c, for all uEH.

iii) Let {A(t); > 0} be a family of self-adjoint linear operators of H, such that

there exists a constant tr > 0, satisfying (A(t)u, u) > ,1,,I for all u D(A(t)),
where we assume that the domain D(A(t)) of A(t)is constant, i.e, D(A(t))
D(A(s)) V t, s > O. It is known from the spectral theory for self-adjoint opeators

that there exists only one positive self-adjoint operator A1/2(t) such that"

D(A(t)) c_ D(A1/2(t)).

From assumption iii) we have, see Medeiros [09], that D(A1/2(t))is constant.

Let Vt D(A1/2(t)) with inner product ((.)) and associated norm II" II,. Therefore

ilull, -iA1/2(t)ul _> ,lul=.
So that, Vt is a Hilbert space, dense and embedded in H(Vt H), and Vt is isomorphic

with V0, V t.

iv) A(t) is continuously strongly differentiable.

v) For u D(A(O)), we assume that there exists a real 3’ > 0, independent from t,
such that:

V [0 T](A’(t)u, u) < "ll,,ll0,

vi) We assume that the embedding V0 H is compact. Therefore, the spectrum of

the operator A(t) is discret.
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Identifying H with his dual H’, we have the immersions:

V0 ’- H Vg; where each space is dense on the following one.

In this work, we use the symbol < -,. >, to denote the duality between V and V0.
Sometimes it means an application of a Vector distribution to a real test function.

vii) Let M be an operator of V0 in H satisfying the following conditions:

a) M is monotone, hemi-continuous and bounded (in the sense of taking bounded sets

of V0 into bounded sets of H).

b) There exists a constant a > 0 so that

>_ -a E {0, T] u E Eeand

where E, denotes the set {u L(O, T; Vo); u’ L2(O, T; H) and [[u(O)[[o < }

2.1 The Main Results

Theorem 1: (Existence) Under the above assumptions (i-vii) and considering

f q L2(0, T; H) (2.1)

Uo C Vo (2.2)

u, E H, (2.3)

then there exists a function u defined in (0, T) with values in Vo such that:

u C L(O,T; Vo)

u’e L(0, T; H), (2.5)

besides this, u is a solution of problem (1) in the following way:

(A2u’(t), ’(t)v)dt + (A,u’(t), (t)v)dt+

+ (A1/2(t)u(t),A1/2(t)(t)v)dt+

+ (M(u(t)), ’(t)v)dt (f(t), #(t)v)dt, V v c= Vo

and V e Co(O,T).

u(O) uo

A2u’(O) Au,.

For the uniqueness we need the following condition on M:

viii) Given C > 0, there exists K > 0, which depends on C, such that:

IM(u)- M(v)l < Klu vl

for all u, v E V whenever I1=11o _< c and I111o _< c.

(2.6)

(2.8)
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Theorem 2. (Uniqueness) Suppose that the operators A, A2, A(t) satisfy the con-

ditions of Theorem-1 and (viii), respectively, and M maps functions of L(O, T; Vo) into

functions of L(O, T; H). Then, there exists at most one function u in the class

u L(O, T; Vo), u’ L(O, T; H),

and u is a solution of problem (1) in the sense (2.6)- (2.8) of Theorem-1.

Remark 2.1

From (2.4), (2.5) and (2.6) we obtain that Au" E L2(O, T; V) and this together with

(2.4) (2.5) imply that the initial conditions (2.7) (2.8) make sense.

2.2 Proof of the Theorems
In this part we use the followin result:

Lema 1. Let u E L(0, T; H), u’ L2(0, T; V) with v, and v’ L(0, T; V0). Then

d
d- < ’ >=< ’’ > +(’ )"

For the proof of this lemma see Tanabe, [13].
We apply the standard Galerking approximate procedure. Let (w) be a be of

D(A(O)) that it is a be of H, by density. From the sumption (i), we have ((A +
I)]w) is also a be of H; where > 0 is a constant. Let V(0) be a subspace of

D(A(O)) generated by the first-m vectors w,,..., w, and V(0) the subspace generated

by first-m vectors (A2 + AI)Wl,..., (A2 + AI)[w.
We put u(t) g,m(t)w, a solution of the approximate perturbed problem:

t=l

((A + I)u(t) + Aium(t + A(t)u(t) + (i(u(t)), v)=
(f(,),,), v , e y(0).

uA,,(O) Uo,; where

strongly in V0

(2.9)

ai,wi - Uo (2.10)
i=1

Um(0) 1Am; where ttl imWi (2.11)
i--1

where the coefficient fl,,,, denotes the coordinates of the vector Pa,,,ul, the orthogonal

projection of the vector Ul upon the subspace V(0) in relation to the base

((A + M)1/2w), such that"

P,.,, A,.(A + I)1/2,,,,.
i--1

We have that PA,ul Ul strongly in H and satisfies

IP,.,,,I _< lull V m e V A > O.

System (2.9) (2.11) is equivalent to a system of non-linear ordinary differential e-

quations, which has a solution u,(t) by using Caratheodory’s theorem ,see Coddington

Levinson [02]; defined in an interval [0, t,), with t, < T, for each m W.
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2.3- "A priori" Estimates
In (2.9) taking v 2u,(t) we have:

d
12 2(a,u’,,,(t), u’,,,(t))+d-l(A2 + )l)1/2u’m(t) +

+ 2(a1/2(t)u..(t),A1/2(t)u’,.(t)) + 2(M(u..(t)), uL.(t))
2(f(t), u’,(t)).

Using the above assumptions, we have,

<I(A + AI) - (t)l + lu,,,,(s)lds + Ilu,,,(t)ll,Am

+ IPll + Ilu.llg + (’()(),u())+

+ 5 If()lZd"

From (2.1), (2.10) and (2.11), there exists a constant C(’) such that

I( + I)1/2,i,()l + I,i,()le +

+ (’(/,,(,

(,) Let us denote by 6’ various constants.

It is not difficult to prove that the function 9()
from Gronwall’s inequality, from , and from the assumption (v), e conclude that:

Ilu,(t)llo _< c (2.12)

independently from , > 0 m E W and of E [0, t,). So that, we have

I(A + ,I)1/2ui,,(t)l + lu’(s)lds + Ilux,(t)ll, _< C (2.13)

independently from $ > 0, m fi and of fi [0, t).
Therefore, from (2.12), (2.13) and by Carathdory Threm there exists a solution

in all interval [0, T].
So we obtain the following estimates:

IluxllL(O,T;) C, V A > O, m . (2.14)

IlU,IIL(O,T;H) C, V A > O, m . (2.15)

Where C is a constant independent of m and > 0. From the estimate (2.14) and

noting that M is bounded it follows that

IM(ux)IIL(O,T;H) C, V > O, m e . (2.16)

The estimates (2.14) (2.16), imply that there exists a subsequence of (ux,), still

denoted by (ux,), and a function ux such that

ux,, ux weak-star in L(0, T; V0). (2.17)

u,, - u weak in L2(0, T; H) (2.18)
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A1/2(t)u, A1/2(t)u weak-star in L(0, T; H)

(A2 + AI)u’m (A2 + Al)u’ weak in L(0, T; H)

weak in L(O T;H)Aluxr Au

M(u’x,) X weak-star in L(0, T; H)

(2.19)

(2.20)

The fact that A1/2(t); A and A are weakly closed operators of L(0, T; H) was used in

(2.19), (2.20)and (2.21).

2.4 The Nonlinear Term
Since H V0 continuously, it follows from (2.15) that:

Ilu’,llL2(O,T;Vd) <_ C, independently of A > 0 andre E /7V. (2.23)
From (2.4), (2.23) and by the compact embedding from V0 in H, it follows from the

Lemma of Aubin-Lions, see Lions [06], that:

Ur, UX strong in L(0, T; H). (2.24)

For v E L(0, T; V) and O > 0 a real number, by the monotonicity of M we have:

T(M(u + Ov) M(u,,,), u + u,,,)dt >_ O.

From this inequality, taking the limit m c and using the convergences (2.22) and

(2.24) we get:

T(M(ux + Ov) X, v)dt >_ O, v 6_ T; V).L:(O,

It follows, by the hemicontinuity of M, that,

i(ux)=X.

By multiplying both sides of (2.9) by (I) C(0, T), integrating from 0 to T,

passing to the limit and using the convergences (2.19) (2.22) we obtain,

((A + M)ul, ,’v)dt + (Axu, Ov)dt+

+ (A1/2(t)ux, A1/2(t)bv)dt + (M(ux), Cv)dt (2.26)

(f, ,by)tit, V e Cg(O, T), V v

_
V.

Since the linear combinations of Wl,...,w are dense in D(A(O)), it follows that the

above equality, remains valid for all v D(m(o)) and for all C(0, T) also. So that,

u is a solution of the perturbed problem in the sense given in (2.6).
From this we have that

((m + AI)u,)’ -mlu m(t)u M(u) + f e L:(0, T; V). (2.27)

Noticing that the estimates (2.14) (2.16) are independent of A > 0, we obtain the
same convergences (2.17)- (2.22) and also the equality (2.25) replacing ua, by u by and

ux byu.

By the above arguments, taking the limit in (2.26) we have that u satisfies (2.4)-(2.6).
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From (2.6) we have,

u’ M(u L(Au’)’ + A + A(t)u + f in (0, T;V).

(Au’)’e L2(0, T; Vd). (2.29)

2.5 The Inicial Conditions
The proof of the initial conditions (2.7) and (2.8) are obtained by the convergences

(2.17), (2.18). Let C([0, T]) with (0) 1, (T) 0, and v Vo. Then by (2.17)
and using Lemma 1, with v V0, we obtain

< (A2 + l)ui(O), v > ((A. + M)u’x, ’b’v)dt+

+ (Alul, Cv)dt + < A(t)ua, ’by > dr+

+ (M(ua), bv)dt (f, v)dt.

Taking the limit in the above equality, we obtain

< Au,, v > (Au’, O’v)dt + (A,u’, Ov)dt+
(2.30)

+ < A(t)u, v > dt + (M(u), ,I,v)dt (y, ,bv)dt.

Integrating by parts (Au, O’v)d, observing (2.29) and using Lemma-1, we get

from (2.28) and (2.:10) that:

< Azu’(O), v >=< Aua, v >, V v V.

From this it follows the proof of Theorem 1.

Remark 1. We obtain the same Theorem by considering:

M- L(0,T; V0) L(0, T; H)

pseudo-monotone and satisfying condition (vii) (see Lions, [06]).

3.- PROOF OF THEOREM 2

If u and v satisfy Theorem-l, then w u v satisfies:

(Azw’)’ + Aaw’ + A(t)w + M(u) M(v) 0 in LZ(0, T; V). (3.1)

w(O) O, Aw’(O) 0. (3.2)

We’ll prove that w 0 in [0, T].
We observe that the solution u’(t) 6- U and (Au’)’(t) 6. Y’. Therefore it doesn’t make

sense the duality between these vectors. In this case, we’ll use the method introduced by

Visik-Ladyzenskaja [14].
For each s with 0 < s < T, we’ll consider the function z(t) given by:

z(t)=
w()d if O<t<s

(3.3)
l, 0 if s<t<_T

We have that z(s) O, z’(t)= w(t) for 0 < _< s and z(t) 6- Vo for each 6- [0, T].
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Defining w (t) by, W () w()dT, we have z() wl (t) wl (s), 0 _< _< s.

Taking the duality of (a.1) with (3.3) and integrating from 0 to T, we obtain

< (m’/’, > e + (’,/e + < (/, > e+
(3.4)

+ ((/- (/,/e 0.

We have that:

r < (A2w’)’, z > dt --(A2w(s), w(s))

(A,w’,z)dt (A,w,w)dt.

ooT

A1/2 (t)z)dt

d
(A’(t)z(t),z(t))dt- dt

,,z,t,,,,dt "12 -1 fan"--la1/2(O)wl(s) (a’(t)z(t),z(t))dt.
Substituting the above equalities in (3.4) we have:

i w)dt +law(s) + (aw, Ia](o)w(s)

(A’(t)z(t),z(t))dt.(M()- M(,),)dt-

By using hypotheses ii), iii), v), viii) in the above equality, we obtain:

law(s) +B Iw(t)l*dt+ lw,(s)
lw(t)llz(t)ldt + 7 Iz(t)l*dt lw(t)llw(t)ldt

7 (t)lZdt.

Aa b
By applying the inequality ab + , V > O, in the above inequality one h:

+ ) Iw,(t)l*dt, V A > 0 such that fl- #zl > 0

a
)s > O. If we choose > 0 such that fl- #2 fl fland - (25 + 7

, that is, 2 and

a (

__
2(1 +aSo such that + 7)s a’ that is, so 27),

we obtain from the above

equality:

l(t)lt + I,(") 5 ( + / I()1e (a.)

V s e [0, so]. 6ronwall’s inequality implies that w(s) 0 for all e [0, o]. Which imp

w(s) 0 V s e [0, so], consequently w() 0 for all e [0, o].
Using the same argument in [0, o] for the Cau&y problem:
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(Aw’)’ + Alw’ + A(t)w + M(u) M(v) 0

W(So) O, m2w’(So) 0

we obtain that w(t) 0, for all [so, 2so].

767

After a finite number of steps we conclude w(t) 0 in [0, T] and the proof of the

Theorem 2 is completed.

3. EXAMPLES

1) Let f be a regular bounded open subset of " and H L2(f), Y Ho(f).
Let us define the functions kl, k2 L(f) such that k(x) > fl > 0 a.e. and k(x) > 0

a.e. in f where is a constant.

We define the operators A1 and A in L() by

(Au)(x) k(x)u(x), (Au)(x)= k(x)u(x)

and consider

s,j=l

being the domain of A(t) the space H(f)fqHo(f) which is dense in L(ft); where all

and

aii=aiL(x(0,T)), Vli,jn.

Then A(t) is a family of selbadjoint operators.

We also sume that:

(z, t) e Q, 0 < 7 e and (,...,) e "; then, by Poincar-Friedrichs inequality

implies that (A(t)u, u) lul, for 11 u O D(A(t)) and for some constant a > 0.

Noting that

,Ou OUldx’I((m(t) m(to))u, )1 I,(, t) ,,(, t0)l.l

being a,j e L(Q), we have that there exists the i(t- to)-(A(t)u- m(to)u) in norm

of L().
Therefore A(t) is continuously strongly differentiable.

Being A’(t) (aii(x,t with aii= aii e L(Q) V i, j n, we

have I(a’(t)u, u)l supessQla(x, t)llull; where we used Cauchy-Schwarz and Poincar-

Friedrichs inequalities. Then we obtain (A’(t)u, u) 71lull, where I1" denote the norm

in H() H().

It is well known that H() H() L() compactly.

Let F: be the function defined by F(s) sa, and M: n() L()
operator defined by (Mu)(z)= F(u(z)).

Due to the properties of F it follows that M is monotone, hemicontinuous bounded

and

’(M(u(,)),u’(,))d V e [0,T]
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for all u E Ec where Ec is the set {u E L(O,T;H(FI)), u’ L2(O,T;L2(f)) and

llu(0)ll _< C}. The constant a depends an C.

t us prove the two lt properties. Being

,Mu, ,(Mu)(x),dx ,u3(x)ldx

lu(z)ldz

it follows from Sobolev inequalities, Hd( Lq() with (n k 3). Therefore
q 2 n

H() L().,. 3) na, IMul cllull. So that, M is bounded.

Let g(r) o F(r)dr. Then g(r) k 0, V v , and for u

F(u(x,s))(x,
((,t))- ((,0))- ((,o))

(,0e I(,01e -.

Therefore one h studied the existence and uniqueness of solutions of the mixed problem

for the equation

()" +(’+(+ I.

2)In the same scheme we have analogous results for the equations

k(x)u" + k(x)u’ + A(t)u + M(u) f
where (Mu)(x)= F(u(x)) here F(s)is defined by

{F(s) sign(s)l, s if s # 0

0 if s=0
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