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ABSTRACT. This paper is devoted to the study of the problem

U(4) f(t, u, u’, u", u’"),

,(0) ,,(2), ,,’(0) ,’(2), u"(o) u"(), u"’(o) ,’"(2).

We assume that f can be written under the form

/(t, u, u’, u", u’") f2(t, u, u’, u", u’")u" + fl (t, U, U’, U", U"t)U’
+fo(t, U, U’, U", U"’)U + r(t, u, u’, u", u’")

where r is a bounded fltnction. We obtain existence conditions related to uniqueness conditions for

the solution of the linear problem
U(4) au + b/zH,

u(O) ,(), ,’(0) u’(9.), u"(O) ,"(2), u"’(O) ,,’"(2).

KEY WORDS AND PHRASES. Nonresonance conditions, fourth order periodic BVP, eigenlines.
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1. INTRODUCTION
This paper is devoted mainly to the study of the fourth order periodic boundary value problem

U(4) f(t,u,u’,u",u’"), (1.1)

u(0) u(27r), u’(0) u’(27r), u"(0) u"(27r), u’"(0) u"’(2rr). (1.2)

Boundary value problems for fourth order ordinary differential equations have received con-

siderable interest recently. As a starting point, we state a result of Y. Yang [22] about a nonlinear

problem with Dirichlet-type boundary conditions

’/1(4) /(t, U,/Z/t), (1.3)

u(O) u(Tr) O, u"(O) u"(rr) O. (1.4)

Y. Yang proves the existence of a solution under the assumption that

If(t, u, v)l < alul + blvl + c,

with

a+b<l.
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\Vit l lc’ st.’ lndary colliis, Y. Ymg 23 l alo estallild tlm cxisWwe ff a solution

fear tle
u(’) g(l, u, u’, u", u"’)u - h(l, u, ’, u",

msmnig that, flr U R4, h(t, l]) is bounded and therc exists k E N sucl that

k <infg(l U) < supg(,U) < (k+ 1) a.e. on[0,],

wlmre the notation means that tlm inequality is strict on a subset of positive measure. This

lmt condition can be clearly read a non-interference condition of tlm nonlinearity with respect

to the spectrum of the operator u u(), subject to the boundary conditions (1.4). Recently, M.

Del Pino and R. Manevich [5] have extcnded Y. Yang’s [22] result. They prow, the existen of

a solution for (1.3), (1.4), suming that

If(, , ,) ( + Z)l alul + blvl + c,

the numbers a, fle R and a, b, c R+ bein such that

k4 k l for allkeN*, (1.5)

k
a m&x
ke" [k a+Zk[

+bn <
e’ [k4 a +

The aim of this paper is to provide analogous results for the periodic boundary vMue problem

(1.1), (1.2). Those results will however be obtained by a method of prf different from that of the

above-mentioned papers.

Before discussing the problem further, let us mention a few recent contributions to fourth

order boundary value problems, namely by A.R. Aftabizadeh [1], R.P. AgwM [2], C. Fabry d
F. Munyamere [6], C. Gupta [%13], G. Metzen [17], L. Sanchez [18], J.D. Schuur [19].

In order to obtMn shp existen results for the problem (1.1), (1.2), it sms appropriate to

relate it to the two-parameter eigenvalue problem

u() au + bu", (1.6)

(o) (2), ’(o) u’(2), u"(o) u"(2), u"’(o) "’(2), (1.)

about which it is an easy matter to prove the following result.
LEMMA 1. The problem (1.6), (1.7) has a nontrivial solution ifd only if there exists k e N

such that
k4 a- bk.

For k e N, we will call the set L {(a, b) e R2 k a- bk2} an eigenline of (1.6), (1.7).
The condition (1.5) then means that the point (a, 3) does not lie on y eigenline.

We will treat problem (1.1), (1.2) by separating two ces, depending on the form of f. In the
first ce, discussed in section 3, we will sume that f c be written under the form

f(, , ’, ", ’") ((, , ’)u’)’ + h(, , ’, ", ’") + r(, , ’, ", ’"). (.8)

where r(t, u, u, u’, um) is a bounded function. We will be able to prove the existence of a solu-
tion under the assumption that the point (g(t, x, y), h(t,x, y, z, w)) always lies in a rectangle with

sides parallels to the axes and which does not intersect y eigenline. This kind of result c be
considered as an extension of the results of Y. Yang [2] (with obvious modifications, sin the

boundary conditions e different). It is worthwhile to adapt that result in the ce where the
point (g(t,x,y),h(t,x,y,z,w)) is located at the left of M1 eigenlines. That situation is Mso deMt
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with i scctiCm 3; tlw rcsflts l;laicd tlcrc generMizc results of C. Gupta aM .1. Mawlfin [13].
Tim above results Iav, ,t sil)lc g’.clric lescripli in t,rms of cigcnlincs; however, they have

the drawback to rely ( 11c dcc()l)siti() (1.8) f f, for wlficl wc are mable to ve practical

hypot]w.ses ensuring ils cxistecc. T]crcforc, in section 4, we wrk with a different decomposition
of f, namely

where r(t, u, u, u", um) is a boundcd fimction. Such a decomposition can be obtained, for istam,
on tle basis f an hypothesis of the type

That kind of condition hs been used in M. Del Pino and R. Manevich [5], C. Fabry and F.
Munyamarere [6], Y. Yang [22]. Unfortunately, the existence conditions obtned with the decom-

position (1.9) e not nice those obtnl with (1.8). In particular, we e unable to answer a

question raised by M. Del Pino and R. Man,erich can the existence of a solution be proven under
the hypothesis that the point (f0, f) lies in a rectangle which does not intersect the eigenlines ?
In the sequel, we will refer to the case where f admits the decomposition (1.8) the "symmetric

ce", whcre the decomposition (1.9) will be referred to s the "nonsymmetric ce".
Our method of proof is inspired by a method used by J. Mawhin and J.R. Ward [15] [16] for

the periodic boundary value problem
-u" I(t, u),

u(0) (), ’(0) u’(2).

They prove the existence of a solution, assuming that, for some n N,

n a(t) liminf
f(t, u)

limsup
f(t, u) b(t) (n + 1). (1.10)

Their proof relies on the use of a coercive quadratic fo. More precisely, they use the ft that
the Sobolev space H admits a decomposition H with dim < such that, for all, fi , we have

=[’ b(t)] =[’ a(t)U] 6]] +

for rome 6 > 0.

In section 2, we introduce abstract version of such type of hothesis to obtain existence

result for the general nonlinear equation Lu- Nu; that result will then be applied to the periodic
fourth order boundary value problem.

At the end of this introduction let us fix some notations. We will use the following spies:

L(0,2) {u" [0,2] N meurable lu(t)ldt < },

w"(0,2)- {u .[0,2] N for j- 0,...,k- 1,

uOl is absolutely continuous d lu(l(t)ldt < },

C[0, 2]- {u" [0, 2] R k- times continuously differentiable}.
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Vc will often ()lly writ.t; Ck, L, W:’v, II ’. Tim nornm on llose spaces are defined s usual;

Fiscally we will say timt a fitwtitm f [0, 2] x R R satisfies LP-Carahodory conditions

if

1) for each u R, f is emsurable i t;

2) ft,r almost every [0, 2], f is continu(,us in u;

3) for every R > 0, there cxists a flmcti()n h.n LP(0,2) such that, ]f(t, u)] h,n(t) a.c. [0,2]
and for each u R" with ]]u[[ < R.
2. ABSTRACT RESULTS

I this section, we first. I)resct an existccc result for tim abstract nonlinear equation

Lu- Nu;

that result is a generalization of Theorem 3 in C. De Coster, C. Fabry and P. Habets [4].
Let H be a Hilbcrt space, X and V be normed spaces such that H is continuously embedded

in W, the dual of V. We denote by (., .) the pairing in V. Let A, B X V be linear, symmetric

opcrators such that for all u X V

(Au, u) <_ (Bu, u).

Denote by .(X, V) the set of linear, symmetric operators S X V such that, for all u X V

<Au, u> <_ <Su, u> <_ <Bu, u>.
The theorem below uses coincidence degree arguments; for a presentation of that theory and

the definition of L-compacity and L-complete continuity, the reader is referred to J. Mawhin [14].
THEOREM 2. Let L dora L C H 71X V be a linear, symmetric, Fredholm operator of

index zero and N" X V be a L-completely continuous operator. Assume that

(a) the operators A, B are L-compact;
(b) the bilinear forms .,/3, :" dom L x dom L R respectively defined by .4(u, v) (Au, v),
I(u, v) (Bu, v>, ft.(u, v) (Lu, v) admit continuous extensions to H x H denoted by .4,/3, ;
(c) for every K > 0, there exists M > 0 such that if u is a solution of

A+BLu-ANu+(1-A)
2

u

with IlUl]H < K and A e [0, 1], then Ilu[[x < M.
If, moreover,

(i) there exist D(., .) a positive definite bilinear form and a decomposition H -/ @/ with dim
/ < oc such that, for any fie/, fi e/,

[(,) (,)]- [(, )- A(, )1 _> v( + , + ); (2.1)

(ii) the operator N admits the decomposition

Nu- G(u)u + Q(u)

where for all u X, G(u) ’(X, V), the bilinear form (x) defined on dom L x dom L by
j(x)(u, v) (G(x)u, v) admits a continuous extension to H x H denoted by G(x) and there exists

R > 0 such that, for all u dom L, u + 5 with fi /, / and ]lulln _> R,

(Q( + ),- > < z)( + e, + e). (2.2)

Then there exists at least one solution u of

Lu- Nu.
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l)llOOF. Iiy tile c()il(’il(’(’t: degree tleory, we oly lave to find an a priori bound in X for

the solutions of ., N,,, ( ) u, I0, I. (.3)

By lypothesis (c), it, is ,.,g1 t,o 1)rove

Assume by cont,radictim that t,lere is a solution (A, u) f (2.3) with Ilull R. Let us write

u t+ witl [I and fi [t, let N AN+(I-A)(A+B)/2,
Multiplyig (2.3) by Ft- , we obtain using (2.1) md (2.2),

0 {Lu-Nu,t-
[(a, ,) (,)(,, ,)1 [(,

k [(,, )- u(, )1- [(, )- A(, )1- {(,),- } > 0

which gives a contradiction and proves that

The existence of a decomposition H @ [I such that (2.1) holds can be obtained by means

of the following proposition which is proved in C. De Coster, C. Fabry md P. Habets [4].
PROPOSITION 3. t, H be a vector space and ,, B be real, bilinear, symmetric forms on

H. Assume that

(i) there is some m R such that,

C

is a scal product which makes H a Hilbert space;

(ii) B- A is positive definite, i.e.

(v. , # 0), (- A)(.,.) > 0;

(iii) for any sequence () such that , one h

( A)(.,) (u A)(.,.).

Then the following equivalences hold-

(a) the interval [0, 1] doe8 not contain eigenvalue8 A of the problem

v u, (,

(b) there exists > 0, c H and c H such that dim < , H d, for y
R, , one h

(- )(,)

(c) for y real bilinear syetfic form 8 on H such that A 8 5 B, i.e. such that

V H, A(-,-) a(-, ) (, ),

0 is the only solution of
v u, (., ) a(., ).

Vits of Theorem 2 d Proposition 3 can be written, in whi& the operators belonng
(X, V) satisfy a one-sided condition only.

THEOREM 4. Let L dom L C H X V be a linear edholm operator of index zero d
B X V a line L-compact operator. Consider the set (X, V) of operators S" X V such
that for all X a V

<Su, u> <Bu, u>.
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Ix;! N X V bca L-c>lh;l,cly cfl,immus operator. Assmne tlmt

fir cw’.ry K > O, tlmrc exists .! > 0 suci llmi ewry solution u of

Lu ANu -t (1 A)Bu

with II,,ll, < K a,,,t A e 10. ’l. vc,’ifics II,,llx < M.
If noreover,

(i) there exists a posiliw <h,fiite bilinear form (., .) such that, for all u <lon L,

<Lu, u> <B,t, u> V(u, u);

(ii) thc operator N admits tim decomposition

N(,,) C(,,)+

where G (X, V) an(l there exists R > 0 such tlmt, for all u dom L with []ullH R,

(Q("),’4 < v(,,,

Then there exists at let one solution u of

Lu- Nu.

The prf is similar to that of Theorem 2.

REMARK. Notice that the linearity and the symmetry of the operators of (X, V) e not

required.
The following proposition is proved in C. De Coster, C. Fabry d P. Habets [4].
PROPOSITION 5. t H be a vector spa and , B, be real, biline, syetric for on

H. Assume that

(i) there is some m R such that

is a sc product which makes H a Hilbert spe;

(ii) is positive definite;
(iii) for y sequence (u)} such that u} u, one h

(u, u) V(u, u).

Then the following equivalences hold"

(a) the eigenvalues A of the problem

Vv e H, (u, v) B(u, v) A(u, v)

e all strictly positive;

(b) there exists 5 > 0 such that for any u H, one h

( )(u, u) c(u,

(c) for y rl biline syetfic form 8 on H such that 8 B, u 0 is the only solution of

Vv e H, (u, v) 8(u, v).

3. SYMMETRIC CASE
In this section we will study the problem

u() l(t, u, u’, u", u"’), (3.1)

(0) (), ’(0) (), #(0) "(2), "’(0) ’"(), (3.2)

under the generM assumption that f admits a decomposition of the fo
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f (t, ,,, u’, ,", ,’") (g(t, ,,, u’)u’)’ / h(t, ,, u’, u", u"’)u r(t, u, u’, u", u’"). (3.3)

We will consider S’l)arat’ly l’ case wlere le fmct,it f stays y.l)lot,ically Ictweel two eigcn-

li.cs al the ce wl(’Je it stays yl)t,()tically at tle left, ()f all (’igclilms.
3.1 II’YI’WEEN I’W() I’;I(’,I’;NIINi’;S

’[’IlE()RI’;M 6. Assmc tlat f satisfies (3.3) witl

(Ill)(i) the fimctions

h.,r: [0,2] x : (t,x) /,.(t,’),r(,X),

are ncurable in [0, 2] and cotimous i X 4;
(it) the fmction g [0,2] x R R (t,x,y) g(t,z,y) is diffcrentiablc and the par-

tial derivatives are such tlat Og/Ot, Og/Ox sat,is@ L-Caratldodory conditions, Og/Oy satisfy L2-

Carathdodory conditions an(l for all (x, y) R2, g(0,x, y) g(2,x, y);
(tt2) thcrc exist mo,m,n2 L(0,2),m3 L2(0,2) and > 0 such that, for all X
(x, y, z, w) R and ahnost every [0, 2],

Ir(t,X)l m0(t) + ,(t)lzl’- + m2(t)lyl ’- + m3(t)lzll-;

(II3)there exist a,,b, L’(O,2),a2,b2 W’"(0,2) such that a2(0) a2(2),b2(0) b2(2z) d
for all x, y, z, w R and for ahnost every [0, 2],

a(t) h.(t,x,y,z,w) b(t),

b2(t) g(t,x,y) a2(t).

If morver,
(F) there exist 5 > 0 and a decomposition H with dim < such that, for y

2

[" +b’ bl [a’’ +’ 1 ellull, (a.4)

then the problem (a.1)-(a.2) h at let one solution.

PROOf. We will apply Threm 2 with the spies H := H, g := L, X := H d the

operators

L dom L {u e W’ usatisfies (a.2) } L :u

A H L :u (a2u’)’ T alu;

B H L :u (buu’)’ + blU;

G H. (H.,L):x G(x)defined by G(x)u (g(t,x,x’)u’)’ + h(t,x,x’,x’,xm)u;
Q H. i u r(t, u, u’, u", u’");
N H. i :u (u)u + Q(u).

It is ey to see that L is a Fredholm operator of index zero d h a compact generized
inverse from L into H.. It is not difficult to prove that A, B are L-compact and N H. L will

be L-completely continuous if we prove that it is continuous d maps bounded sets into bounded
sets. For that purpose, we will use the following result

Let X be a metre space, (f) a suence in X and f X be such that for any subsuence of
(f.) the ists a sub-subsuence which converges to f Then, the initial suence convenes to f.

So, let (u.) C H. be such that u, converges to some u in the H.-no, d let (u.) be a

subsequence of (u.). Consider the sequence .(t) f(t, u.(t), u(t), u(t),-’"u. (t)) and the subs
quence (=) which corresponds to (u.). As (u) converges to u in the H.-norm, there exists a
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sul)-sfl)s(’.(luc(’(.’ (.%) of (u,,) mwl tlmt fot’ 0, 1,2,3,

(ii) timre exists h L(0,2r) such that lu(’)(t)l < h(t) on [0 2r] (see, for example, Brezis [3,
p. 58l).
By l,ypotl,esis (II1), wc l,avc ,% (t) (t) a.c. on [0, 21, where (t) f(t, t(t), u’(t), u"(t), ’"(t)).
Moreover, from 0c l/3-bCmd on tl, sub-subsequewe (u) wc deduce a C2-bomd on i, and, by

(I1), (I12) and (II3), we can find a function 9 L such that I,% (t)l 9(t). The continuity of N
follows from the besgue dominaUxl convergence theorem. Moreover, we eily deduce from the
structure of N that it maps bounded ses into bounded ses.

Now we will prove that hypothesis (c) of Thcrem 2 is satisfied. By the continuous injection

of H2 into C and tle hypothesis on f, we have that, if there exists K > 0 such ha for all solution

of (2.3) we have I111 < K, then there exists M M(K) such that Ilull, M. It is ey

o conclude tha there exists M2 such flint Ilull M=.
The res of the proof is left to the reader.
The followinB lemma is necessary in order to apply Proposition 3.

LEMMA 7. Assume that there exist a,b L(0,2), a, W’(0,2) wih a2(0)
a2(2), b(0) b(2) such hat a, (t) Z b, (t) and a, (t) + b(t) < a2(t) + b (t) for a.e. [0, 2].
Then, there exists n N" such that, for all H,

2"u’’ (n(b2 a2) a2)u’2 + (n(bl al) al)/21 llull-
POOF. Assume by contradiction that there exists seque,c () c H such that Ilullm

and

As a(t) R b(t) and b (t) (t) on [0,2], we can deduce from this relation that there exists

such that, for all n,

i.e.

Ilu,,ll < #llu.ll, + ,
(3.5)Ilu,,ll:, > 2-"

On the other hand, we can find a subsequence, still denoted (u,,), such that (u,) converges to some

u in . We then have,

0 _< [(a b)u’ + (b a)u] ,lirn [(a b)u + (b a)u]

[ " ’ a,.ll 0._< lim -[ tu+au,,-
Jo

We deduce from the hypothesis a (t) + b2(t) < a(t) + bl(t) for a.e. [0, 2r] with a (t) < b (t),
that u 0, which contradicts (3.5).

Using this, we will be able to give some simple hypothesis which ensure that hypothesis (F)
of Theorem 6 is satisfied.

COROLLARY 8. Assume that f satisfies (3.3), hypotheses (HI) to (H3) of Theorem 6 and
the hypotheses of Lemma 7. If moreover, there exist a, #, au, u R such that for a.e. [0, 2r],

a, < a, (t) < b, (t) <
< b(t) < a=(t) <

and for all k N, for all e (0, I)

(/#1 -[-(1 A)a,)- (Afl + (1 A))k : k4 (3.6)
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thc prblcm (3.1)-(3.2) has at ic,t m solution.

REMAItK. It is (:asy t() sec tlat tl,(’ lst (’o,(litions of C( )r( )l ary 8 nca that the poit

(g(t, x, y), h(t, x, y, z, w)) always lice in a rectangle which does n()t intcrs(ct any eigenline.

PROOF. Using Ixmna 7, wc can apply Proposition 3 with H H, the bilinear forms, A, B: H x H R being dcfinc(l respectively by

C(u, v) u"v", (u, v) [-au’v’ + a uvl, B(u, v) [-bu’v’ + blu1.

So condition (F) holds if wc can prove that the interval [0, 1] ds not co.tmn eigenvalues I of the

problem
,() (( + (1 ):),’)’ + (, + (- ),,),,., (a.?)

,,(0) ,(2.), ,’(0) ,’(2.), u"(0) "(2.), ,"’(0) ,,’"(2.).

Assume by contradiction that there exist A [0, l] and u 0 solution of (3.7)-(3.8). As

Abe(t) + (1 A)a(t) on [0,2], we have, by the variationM chacterization of the

eigenvalues, that the eigenvalues 1’,, v,, p, of the problems

(4) 2i,tt 1 t,

()-(( + (1- ),,)’)’- (, + (l ),,,),. .,,
u(a) 32u" u pu,

with boundary conditions (3.8), satisfy

p,<v,<#,, for allzN,

suming the eigenvMues of the thr problems to be arranged by increasing order.

As the problem (3.7)-(3.8) is assumed to have a nontrivial solution, there must be some N
such that v, 0. By contimfity of the eigenvalue, there exists 0 ]0, l[ such that the problem

u() (02 + (1 0)2)u" (0 + (1 o))u o,

(0) (2), ’(0) ’(2), u"(0) "(2), u’"(0) u’"(2"),

has a nontriviM solution, which, according to Lemma 1, contradicts the hypothesis (3.6).
REMARK. tting q ( + 32)/2, b (2 )/2, p ( + 31)/2, and a (3 -)/2,

the condition (3.6) can be written equivalently as for all k N

and

k4 + qk2 p # 0

a bk:
1>

Ik +q 1 Ik +@
3.2 AT THE LEFT OF ALL EIGENLINES

In this subsection, we will consider problem (3.1)-(3.2) with f as in (3.3), but we will assume

only one-sided conditions on h and g. Unfortunately, in that case we cannot have a u’-dependence
in f. This is due to the fact that we cannot find m H bound on the solutions of (2.3) from an

H2-bound, as in Theorem 6.
The proofs of the results of this subsection follow from Theorem 4 and Proposition 5. We take

here H X H.
THEOREM 9. Let f [0, 2rr] ]Rz ]R be a function which satisfies the hypothesis (HI) and

(H2) of Theorem 6 with h, r:[0, 27r] ]R IR. Assume
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(113’) tl,e,-c exist b, e l,’ (0, 2rr), b e It",’ (O, 2) s,wl, that (0)
and

h(t,x,,z) 6,(t),

b(2r) and fi,," all (,B,-) Rs

b.z(t) <_ g(t,x,y).

(114) tl,crc exist d [0,2,-r] x JR R, a L-Caratl,dodory flnction and c e L(O. 2n) such that, for
all (u, v, w) E IR’s and a.e. E [0, 2r],

If(t, u, v. w)l d(t...’,,)lwl + (t).

If nor(.vcr, tlmrc exists b > 0 sucl tiat, fir all u (lore L,

then the problem

with

u() f(t, u, u’, u"),

(0) u(2), u’(O) u’(2), u"(o) "(2), ’"(0) u’"(2),

(3.9)

(3.10)

(3.11)

f(t, u, u’, u") (g(t, u, u’)u’)’ + h(t, u, u’, u")u + r(t, u, u’, u") (3.12)

has at least one solution.
As in the previous case we will give some simple hypotheses which ensure that condition (3.9)

is satisfied.

COROLLARY 10. Assume that f is a L-Carathodory flnction which satisfies (3.12) and
(HI) to (H4) of Theorem 9. If moreover there exist/3,/3 R such that, for almost every [0, 2r],

2 <_ b2(t), bl(t) ,,
and, for all k N, for all A < 0,

(, + )- (&- a)k’ k’,

then the problem (3.10)-(3.11) has at least one solution.
REMARK. We can observe that condition (3.13) is equivalent to for all k E ll

0 < k4 +k .
(3.13)

4. NON-SYMMETRIC CASE
In the previous section, we have assumed that the function f admits a symmetric decomposi-

tion of the form (3.3). It does not seem easy to give practical hypothesis which ensure that such a
decomposition exists. On the opposite, it is easy to find practical conditions under which f has a
decomposition of the form

f(t,u,u’ u")= A(t,u,u’, + f(t,u, + fo(t,u,u’,u")u" u’ u")u’ u")u + r(t, u, u’ u")

with r bounded. For a given function u, the operator v f(., u(.), u’(.), u"(.))v" is not symmet-
ric; that difficulty is dealt with below by treating that operator as a "perturbation" of a linear
symmetric operator. For the sake of simplicity, we will assume that f 0, since the presence
of the corresponding term introduce only technical difficulties. As in section 3, we will consider
separately the case where the function f stays asymptotically between two eigenlines and the case
where it stays asymptotically at the left of all eigenlines.
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4.1 BETWEEN TW() EI(;ENI,INI.;S

TIEOEr . ,,,t " 10,! . (t,X) (,X) ,, nesurat,h’ i 10,21 for

all X R and cotimcms i X : for a.e. [0,2]. Assmm tlai t,lmre exists p,q R, a > O,

b 0, a, L((0,2),R such tlmt f()r all (u,,,,) R and a.c. [0,2],
(i) If(t, u, v, w) pu q"’l (t)l,,I-’- blwl- (t);
(ii) (t) <
(iii) tlmre exists ( > b/2 such that for all k G N

k + qk v o, (4.1)

> + b((:/2e) + (/2)) (4.2)
]k t-qk-pl k4+qk2-pl

Then, there exists at least, om solution u of

u(4 f(. u. u’. u").

.(0) .(=). u’(0) u’(=). -"(0) ,."(2). u"’(0) u"’

PROOF. t us show first that d admits a decomposition of the form

with

f(t, u, v, w) g(t, u, v, w)u + h(t, u, v, w)w + r(t, u, v, w),

(4.3)

(4.4)

L dom L {u E W4’1 :u satisfies (4.4) } L :u u(4),
A H il:u (p-a(t))u + qu",
B U, L’: u (p + ((t))u + qu",
G H. .(H,L) :x G(x) defined by G(x)u qu" + g(t,x,x’,x")u,
Q H, L u (h(t, u, u’, u") q)u" + r(t, u, u’, u").

Let us prove that, for some e > 0, the hypothesis (i) and (ii) of Theorem 2 will be satisfied

and/,/ defined in the following way. Let

I {k e N k4 4- qk2 p < O}, R-{keN-k4+qk2 p > O}

and consider the decomposition H -/:/(R)/:/where

/ {= y (aksinkt+bkcoskt)]aa,ba e R},

/ { (aasinkt + bkcoskt) aa,ba R}.

with

Ig(t, u, v, w) pl <- (t), Ih(t, u, v, w) ql <- b, It(t, u, v, w)l _< (t).

Let m(t, u, w) (t)lul + b[wl + "(t). If m(t, u, w) 0, we have f (t, u, v, w) pu + qw. Otherwise,

we can write the relation

f(t, u, v, w) pu qw
f(t, u, v, w) pu qw

[(((t) sgn u)u + (bsgn w)w + "),(t)],
re(t, u, w)

from which the required result is easily deduced.
We will apply Theorem 2 with H X H., V L,
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l,ct us t)rovc iyl)tllcsis (i) of ’I’i1,m,1 2. If u H, it can ie written under the form

u(l) (a sin k -t- b cos
k=O

Wc hc have, for u /O,

.I’ + ,,’ (;,--(t))1 l,,, + ,,’ (-

> + qa’ (p + + qf/ (p- a)al

kEN kEN

b 2

(4.5)

where we have used he hypoflmsis () < a and the inequalities

b
V ;(, ( + )’ +@ (p- - ) O,

which are satisfied if (4.1)-(4.2) are satisfied. Now let us prove that there exists e > 0 such that

Z’[,, + q,2_ ff a(t))] Z’[.,, + q,_(p_ a(t))] Z" u,,+ Z" u’ + ellull,.

Otherwise, for M1 n, there exists u. H with Ilu.lln d

0< +qu.-(p+ tu. +qu.-(p-a(t))al-[ u. + 1In.

By going if necsy subsequences, Ilulln 1, we cma sume that u. nverges wetly in

H2 and in the C-norm to some u, . converges o in the H%norm and

-" [qf,’ ( + a(t) + )1di 1- .
+ Z’[(l + ).’a + q’ (p- a(t) ).l (4.6)

By (4.5), (4.6) and the we lower semi-continuiW of the norm we have u 0. Then we know that

u converges wetly in H and in the C-norm to 0 d that converges to 0 in the H-no. By
(4.6), we s that u-" nverges to 0 in the L%norm d then we have that u converg to 0 in the

H%norm, which contricts the fact that [u]]a 1. Consequently, hypothesis (i) of Threm 2

is satisfied.
Now we will prove hypothis (ii) of Theorem 2 i.e. there exists R

u + 5 with , 5 and [[u[a > R we have

[(h(t, u, u’, q)u" + r(t, u, u")](a e) < ( + ) u’’2 + + ) u.
In f, we hve, for some consan c > 0,

(h,t, u, u’, u") q)u"(g ) + r(t, , u’, u")(

2 + + cllll,llullm



FOURTH ORDER NONLINEAR BOUNDARY VALUE PROBLEMS 737

for [[U[IH2 _> R, with R big enough.
So we can apply Theorem 2.

REMARK. 1) In the case where a --- 0, the result is still true provided that we replace (4.2)
by a strict inequality.
2) In the case where b-- 0, we obtain the same conditions as in the symmetric case.

3) As the following example shows, the above result is not contained in the results of Del Pino-

Manasevich [5]. Consider the case where p -2, q -4,a 13/15 and b E ]1/15,2/15]. The
existence of a solution can be proven by our theorem with 1, whereas the results of Del

Pino-Manasevich do not apply in that case.

4.2 AT THE LEFT OF ALL EIGENLINES
In this subsection, we come back to the situation where the nonlinearity can be considered

to be asymptotically "at the left of all eigenlines", leading to one-sided existence conditions. We
consider two different situations, depending on the regularity of the limiting functions.

THEOREM 12. Let f [0, 2n] x ]Ra ]R be a function which satisfies hypothesis (H4) of

Theorem 9. Assume that there exists a E R, b > 0, q R, a,7 Ll((0,27r),]R+) such that for all

(u, v, w) iRa and a.e. [0, 27r],
(i) (f(t, u, v, w) qw)u < a(t)u + bluwl + 7(t)lul;
(ii) a(t) < a;
(iii) there exists > b/2 such that for all k ll

k +qk _> a +b +

Then, there exists at least one solution u of (4.a)-(4.4).
PROOF. We apply Theorem 4 with H X H,, V L,

L dom L {u E W’ usatisfies (4.4) } L :u u(,
B H, L u a(t)u + qu",
G H L u a(t)u + qu",
Q g LI: u --./(t, u, u’, u") [a(t)u + qu"].

The proof follows by arguments similar to those of Theorem 11.

A slightly different result can be obtained, assuming more regularity on .
THEOREM 13. Let f [0, 2n] x Ra R be a function which satisfies hypothesis (H4) of

Theorem 9. Assume that there exist q,a

_
R, a,’ L((0,2r),R+), C(0,2r) such that

(0) f(2r), fF(0) ’(2r) and for all (u, v, w) e Ra and a.e. E [0, 2],
(i) (f(t, u,v, w) qw)u < a(t)u2 + (t)uw + 7(t)lul;
(ii) a(t) < a,(t) > 0,/"(t) < r;
(iii) for all k N

k + q k (a +r/2) >_ O.

Then, there exists at least one solution u of (4.3)-(4.4).
PROOF. We apply Theorem 4 with H X H2, V L

L dom L {u W4’ :usatisfies (4.4) } L u-- u(4),
B H Ll:u cr(t)u + (fl(t) T q)u",

G H, La: u y(t,u,u’,u")- 7(t)sgnu,

Q H.-L:u--7(t)sgu u.

The only significant difference in the proof of this theorem is the way the inequality

fo’[u(4) a(t)u (fl(t) + q)u"]u > 0
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is obtained. In l]is case, we use integration by parts. \Ve obtain, for u 0,

which, by (iii), proves the required inequality.
5. EXTENSIONS

1) We can generalize Theorems 6 and 9 to the problem

(pu")" f(t, u, u’ u" u’")

u(0) u(2r), u’(0) u’(2rt),

(pu")(O) (pu")(2rr), (/nt")’(0)= (/nt")’(2rr),

where p W2’(0, 2rr) is such that p(t) > 0 in [0, 2rr].
2) We can improve Theorem 11 by introducing in f a linear dependence in u’. We obtain for

example the following result
THEOREM 14. Let f [0, 2rr] x IR R be a L-Carathdodory function. Assume that there

exist p,q,r IR, a > O, b,c >_ O, ,5 L such that

(i) If(t, u, v, w, pu rv qw] <_ a(t)]u] + b]v] + clw + 5(t);
(ii) a(t) < a;

(iii) there exist rt > c/2,{ > 0 such that for all k N

k +qk-pO,
k k

1>
c( + ) + b( + -) + a

]k4 + q k p]
Then, the problem (4.3)-(4.4) has at least one solution.

3) We can consider, in a similar way, other boundary conditions ,as, for example,

(o) () 0 ’(0) ’();
(0) () 0 ’(o) "();
(0) ’() 0 "(0) ’"();
u(0) u’(a) 0 u"(0) u’"(1);
,,(0) () 0 ,’(0) u"(,);

4) We can improve the abstract Theorem 2 in the following way. We do not need to assume that
the operators L, A, B and the operators of .T(X, V) are symmetric but only that they satisfy for
all u, v X Cl H

<Lu, Pv> <Lv, Pu>, <Au, Pv> <Av, Pu>
<Bu, Pv> <By, Pu>, <Su, Pv> <Sv,

for some continuous linear operator P" H V’. Then we define fi, by .(u, v) <Au, Pv}; the
other bilinear forms are defined in a similar way. The inequality (2.2) will be replaced by

(( + a), Pa- P) < v( + , + a).

When we study the problem (1.3)-(1.4) on H gl H0, we can obtain existence results by using
this approach with Pu -u". This is due to the fact that on H gl H(, the kernel of P reduces to

{0}. Unfortunately, this is not the case for the periodic problem. Still, the same idea can be used,
but with the more complicated operator Pu -u" + rn u on H,, with m > 0. This leads to



FOURTH ORDER NONLINEAR BOUNDARY VALUE PROBLEMS 739

cont,ilnl()us in X E : f()r a.e. E [(),2n I. Assm float, lmr, ,,xist, p,q E , a > O, b O,

a,/],7 L((0,2), swl tirol fi,r all (u,’,’u,) E R a,l a.c. E [0,2],

(ii) (t) < a,/](t,) b;

(iii) there exist 1, , t" > 0 sucl llmt fir all k E N

k4 q qk2-pO,

k

(: + ...)I( u ,)I
Then the problem (4.3)-(4.4) has at ]ckt one solution.

5) Fina]]y t]c ideas devc]p])cl in tiffs work ca be used o study other boundary value

prb]ens. For exam])]c, the idea of Tlmoren 6 can be app]i’d to the problem

-u() (, u, u’, u", u"’,

,/(0) ’() (0) () u(0) ,,() 0,

wih a fimcion f of he form

/(z, , ’, ", ,,’", ’,") (s(z, ,)")" (s, (, ,,),/)’ + o(z, ,,), + q(z,

where he idea of Theorem 12 can be applied o the hird order boundy value problem

u(0) u(2), ’(0) ’(2), "(0) "(2).

10.
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