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ABSTRACT. An attempt is made to investigate the rotatory vibration of a sphere of higher order

viscoelastic solid considering higher order strain rate and stress rate. The general frequency equation is

obtained for this type of vibration of a sphere. As a special case of this analysis, the frequency equations for

the fin’st order and the second order viscoelastic solids are derived. It is shown that the classical frequency
equation for an isotropic elastic solid follows from this analysis.

KEYWORDS AND PHRASES. Vibration, viscoelastic solid and frequency equation.
1991 AMS SUBJECT CLASSIFICATION CODES. 73D30.

1. INTRODUCTION.
Hopkins has made an extensive study on the problem of dynamic expansion of cavities in elastic

solids. Considerable work has been done on the theory of wave propagation in elastic solids and this work

is available in many books including Nowacki [2], Eringen and Suhubi [3], Ewing et al. [4]. In addition,

several authors including Sengupta and Roy [5-6], Sharpe [7], Jeffreys [8], and Kawasomi and Yosiyama [9]
have considered various problems of propagation of waves in an infinite elastic solid medium due, to

pressure applied on a spherical cavity within the medium. On the other hand, Chakrabarty [10] has

discussed the rotational waves in a visco-elastic medium due to a twist on a spherical cavity. Bhattacharyya
and Sengupta 11 have investigate the disturbances produced in a viscoelastic medium of higher order due

to impulsive forces acting on the surface of a spherical cavity within the medium. Further, Sengupta and his

associates 12-14] have studied the problem of rotatory vibration of a sphere of viscoelastic solid. In spite
of a vast literature on the subject, relatively less attention has been given to the effects of viscosity,
nonhomogeneity and gravity on the wave motions in a viscoelastic solid medium.
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So this paper deals with the rotatory vibration of a sphere of higher order viscoelastic solids. The

general frequency equation is derived for this type of vibration of a sphere. As a special case of this

analysis, the frequency equations for the first order and the second order viscoelastic solids are also found.

It is shown that the classical frequency equation for an isotropic elastic solid follows from this study.

2. BASIC EQUATIONS, BOUNDARY CONDITIONS AND SOLUTIONS.
The stress-strain relations in a viscoelastic medium, considering strain rate as well as stress rate of

general nature are given by

Dno0 DxA,j + 2Deij (i,j 1,2,3), (2.1)

where o,j and e, are the stress tensor and strain tensor respectively. The ui’s (i 1,2,3) are the

components of displacement, iij is the KRONECKER delta and also the differential operators in are

x .0 + . +.rt+ +’" ’t"

D t0 + tt, + tt= rt+ +t. t"
(2.2abe)

.0,tt0,rlo are the Lame elastic constants, %k,l.tk,rlk(k 1,2 n) are the parameters representing the effect

of viscoelasticity of the kth order.

When there are no body forces, the equation of motion of a general viscoelastic solid is

02u 0 (.2 + g,, gradA+

+ t0 + ttt + tt= --t+ +tt, V u (2.3)

where p is the density of the material medium and V2 is the Laplacian.

Equation (2.3) can be written in the following form

02uipDnt= E[(X, + I.t,)D,]gr’adA + (I.t,D,)V2ui (2.4)
k=O k.O

where the differential operator D is defined as D -r (k 1, 2 n) nnd Do 1.

If every spherical surface concentric with the boundary of the sphere turns round that the z-axis

through n small angle proportional to (r), where r--/x +y +, and if the components of

ctisplacement are u, v,w parallel to the axes Ox, Oy, O, then u,v,w are ven by

u=Ayl(r)ei, v=-Axl(r)e/, w=0, (2.5abe)

where A is an arbitrary small constant representing the amplitude of the vibrating motion.

now consider a function (r) such that ’(r)= rr r%(r). Putting the function (r)We in

equation (2.5), we get
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u Ae’ -y, v -ae’m
-x’ w 0 (2.6abc)

These components of displacement make the dilatation A 0, and the equations of motion become

k=O k=0

(2.7ab)

Thus, the problem is to solve the equation (2.7abc) subject to the value of u, v from (2.6ab) and to

find the value of (r).
Now, from the first equation of (2.7ab) and from the value of u from (2.6a) we obtain

m + in
m, (2.8)

where

m l.to t2P
2
+4p l.t6p+ n Iaap-lJ.p +lasp l.tTP7+ (2.9ab)

m2 ’rio vl2p
2 + Tl4p l16P

6+ ?t2 rlp TI3p + rlsp 117P
7+ (2.10ab)

Equation (2.8) can be put in the form

(2.11)

(m’m2 +nln2)+i(m’n2-m:na) (2.12)where K V2p
+ nl

2

Finally, we obtain the following equations from (2.7ab)

(2.13ab)

These two equations are satisfied simultaneously if we take

2)0=0 (2.14)7 + K

and the spherical symmetry leads to

V2 ’Trr -r) (2.15)

and finally we get

2
r(re) + K(rO) O. (2.16)

Clearly, the solution of (2.16) can be put in the form
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(2.17)

where C1, C2 are arbitrary constants and

(2.18a)

(2.18b)

For a sphere is finite everywhere including the origin and as such when r tends to zero the left

hand side of the above equation tends to zero, leading to the conclusion that the right hand side should also

tend to zero and this implies that C -C2. Imposing this condition and writing 2C2 C, we have

C[sinhr cosor-icoshr sinctr]r-1 (2.19)

Using the relation rt -r’ we have

t C[r{(coshr cost" sinhr sin)-i(sinhr sin + coshr cos)}

-sir cos+ icoshr sin]r- (2.20)

Putting this value of om uafion (2.20) into equation (2.5a), we have the follong components of

sesses:

X=2a(+ii
Y,=-2af +i%+i )[(r)r let,

x=a(+i)

Now if l,m,n are the direction cosines of the normal to the surface of the sphere, then

X, =/X+mX,+nXz, Y,=IY+mYy+nYz, Z, =/Zx+mZy+nZ.
where (l’m’n)=(y’r’)" In view of these relations we obtain

(2.22abc)
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+in rn + in
x(r)e"’ Z, =0 (2.23abc)

For free vibration, the surface of the sphere is free from traction. This implies that

rr[,(r)] 0 when r a (2.24)

Putting the value of (r) from equation (2.20) into (2.24) and simplifying, we obtain the frequency

equation

tan(cxa) l(PPz + QQz + i(QP PIQ)]/(P +Q), (2.25)

where

P (-l2a + ot2a 3)sinhl3a + 313a coshl]a, Q -3ota coshl]a +212 sinhl]a,

P2 3eta sinh[- 2tl]a coshl3a, Q2 313a sinhla + (-12a2 + o;2a 3)coshl]a.
This frequency equation (2.25) determines the frequency of vibration of a sphere of a general viscoelastic

solid.

In order to obtain the frequency equation for similar vibration of an isotropic elastic solid sphere we

simply put

gl=g2=3 gn--0, ql=ri2=ri3 qn=0, qo=l

in (2.25), and in that case the value of ml,n,rn,n are reduced to m g0, n 0, m2 rio 1, n. 0 and

as such the values of and I then become

ct=p and I=O. (2.26ab)

Under these circumstances we get

P O, P2 O, QI =-3pa ,02
go

(2.27)

and equation (2.25) reduces to the form

3katan(ka)
3- k2a2’ (2.28)

where k2 p2p/g0 This is in agreement with the corresponding classical result of isotropic elastic solid.

We next consider some particular cases of viscoelastic problems.
3. THE VISCOELASTIC SOLID OF VOIGT TYPE.

We now consider the particular case when the material is a viscoelastic solid of VOIGT type. Then
the corresponding values of mln and m.zn.z are given by

m go, na I.tP, m2 rio, n2 rilP (3.1)
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and then
3/’2 1/2,: p(no/o)’ an I ’(,no on,)/’o no (3.2)

where higher powers of the small quantities gi,ril have been neglected. Making use of these values of (z

and I, the frequency equation (2.25) takes the form

t.ll’-o Pa :[(/-a + MiM=)+ i(IM, IM=)]/(I + M) (3.3)

where

[ p4p (]21riO--l’tOril)2a2 p2prioa2 ] [p2pt/2(I.trio_t.toril) ]L 493orl +
go

3 sinh
-’-o’)"3/2,1/2.1o

a

3p2p’/2 (t-t,rio I.tori, [p2p(ttno ton,) J+ 3/2_1/2 a cosh
21.t3o/2rilo/2

a
21ao 1o

(3.4)

(rio)
t/2 .p2ptrZ(gFIo I.tori,) ]p3pa2a cosn/ .a + (l.lri0--g0ril)Ml=-3ppk,-; L 21.to no lao

[p(,no-on,) Jx sinh 2grio/.z a (3.5)

a a cosn/ 3/2 a/-’2 .ooJ sinh
21.to3/2rl2 lao’ L 21.to rio

(3.6)

3p2ptrz(glri-I’tri’)a s,nn,"
"[p2pt/2(l’t’ri-I’tri’)]3/2.a2"3/2r1 L 2go rio

+r,,id.lo ]a: a: ]L tl-to) 4gori
3 cosnlL 2go3/2rIoz

a (3.7)

In the particular case of an isotropic elastic solid medium the corresponding frequency equation is

obtained by putting g 0, ril 0, rio and 0, M -3p a,/-’z 0, M2 p2 a 3 in

equation (3.3). Clearly the classical frequency equation (2.28) can be recovered.

4. THE SECOND ORDER VISCOELASTIC SOLIDS.
We now consider the case when the effect of viscoelasticity upto the second order is included. In

this case the values of , n and rn, n become

ml gO 112P2, nl I’tlP; m2 rio ri2P2, n2 rilP, (4.1)

and consequently, the approximate value of ot is given by

a p + trio I.torl: p2
gorio

(4.2)
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where the above expression for a is obtained from the general expression by neglecting the higher powers of

IXi, li and IJ.e, ’q2" Similarly, we derive the value of I as

(4.3)

Now, substituting these values of e and I the frequency equation (2.25) reduces to

(4.4)

(4.6)

+( "lxl+ti0 -l’lll/Pl}a]’2ll0)
(4.7)

(7. -2 +’-./,,l<,1.Io 2 llo) JJ
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In particular, for an isotropic elastic solid medium, the corresponding frequency equation is obtained

by putting

t.t =0, It:, =0, rl =0, ’q2 =0, rio 1, (4.9)

-3ppt/2 p2pa
and R=0, S= t/ a, R2=0, S2= 3 (4.10)

I.to

in equation (3.3). Consequently, the classical result for elastic solids follows from the above analysis.
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