Internat. J. Math. & Math. Sci. 799
VOL. 17 NO. 4 (1994) 799-806

ROTATORY VIBRATION OF SPHERE OF HIGHER ORDER
VISCOELASTIC SOLID

P. R. SENGUPTA

Department of Mathematics
University of Kalyani
Kalyani, West Bengal, India

NIBEDITA DE (DAS) and MANIDIPA KAR

201 Manicktola Main Road, Suite #42
Calcutta - 700 054, India

and
LOKENATH DEBNATH

Department of Mathematics
University of Central Florida
Orlando, Florida 32816-1364, U.S.A.

(Received January 8, 1992 and in revised form August 8, 1993)

ABSTRACT. An attempt is made to investigate the rotatory vibration of a sphere of higher order
viscoelastic solid considering higher order strain rate and stress rate. The general frequency equation is
obtained for this type of vibration of a sphere. As a special case of this analysis, the frequency equations for
the first order and the second order viscoelastic solids are derived. It is shown that the classical frequency
equation for an isotropic elastic solid follows from this analysis.
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1. INTRODUCTION.

Hopkins [1] has made an extensive study on the problem of dynamic expansion of cavities in elastic
solids. Considerable work has been done on the theory of wave propagation in elastic solids and this work
is available in many books including Nowacki [2], Eringen and Suhubi [3], Ewing et al. [4]. In addition,
several authors including Sengupta and Roy [5-6], Sharpe [7], Jeffreys [8], and Kawasomi and Yosiyama [9]
have considered various problems of propagation of waves in an infinite elastic solid medium due to
pressure applied on a spherical cavity within the medium. On the other hand, Chakrabarty [10] has
discussed the rotational waves in a visco-elastic medium due to a twist on a spherical cavity. Bhattacharyya
and Sengupta [11] have investigate the disturbances produced in a visco-elastic medium of higher order due
to impulsive forces acting on the surface of a spherical cavity within the medium. Further, Sengupta and his
associates [12-14] have studied the problem of rotatory vibration of a sphere of viscoelastic solid. In spite
of a vast literature on the subject, relatively less attention has been given to the effects of viscosity,
nonhomogeneity and gravity on the wave motions in a viscoelastic solid medium.
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So this paper deals with the rotatory vibration of a sphere of higher order viscoelastic solids. The
general frequency equation is derived for this type of vibration of a sphere. As a special case of this
analysis, the frequency equations for the first order and the second order viscoelastic solids are also found.
It is shown that the classical frequency equation for an isotropic elastic solid follows from this study.

2. BASIC EQUATIONS, BOUNDARY CONDITIONS AND SOLUTIONS.

The stress-strain relations in a viscoelastic medium, considering strain rate as well as stress rate of

general nature are given by

D,c,=D,AS, +2D,e;  (i,j=12.3), @.1)

where G, and e, are the stress tensor and strain tensor respectively. The u's (i=12,3) are the
components of displacement, Sij is the KRONECKER delta and also the differential operators in ¢ are

az x an
Dl_),o-{-xlat-{-}\_z?*. ......... + "5""
3, ¥ o

Dp =Ko +u.| E + Hy §T+ """"" 'Hl“? , (22abc)

3. o 0"
Dn=n0+nl§+n23_tz—+ ......... +n.?»

Ao, Mg, M, are the Lame elastic constants, A,,p,,M,(k =1,2......n) are the parameters representing the effect

of viscoelasticity of the kth order.
‘When there are no body forces, the equation of motion of a general viscoelastic solid is

o%u, ) o’ "
pDnE!'=[(xo+uo)+()~l"'lh)é;"’(xz"'“z)‘&’f*' """ (ku+uu)a—t;]gradA
3. @ 3" o2
+l,—+ oot — (Vou, 2.3
+(uo iy ST Mo ) % 23
where p is the density of the material medium and V? is the Laplacian.
Equation (2.3) can be written in the following form
a2u. n n
PPy = Y [(M +1e)D,]gradA + Y (1, D, ) Vi, (2.4)
k=0 k=0

k
where the differential operator D, is defined as D, = -aa—t;, (k=12,...n) and D, =1.

If every spherical surface concentric with the boundary of the sphere turns round that the z-axis
through a small angle proportional to ¢,(r), where r=\/x2+ y* +2%, and if the components of
displacement are u,v,w parallel to the axes Ox, Oy, Oz, then u,v,w are given by

u=Ayd, (re*®, v= ~Axgy(r)e”, w=0, (2.5abc)

where A is an arbitrary small constant representing the amplitude of the vibrating motion.

%

We now consider a function ¢(r) such that ¢’(r)=5—=r¢,(r). Putting the function ¢(r) in
r

equation (2.5), we get
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u=Ae” %‘3, v=—Ae” g—¢, w=0 (2.6abc)
X

These components of displacement make the dilatation A =0, and the equations of motion become

n 82 n 82
Y (1D, V?u =pD, ;i‘ and Y (kD,)V?v=pD, ?V— (2.7ab)
k=0 k=0

Thus, the problem is to solve the equation (2.7abc) subject to the value of u, v from (2.6ab) and to
find the value of ¢,(r).
Now, from the first equation of (2.7ab) and from the value of u from (2.6a) we obtain

in, )36
Vz(ﬂ) - Z(M)_' (2.8)
)" % (m+im )oy
where
_ 2 4 6 _ 3 s 7
M =Ho—HoP" +HP —UgP et =P = Uap FRspT — P e, (2.9ab)
_ 2 4 6 _ 3 ] 7
m=MNy—Tpp +Nyp —MNgp +-- )y MEMP—TM3p +MNsp" —Myp +-oo- . (2.10ab)
Equation (2.8) can be put in the form
V’(%Ju(f%:o 2.11)
where K2 = prp i + mma) + iy, = mym) 2.12)
m +m

Finally, we obtain the following equations from (2.7ab)

%[(\72 +K3)0]=0 and %[(V’ +KJo]=0. (2.13ab)

These two equations are satisfied simultaneously if we take

(v + K})o=0, (2.18)
and the spherical symmetry leads to
19(.2 8¢)
Vi=——|r* 22|, .
¢ r ar(' or 2.13)
and finally we get
o 2
52‘("1’)"' Ky (r$)=0. 2.16)

Clearly, the solution of (2.16) can be put in the form
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rg= (C,e'ﬂ' + Czea') cosar + i(C,e'p' - Czea' ) sinar, 2.17)

where C,, C, are arbitrary constants and
12 12 vz
o= p[p{(ml2 + n,z) (m; + 1122) +(mym, + n,nz)}/Z(ml2 +n? )] (2.18a)

p= p{p md+2) (3 +n2)" = (mym, + "1"2)}/ 2(m Jr'lf)]v2 (2.18b)

For a sphere ¢ is finite everywhere including the origin and as such when r tends to zero the left

hand side of the above equation tends to zero, leading to the conclusion that the right hand side should also
tend to zero and this implies that C; = —~C,. Imposing this condition and writing 2C, = C, we have

¢ = Cl[sinhBr cosor —icoshpr sinow]r'l (2.19)

9%

Using the relation r$, = > we have
r

o = C[r{(BcoshBr cosar — asinhPr sinor) - i(ﬁsinhBr sinor + accoshPr cosar)}
—sinhPr cosar +icoshPr sin (r.r']r'3 (2.20)

Putting this value of ¢, from equation (2.20) into equation (2.5abc), we have the following components of

stresses:
X = ZA(M)%’ (r)xyr"ei",
my, +im,

- —2A(i”l—*—‘ﬁ’—'t)¢;(r)xyr“e*".
m, +in,

Z,=0
oo e
m +
Y,= -A(%{—::i)q);(r)xzr'lei", 221
ny

B
m, +in, )

Now if I,m,n are the direction cosines of the normal to the surface of the sphere, then
X, =X, +mX,+nX,, Y, =Y, +mY +nY,, Z =IZ, +mZ +nZ,. (2.22abc)

where (I,m,n)= (— 2 —) In view of these relations we obtain
rrr



ROTATORY VIBRATION OF SPHERE OF HIGHER ORDER VISCOELASTIC SOLID 803

X, = A(—L—'—'L) yol(r)e”, ¥, = —A(M)xﬁ(r)e"", Z,=0 (2.23abc)
mg+ my +iny

For free vibration, the surface of the sphere is free from traction. This implies that
0
3—[¢,(r)] =0 when r=a (2.24)
r

Putting the value of ¢,(r) from equation (2.20) into (2.24) and simplifying, we obtain the frequency

equation
tan(oa) = [(P,P, + 0.0;) +i(QP, - P.Q,)|/(P: + 0}), (2.25)
where
= (—BZa2 +ota’ - 3)sinh|3a +3Ba coshPa, Q, =-3aa coshPa+ 2aBa’ sinkBa,
= 3aa sinhBa - 20Ba’ coshPBa, 0, =3Pa sinhPa+ (—Bza2 +ola® - 3)coshBa.
This frequency equation (2.25) determines the frequency of vibration of a sphere of a general viscoelastic
solid.

In order to obtain the frequency equation for similar vibration of an isotropic elastic solid sphere we
simply put

By =Hy =y ==, =0, M=y =N="--=1, =0, M, =1

in (2.25), and in that case the value of my,n;,m,,n, are reduced to m, =y, n,=0,m, =My =1, n, =0 and
as such the values of a and B then become

1

2
o= p(—"-) and B=0. (2.26ab)
Ho
Under these circumstances we get
1
P =0,P,=0,0 = ~3pa( ) 0,=p*— pa’ _ (227
Ho Ho

and equation (2.25) reduces to the form

tan(ka) = —rz3:a (2.28)

where k% = pzp/uo . This is in agreement with the corresponding classical result of isotropic elastic solid.
We next consider some particular cases of viscoelastic problems.
3. THE VISCOELASTIC SOLID OF VOIGT TYPE.
We now consider the particular case when the material is a viscoelastic solid of VOIGT type. Then
the corresponding values of mn, and m,n, are given by

m =y, iy =HYp, my =Ny, iy =M, p 3.1
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and then

o= ppno/iy)”* and B=p’p" (g~ o)/ 263 0’ 32)

where higher powers of the small quantities ,;,m, have been neglected. Making use of these values of a
and P, the frequency equation (2.25) takes the form

mn(‘jiE'PaJ=[(lqlq+M1Mz)+i(Lle ‘l1M2)]/(l'§+M22) G3
0

where

4 2
L1=[“4ﬁ,p, o+ £2 PNy 2 sxnh[p P (o o). ]
0'lo

uo no
3P p (umo P»oﬂ] cosh P umo uonl) (.4)
2“0 110 2“0 no
n)" P n u n) 1, p'pd
M1=—3pp"2(—°-) acosh[ e |+ " (1Mo = HoMy)
Ko Ho
xsmh[p P 2(“;,721; llonx) :|, 3.5

”
[2=3ppw(-‘n—°) asink) 207 (M0~ o) | PR ohl 2 0" (”‘“° “°"‘) . (6
™ 2ug'nd’ Mo 2ugmg

31’ P"z(umo uom)asinh p p"’(umo Ho"\l)
2“0 no 2110 "10

A p( ]a p'p(uimo - uon,) 23| costl 222 (u.no uom) a7
4p0n0 l-‘o Tlo

In the particular case of an isotropic elastic solid medium the corresponding frequency equation is

12
obtained by putting 4, =0,1m,=0,My=1 and L, =0, M, = —3{%) a,L,=0,M,= P (Ep—)az -3 in

0 0
equation (3.3). Clearly the classical frequency equation (2.28) can be recovered.
4. THE SECOND ORDER VISCOELASTIC SOLIDS.
We now consider the case when the effect of viscoelasticity upto the second order is included. In
this case the values of m;, n, and m,, n, become

ml=uo-uzp2,nl =mp; mz=no-n;p2.nz=mp. .1

and consequently, the approximate value of « is given by

_ (e Mo - uon;) 2
a= 1+— A 4.2
p( Ko ] [ 2( HoMo i ] @2
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where the above expression for « is obtained from the general expression by neglecting the higher powers of
U, My and Wy, M,. Similarly, we derive the value of B as

2,12
__p 3,1,
= WMo — Mo | 1+ ( += 4.3)
B_ﬂTZuongz(lo on{ 21 2 0,

Now, substituting these values of a and B the frequency equation (2.25) reduces to

tan[ %nf)w{l +%(EZ";>111—“°"2-) }] [(RR+58)+i(SR+SR)(R+S2) @4

where,

4
pp 2 3Ky
R =|- —Homy) 41+ ( Jp
‘ [ 4aoMo ° '){ 2 uo

e[, (un uon & =3 s 22 (0 - ami) ;| (2.&+1.111)pza
Ko "2 HoTo 2

Ko Mo 24 2 M
p’p a;;,;n?ﬂ uon.f ( ol z}
2 Ho Mo 1 Ho 2 Mo
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uo no Ko 2 Mg
3pp‘”n}{’{ (u Mo — KoM, } ’p”’(umo-uon.{ (3 w1 m,) o
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In particular, for an isotropic elastic solid medium, the corresponding frequency equation is obtained

by putting
ul=0,u2=0;ﬂ1=0,n2=0»no=1» (4‘9)
22 22
and R =0, s,=i:,7‘;—a, R,=0, s2=”up" -3 (4.10)
0 0

in equation (3.3). Consequently, the classical result for elastic solids follows from the above analysis.
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