Internat. J. Math. & Math. Sci. 725

VOL. 17 NO. 4 (1994) 725-740

NONRESONANCE CONDITIONS FOR FOURTH ORDER
NONLINEAR BOUNDARY VALUE PROBLEMS

C. DE COSTER, C. FABRY, F. MUNYAMARERE

Département de Mathématique
Université¢ Catholique de Louvain
Chemin du Cyclotron 2
B-1348 Louvain-la-Neuve
Belgium

(Received February 6, 1992)

ABSTRACT. This paper is devoted to the study of the problem
u® = ft,u,u u" u"),

u(0) = u(27), «'(0) = u'(27), " (0) = v’ (2m), v"'(0) = u"'(27).

We assume that f can be written under the form
flt,u, o, u” ") = folt,u, o, u" u”)u” + fi(t,u, o u” u™ )
+folt,u, v, u” u" Y+ r(t,u,u' v u")
where  is a bounded function. We obtain existence conditions related to uniqueness conditions for
the solution of the linear problem
) = au + bu”,

u(0) = u(2m), ¥'(0) = u'(27), u"(0) = u”(27), u’(0) = u''(27).
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1. INTRODUCTION
This paper is devoted mainly to the study of the fourth order periodic boundary value problem

u® = f(t,u, ', u”,u"), (L.1)

u(0) = u(27), v'(0) = u'(27), v’ (0) = u"(2m), v'(0) = «"’'(27). (1.2)

Boundary value problems for fourth order ordinary differential equations have received con-
siderable interest recently. As a starting point, we state a result of Y. Yang [22] about a nonlinear
problem with Dirichlet-type boundary conditions :

u® = f(t,u,u"), (1.3)
u(0) = u(r) =0, «"(0) =u"(x) =0. (1.4)
Y. Yang proves the existence of a solution under the assumption that
|f(t,u,v)| < alul +blv| +c,

with
at+b<l.



726 C. DE COSTER, C. FABRY AND F. MUNYAMARERE

With the same boundary conditions, Y. Yang [23] has also established the existence of a solution
for the equation

"n

u™ = g(t,u, i Y+ bt u,u u u™)

assuning that, for U € R*, h(t, /) is bounded and there exists k € N such that
k' < inf g(t,U) < supg(t,U) < (k + D% ae on|0, 7],
U

where the notation < means that the inequality is strict on a subsct of positive measure. This
last condition can be clearly read as a non-interference condition of the nonlinearity with respect
to the spectrum of the operator u — 1), subject to the boundary conditions (1.4). Recently, M.
Del Pino and R. Manasevich [5] have extended Y. Yang’s [22] result. They prove the existence of
a solution for (1.3), (1.4), assuming that

|f(t,u,v) — (au + Bv)| < alu| + blv| + ¢,

the numbers a, 3 € R and a,b,c € R, being such that

%_f—zyél for all k € N*, (15)

1 k?
R e R R TR o R <

The aim of this paper is to provide analogous results for the periodic boundary value problem
(1.1), (1.2). Those results will however be obtained by a method of proof different from that of the
above-mentioned papers.

Before discussing the problem further, let us mention a few recent contributions to fourth
order boundary value problems, namely by A.R. Aftabizadeh [1}, R.P. Agarwal [2], C. Fabry and
F. Munyamarere [6], C. Gupta [7-13], G. Metzen [17], L. Sanchez (18], J.D. Schuur [19].

In order to obtain sharp existence results for the problem (1.1), (1.2), it seems appropriate to
relate it to the two-parameter eigenvalue problem

u® = qu + bu”, (1.6)

u(0) = u(27), v'(0) = v'(27), u”(0) = u"(27), "' (0) = v'’'(27), (1.7)

about which it is an easy matter to prove the following result.

LEMMA 1. The problem (1.6), (1.7) has a nontrivial solution if and only if there exists k € N
such that

k* = a — bk?.

For k € N, we will call the set Ly = {(a,b) € R? | k* = a — bk?} an eigenline of (1.6), (1.7).
The condition (1.5) then means that the point (a, 3) does not lie on any eigenline.

We will treat problem (1.1), (1.2) by separating two cases, depending on the form of f. In the
first case, discussed in section 3, we will assume that f can be written under the form

ftu, o' u” u") = (gt u, u' o) + h(t,u, v’ u”, v )u + r(t,u, ', v, u"). (1.8)

where r(t,u,u’,u",u"") is a bounded function. We will be able to prove the existence of a solu-
tion under the assumption that the point (g(¢, z,y), h(t, z,y, z,w)) always lies in a rectangle with
sides parallels to the axes and which does not intersect any eigenline. This kind of result can be
considered as an extension of the results of Y. Yang [23] (with obvious modifications, since the
boundary conditions are different). It is worthwhile to adapt that result in the case where the
point (g(t,z,y), h(t,z,y, z,w)) is located at the left of all eigenlines. That situation is also dealt
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with in scction 3; the results obtained there generalize results of C. Gupta and J. Mawhin [13].
The above results have a simple geometrie deseription in terms of cigenlines; however, they have
the drawback to rely on the decomposition (1.8) of f, for which we are unable to give practical
hypotheses ensuring its existence. Therefore, in seetion 4, we work with a different decomposition
of f, namely

Jtu, v u” ") = foltu, !  w™)u” + fo(tu,u!,u u™)u + r(t, w, ' u” u™). (1.9)

where r(t, u, v, u”,u"") is a bounded function. Such a decomposition can be obtained, for instance,
on the basis of an hypothesis of the type

(1w, 0,0, 2) = pu— qu| < at)|u] + B()|w| + (1)

That kind of condition has been used in M. Del Pino and R. Manasevich (5], C. Fabry and F.
Munyamarere (6], Y. Yang [22]. Unfortunately, the existence conditions obtained with the decom-
position (1.9) are not as nice as those obtained with (1.8). In particular, we are unable to answer a
question raised by M. Del Pino and R. Manasevich : can the existence of a solution be proven under
the hypothesis that the point (fo, f2) lies in a rectangle which does not intersect the eigenlines ?
In the sequel, we will refer to the case where f admits the decomposition (1.8) as the “symmetric
case”, whereas the decomposition (1.9) will be referred to as the “nonsymmetric case”.

Our method of proof is inspired by a method used by J. Mawhin and J.R. Ward [15] [16] for
the periodic boundary value problem

—u" = f(t,u),
u(0) = u(2m), ¥'(0) = v'(2n).

They prove the existence of a solution, assuming that, for some n € N,

n? <a(t) < llirln inf [ty < limsup @ <b(t) S (n+1)2 (1.10)

u|—o00 u lu|—o00

Their proof relies on the use of a coercive quadratic form. More precisely, they use the fact that
the Sobolev space HJ, admits a decomposition H}, = H & H with dim H < oo such that, for all
@€ H, @ e H, we have

27 2
[ —ewa - [T - a0 2 s+ alln,

for some 6 > 0.

In section 2, we introduce an abstract version of such type of hypothesis to obtain an existence
result for the general nonlinear equation Lu = Nu; that result will then be applied to the periodic
fourth order boundary value problem.

At the end of this introduction let us fix some notations. We will use the following spaces:

L*(0,27) = {u: [0,27] — R measurable | /07r lu(t)|*dt < oo},

W¥5?(0,21) = {u:[0,21] > R| forj=0,...,k—1,
us
u®? is absolutely continuous and /0 [u® (t)|Pdt < 00},

H*(0,27) = W*2(0,27),

HE, = {u e H*0,27) | w(0) = u(2r),...,u®* V(0) = w1 (2r)},
C*0,2r] = {u: [0,27] - R k — times continuously differentiable}.
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We will often only write C5, Lk, W52 [1¥. The norms on those spaces are defined as usual;
on 1%, we will use the norm ullpyz - [|ullrz + [|w”]] L.

Finally we will say that a function f : [0,2r] x R® — R satisfies LP-Carathéodory conditions
if
1) for cach u € R™, f is measurable in f;
2) for almost every t € [0,2x], f is continuous in u;
3) for every R > 0, there exists a function hg € LP(0,2n) such that |f(t,u)] < hg(t) a.c. t € [0,27]
and for each u € R™ with [Ju|| < R.
2. ABSTRACT RESULTS

In this section, we first present an existence result for the abstract nonlinear equation
Lu = Nu;

that result is a generalization of Theorem 3 in C. De Coster, C. Fabry and P. Habets [4].

Let H be a Hilbert space, X and V be normed spaces such that H is continuously embedded
in V', the dual of V. We denote by (.,.) the pairing in V. Let A, B: X — V be linear, symmetric
operators such that for all u € X NV’

(Au,u) < (Bu,u).
Denote by F(X, V) the set of linear, symmetric operators S : X — V such that, for allu € X NV’
(Au,u) < (Su,u) < (Bu,u).

The theorem below uses coincidence degree arguments; for a presentation of that theory and
the definition of L-compacity and L-complete continuity, the reader is referred to J. Mawhin [14].
THEOREM 2. Let L : dom L ¢ HN X — V be a linear, symmetric, Fredholm operator of
index zero and N : X — V be a L-completely continuous operator. Assume that :
(a) the operators A, B are L-compact;
(b) the bilinear forms A, B, £ : dom L x dom L — R respectively defined by A(u,v) = (Au,v),
B(u,v) = (Bu,v), L(u,v) = (Lu,v) admit continuous extensions to H x H denoted by A, B, L;
(c) for every K > 0, there exists M > 0 such that if u is a solution of

A+ B
2

Lu=ANu+(1-12) u

with ||ul|g < K and A € [0, 1], then ||u]|x < M.

If, moreover,

(i) there exist D(.,.) a positive definite bilinear form and a decomposition H = H & H with dim
H < o0 such that, for any @ € H, i € H,

I£(@, @) - B(@,®)] — [£(@,8) — A@,®)] 2 D(@+&,a + @); 1)
(if) the operator N admits the decomposition
Nu = G(u)u + Q(u)

where for all u € X, G(u) € F(X,V), the bilinear form G(z) defined on dom L x dom L by
G(x)(u,v) = (G(x)u,v) admits a continuous extension to H x H denoted by G(z) and there exists
R > 0 such that, forallu e dom L, u=a + @ witha € H, i € H and ||u||g > R,

(Qa+a),a—a) < D%+ a,a+ a). (2.2)
Then there exists at least one solution u of

Lu = Nu.
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PROOF. By the coincidence degree theory, we only have to find an a priori bound in X for
the solutions of A4 B
Lu = ANu | (1 — /\)—2——~u, Aeo,1]. (2.3)
By hypothesis (c), it is enough to prove that for all u solution of (2.3), we have ||u||y < R.
Assume by contradiction that there is a solution (A, u) of (2.3) with ||u||lg > R. Let us write
w=a+awitha € Handa € H,let Ny == AN+(1=N)(A+B)/2, Gx(u) = AG(u)+(1=X)(A+B)/2.
Multiplying (2.3) by @ — @, we obtain using (2.1) and (2.2),

0 = (Lu- Nyu,u— 1)
= L@@, @) = Ga(u) (@, )] = [L(w, 1) — Ga(u)(@, w)] — MQ(u),u — @)
> [L(a,n) — B, )] — [C(a,u) — A(q,@)] — MQ(u), & —a) >0

which gives a contradiction and proves that ||u|l|p < R.
The existence of a decomposition H = H & H such that (2.1) holds can be obtained by means
of the following proposition which is proved in C. De Coster, C. Fabry and P. Habets [4].
PROPOSITION 3. Let H be a vector space and L, A, B be real, bilinear, symmetric forms on
H. Assume that
(i) there is some m € R such that

C=L+mB-(1+m)A

is a scalar product which makes H a Hilbert space;
(ii) B — A is positive definite, i.e.

(Vu € H,u # 0),(B - A)(u,u) > 0;
(iii) for any sequence (ux) such that uy £, u, one has
(B — A)(uk, ux) = (B — A)(u,u).

Then the following equivalences hold :
(a) theinterval [0,1] does not contain eigenvalues A of the problem

Yv € H, L(u,v) = AB(u,v) + (1 — A).A(u,v);
(b) there exists § > 0, H C H and H C H such that dim H < oo, H = H @ H and, for any
@€ H, @e H, one has
(€ - B)(w,a) — (L — A)(a,a) > 6C(a + @,a + )
(c) for any real bilinear symmetric form S on H such that A < § < B, i.e. such that
Yue H, Alu,u) < S(u,u) < B(u,u),
u = 0 is the only solution of
Yve H, L(u,v)=S8(u,v).

Variants of Theorem 2 and Proposition 3 can be written, in which the operators belonging to
F(X,V) satisfy a one-sided condition only.
THEOREM 4. Let L :dom L C HNX — V be a linear Fredholm operator of index zero and
B : X — V alinear L-compact operator. Consider the set F(X,V) of operators S : X — V such
that forallu e X NV’
(Su,u) < (Bu,u).
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Let N : X — V be a L-completely continuous operator. Assume that :
for every K > 0, there exists M > 0 such that every solution u of

Lu--ANu+ (1 = X)Bu

with {Ju]|y < K and A € [0, 1], verifies [|ul]x < M.
If moreover,
(i) therc exists a positive definite bilinear form D(.,.) such that, for all © € dom 7,

(Lu,u) — (Bu,u) > D(u,u);
(i1) the operator N admits the decomposition
N(u) = G(u) + Q(u)
where G € F(X,V) and there exists R > 0 such that, for all v € dom L with ||u||y > R,
(Q(u),u) < D(u,u).
Then there exists at least one solution u of
Lu= Nu.

The proof is similar to that of Theorem 2.

REMARK. Notice that the linearity and the symmetry of the operators of F(X, V') are not
required.

The following proposition is proved in C. De Coster, C. Fabry and P. Habets [4].

PROPOSITION 5. Let H be a vector space and £, B, D be real, bilinear, symmetric forms on
H. Assume that
(i) there is some m € R such that

C=L-B+mD

is a scalar product which makes H a Hilbert space;
(ii) D is positive definite;
(iii) for any sequence (ux)x such that ux £ u, one has

D(uk, ux) — D(u,u).

Then the following equivalences hold :
(a) the eigenvalues \ of the problem

Vv € H, L(u,v) — B(u,v) = AD(u,v)

are all strictly positive;
(b) there exists § > 0 such that for any u € H, one has

(C - B)(ur u) 2> 6C('U., U),
(c) for any real bilinear symmetric form S on H such that S < B, u = 0 is the only solution of
Yv € H, L(u,v) = S(u,v).

3. SYMMETRIC CASE
In this section we will study the problem

u® = f(t,u,u U u"), (3.1)
u(0) = u(27), v'(0) = v'(27), u"(0) = u"(2n), ' (0) = u"(27), (3.2)

under the general assumption that f admits a decomposition of the form
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We will consider separately the case where the function f stays asymptotically between two eigen-
lines and the case where it stays asymptotically at the left of all cigenlines.
3.1 BETWEEN TWO EIGENLINES
THEOREM 6. Assume that [ satisfics (3.3) with
(H1)(i) the functions

hyr:]0,27) x R* = R: (1, X) = h(t, X),r(t, X),

are measurable in ¢ € [0,27] and continuous in X € RY;

(i) the function g : [0,27] x R? — R : (t,z,y) — g¢(f,x,y) is differentiable and the par-
tial derivatives are such that dg/dt, dg/dx satisfy L'-Carathéodory conditions, d¢/8y satisfy L2-
Carathéodory conditions and for all (x,y) € R2, g(0,z,y) = g(27,x,y);

(H2) there exist myg,my,mg € L'(0,27),m3 € L%*(0,27) and ¢ > 0 such that, for all X =
(z,y,2,w) € R* and almost every t € (0,27,

Ir(t, X)| < mo(t) + my(8)]x|' = + ma(t)lyl' = + ma(t)|2|' %

(13)there exist a;, b, € L'(0,21),az,by € W1(0,21) such that az(0) = az(2m), b2(0) = bz(27) and
for all z,y,z,w € R and for almost every t € [0, 2n],

a (t) < h’(ty:tyyvzruy) < bl (t)v

b2(t) < g(t,l‘,y) < (L?(f‘)’
If moreover,

(F) there exist § > 0 and a decomposition HZ, = H & H with dim H < oo such that, for any
acH icH,

27 2m
[ b b - [ + a0 - @) 2 6llullf, (3.4)

then the problem (3.1)-(3.2) has at least one solution.
PROOF. We will apply Theorem 2 with the spaces H := HZ,, V := L', X := Hj_and the
operators

L : dom L = {u € W*! : usatisfies (3.2)} — L' : u — u¥;

H3 — L':u— (agu') + ayu;

H3 — L' :u— (bou') + byu;

H3 — L(H3,, L") : £ — G(z) defined by G(z)u = (g(t, z,z')u)’ + h(t,z, 7', 2", c"")u;
H - L':u—r(t,uu,u" u™);

H3 - L':u— Gu)u+ Qu).

20 QW x>

It is easy to see that L is a Fredholm operator of index zero and has a compact generalized
inverse from L! into H3,. It is not difficult to prove that A, B are L-compact and N : H3, — L! will
be L-completely continuous if we prove that it is continuous and maps bounded sets into bounded
sets. For that purpose, we will use the following result :

Let X be a metric space, (f,) a sequence in X and f € X be such that for any subsequence of
(fn) there exists a sub-subsequence which converges to f. Then, the initial sequence converges to f.

So, let (u,) C H2, be such that u, converges to some u in the H3,-norm, and let (u,,) be a
subsequence of (u,). Consider the sequence ,(t) = f(t, un(t), un,(t), un(t),u(t)) and the subse-
quence (yn,) which corresponds to (un,). As (u.,) converges to u in the H3 -norm, there exists a
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sub-subsequence (""*,) of (u,,) such that for i =0,1,2,3,

(i) 145,’3 (ty = u®(1), a.c. on [0,2r7);

(i) there exists h € L2(0,27) such that |u§,‘2}(t)| < h(t) on [0,27] (sce, for example, Brezis [3,
p. 58|).

By hypothesis (I11), we have @, (£) —=¢(t) a.e. on [0, 27], where (t) = f(t, u(t), w'(t),w" (L), u"(t)).
Morcover, from the J1%-bound on the sub-subscquence (un, ) we deduce a C2-bound on it, and, by
(111), (112) and (113), we can find a function g € L! such that |<pnk’ (t)| < g(t). The continuity of N
follows from the Lebesgue dominated convergence theorem. Moreover, we easily deduce from the
structure of N that it maps bounded sets into bounded sets.

Now we will prove that hypothesis (c) of Theorem 2 is satisfied. By the continuous injection
of 112 into C! and the hypothesis on f, we have that, if there exists K > 0 such that for all solution
u of (2.3) we have ||u||g2 < K, then there exists M; = M;(K) such that |[[u®||.: < M;. It is easy
to conclude that there exists Mz such that ||u||ys < Ma.

The rest of the proof is left to the reader.

The following lemma is necessary in order to apply Proposition 3.

LEMMA 7. Assume that there exist a;,b, € L'(0,27), az,b, € W1(0,27) with a3(0)
a2(27), b2(0) = by(2m) such that a;(t) < by(t) and a,(t) + ba(t) < ax(t) + by(t) for ae. t € [0,27].
Then, there exists n € N* such that, for all v € HZ,,

2 ; 1
[ = (b2 = 02) = ) + (ny - ) = anu?] 2 glullfe

PROOF. Assume by contradiction that there exists a sequence (u,) C HZ, such that ||u.||g2 =
1 and

/ [uuQ (n(b2 —ag) — az)uf + (n(b — a) — al)ui] < %

As ay(t) > by(t) and by (t) > ay(t) on [0,27], we can deduce from this relation that there exists
B > 0 such that, for all n,

1
1= |lunllfe < Blluallé: + 2

lunlls > 55 (35)

On the other hand, we can find a subsequence, still denoted (u,), such that (u,) converges to some
u in C'. We then have,

I

0< [)2"[((12 — b)u" + (by — a1)u? Jim / [(ag — ba)u2 + (b — a1)u?]

< lim —-[— -/ [ + aqu? — ayul]]= 0.

We deduce from the hypothesis a;(t) + b2(t) < az(t) + b1 (t) for a.e. t € [0,2n] with a,(t) < bi(2),
that u = 0, which contradicts (3.5).

Using this, we will be able to give some simple hypothesis which ensure that hypothesis (F')
of Theorem 6 is satisfied.

COROLLARY 8. Assume that f satisfies (3.3), hypotheses (H1) to (H3) of Theorem 6 and
the hypotheses of Lemma 7. If moreover, there exist a;, 81,2, 82 € R such that for a.e. t € [0, 27],

ay Sai(t) < b(t) < 4,

P2 < ba(t) < az(t) < a2
and for all k € N, for all A€ (0,1)

(A8 + (1= Na) = (AB2 + (1 = Na)k? # k* (3.6)
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then problem (3.1)-(3.2) has at least one solution.
REMARK. It is casy to sce that the last conditions of Corollary 8 mean that the point
(9(t,z,y), h(t,x,y, s, w)) always lies in a rectangle which does not interseet any eigenline.
PROOF. Using Lemuma 7, we can apply Proposition 3 with H = HZ2,, the bilinear forms
L, A B: H x H— R being defined respectively by

2m 2m 2
L(u,v) = / ", A(u,v) = / [—au'v' + ayuwv], B(u,v) = /0 [=bot/v" + byuv).
0 o

So condition (F') holds if we can prove that the interval [0, 1] does not contain eigenvalues A of the
problem

u® = ((Aby + (1 = Nag)u') + (Aby + (1 = Nay)u, (3.7)

u(0) = u(2m), u'(0) = v'(2r), v’(0) = u”(27), v (0) = u"'(27). (3.8)

Assume by contradiction that there exist A € [0,1] and u # 0 solution of (3.7)-(3.8). As
a; S Ab(E) + (1 = Nay(t) < By on [0,27], we have, by the variational characterization of the

~

eigenvalues, that the eigenvalues 4, v, p, of the problems

@ _ qou" — ayu = pu,

u
u™® — ((Abg + (1 = Nag)u') — (Aby + (1 = Nar)u = vu,

u® — B — Byu = pu,
with boundary conditions (3.8), satisfy
P < U < iy, foralle €N,

assuming the eigenvalues of the three problems to be arranged by increasing order.
As the problem (3.7)-(3.8) is assumed to have a nontrivial solution, there must be some ¢ € N
such that v, = 0. By continuity of the eigenvalue, there exists 6 € |0, 1{ such that the problem

u® — (08 + (1 — O)az)u” — (061 + (1 — 6oy )u = 0,

u(0) = u(27), ¥/(0) = v'(27), u"(0) = v"(2m), u"'(0) = u"(27),
has a nontrivial solution, which, according to Lemma 1, contradicts the hypothesis (3.6).

REMARK. Letting ¢ = (ag + 82)/2, b = (az — B2)/2, p = (a1 + $1)/2, and a = (B — a1)/2,
the condition (3.6) can be written equivalently as : for all k € N

K4+ qgk>—p#0
and b2
a
1> .
T U s R X prup .
3.2 AT THE LEFT OF ALL EIGENLINES

In this subsection, we will consider problem (3.1)-(3.2) with f as in (3.3), but we will assume
m

only one-sided conditions on h and g. Unfortunately, in that case we cannot have a u"’-dependence
in f. This is due to the fact that we cannot find an H*® bound on the solutions of (2.3) from an
H?-bound, as in Theorem 6.

The proofs of the results of this subsection follow from Theorem 4 and Proposition 5. We take
here H = X = HZ,.

THEOREM 9. Let f : [0,27] x R* — R be a function which satisfies the hypothesis (H1) and
(H2) of Theorem 6 with h,7 : [0,27] x R® — R. Assume
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(H3’) there exist by € L'(0,2r), by, € W(0,27) such that by(0)  by(27) and for all (z,y, z) € R?
and almost every ¢ € (0,27
h(t,x,y,z) < by(t),

ba(1) < g(t, z, y).

(H4) there exist d : [0,27] x R? — R, a L2-Carathéodory function and ¢ € L'(0,2x) such that, for
all (u,v,w) € R? and a.c. t € [0,2n],

[f(t,u, v, w)| < d(t,u, v)|w| + (t).

If morcover, there exists > 0 such that, for all v € dom L,

2
/ [ + bou'® — byu?] > 8||ull?, (3.9)
0
then the problem
u® = f(t,u, o, u"), (3.10)
u(0) = uw(2m), ¥'(0) = u'(27), u"(0) = u”(2r), " (0) = u""'(27), (3.11)
with
Fituu' ")y = (gt w, v )Y + h(t,u, o' 0" u + r(t, w0’ u") (3.12)

has at least one solution.

As in the previous case we will give some simple hypotheses which ensure that condition (3.9)
is satisfied.

COROLLARY 10. Assume that f is a L!-Carathéodory function which satisfies (3.12) and
(H1) to (H4) of Theorem 9. If moreover there exist 81, 82 € R such that, for almost every ¢ € [0, 2n],

B2 < ba(t), bi(t) < B,
and, for all k € N, for all A <0,
By +A) — (B — NK* £ K2, (3.13)

then the problem (3.10)-(3.11) has at least one solution.
REMARK. We can observe that condition (3.13) is equivalent to : for all k € N

0 < k* + Bok® — By

4. NON-SYMMETRIC CASE

In the previous section, we have assumed that the function f admits a symmetric decomposi-
tion of the form (3.3). It does not seem easy to give practical hypothesis which ensure that such a
decomposition exists. On the opposite, it is easy to find practical conditions under which f has a
decomposition of the form

Ftu,u'u") = folt,u, v, u" W + fi(t,u, o, u")u’ + fo(t,u, v, v u + r(t, u,u’,u”)

with 7 bounded. For a given function u, the operator v — fa(.,u(.), u'(.),u”(.))v" is not symmet-
ric; that difficulty is dealt with below by treating that operator as a “perturbation” of a linear
symmetric operator. For the sake of simplicity, we will assume that f; = 0, since the presence
of the corresponding term introduce only technical difficulties. As in section 3, we will consider
separately the case where the function f stays asymptotically between two eigenlines and the case
where it stays asymptotically at the left of all eigenlines.
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4.1 BETWEEN TWO EIGENLINES

THEOREM 11. Let f:1]0,27] x R* = R : (£, X) — f(f, X) be measurable in ¢ € |0,2n] for
all X € R? and continuous in X € R* for a.c. ¢t € [0,2r]. Assume that there exists p,g € R, a > 0,
b>0,a,ve LY((0,2r),R") such that for all (u,v,w) € R* and a.c. 1 € [0,27],
() |t u,v,w) = pu— qu| < a(t)|u] + dlw| + y(t);
(i) a(t) < a;
(iii) there exists € > b/2 such that for all k € N

K'+ gk —p #0, 4.1)
a b((k*/2€) + (£/2))
> . 4.2
T~ R sy T R Y (12)
Then, there exists at least one solution u of
u® = ft,u, o, u"), (4.3)
u(0) = u(27), w'(0) = u'(27), v’ (0) = v”(27), v(0) = "' (27). (4.4)

PROOF. Let us show first that f admits a decomposition of the form
f(t, v, v,w) = g(t, u,v,w)u + h(t, v, v,w)w + r(t,u,v,w),
with
Ig(t,u,v,w) - p' < a(t)) Ih'(t1 ’u,’U,'LU) - (I' < b» Ir(t,u, 'U,’lU)I < 7(’)

Let m(t, u, w) = a(t)|u| +blw| +v(t). If m(t,u,w) =0, we have f(t,u,v,w) = pu+quw. Otherwise,
we can write the relation

f(t,u,v,w) —pu —
m(t,u,w)

ft,u,v,w) — pu— qw = qw[(a(t) sgnu)u + (bsgn w)w + v(t)),

from which the required result is easily deduced.
We will apply Theorem 2 with H = X = HZ,,V = L!,

dom L = {u € W*! : u satisfies (4.4)} — L' : u — u™®,

Hi, = L':u— (p—a(t))u+qu’,

HZ —L':u— (p+a®))u+qu”,

HZ — L(HZ,,L'):z — G(x) defined by G(z)u = qu” + g(t,z,2', 2" )u,
Q : H:I > L':u— (h(tud, u")—Qu" +r(tu,u").

QW > >~

Let us prove that, for some ¢ > 0, the hypothesis (i) and (ii) of Theorem 2 will be satisfied
with b g eb. [
— e "2 57 2
D(u,u) (€+2€)/0 u? + (e + 2)/0 u
and H, H defined in the following way. Let
K={keN:k*+qk> —p<0}, K={keN:k*+qk’-p>0}

and consider the decomposition H2, = H @& H where

H = {a= E(aksinkt+bkcoskt) | ak, bx € R},
kekK
H = {a= E(aksinkt+bkcoskt) | ak, bk € R}.

keK
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Let us prove hypothesis (i) of Theorem 2. If w € HZ,, it can be written under the form

u(t) = Z (ak sinkf -+ by cos kt).

k-0
We then have, for w # 0,
2n . 2n
/ [@”? + qi” — (p + a(1))a®] - ]0 [ + qu” — (p — a(t))@?]
0
2m 2r
> / (@2 + qi? — (p + a)i?] - / [@" + qi'? — (p — a)@?)
0
> [ 30 (k' + gk? — (p+ a))(af + ) — 3 [K* + qk® — (p — @))(af + b))

keR keK
> 7r[ E K (a? + b2) z(ak +82)]
€ ien 2 fen
v "2 sY 2 4.5
> 25/0 u + 2 A i , (4.5)

where we have used the hypothesis a(t) < a and the inequalities
Vke K, (1+§bz)k4+qk2—(p a—g)<0

Vke K, (1—%)k4+qk2—(ll+a+7§)20,

which are satisfied if (4.1)-(4.2) are satisfied. Now let us prove that there exists € > 0 such that
2n 2 b 27 {b 27
~112 ~12 ~2) =12 =12 _ 721 > — " 5”7 2 2 .
/0 [@"* + qu™ — (p+ a(t))u®] /0 [@"* +qu"” - (p—aft)u®] > 26/0 U+ /0 u’ +e||ul|ys
Otherwise, for all n, there exists u, € HZ, with |fu.|{g2 = 1 and
o : : 2 B B b
0< [ rau - rra@idl - [l ail - o-a@adl- b [+ [Tl <1

By going if necessary to subsequences, as ||u,||z2 = 1, we can assume that u, converges weakly in
H? and in the C!-norm to some u, i, converges to @ in the H%-norm and

lim (1 - 2—b€~) /:" = — /:"[qz'ﬂ —(p+al)+ %é)ﬁ:’]

n—oo

[0 et ra - o-a - Pl 4s)

By (4.5), (4.6) and the weak lower semi-continuity of the norm we have u = 0. Then we know that
u,, converges weakly in H? and in the C'-norm to 0 and that &, converges to 0 in the H2-norm. By
(4.6), we see that @/, converges to 0 in the L2-norm and then we have that u, converges to 0 in the
H2%-norm, which contradicts the fact that ||u,||g2 = 1. Consequently, hypothesis (i) of Theorem 2
is satisfied.
Now we will prove hypothesis (ii) of Theorem 2 i.e. there exists R > 0 such that for all
=4+ witha € H, @€ H and ||ul|z2 > R we have

/ozﬂl(h(t,u, ) — g 4t uu u)) (@ - @) < (% *e) /o% et ‘%’ *e) /02, v

In fact, we have, for some constant ¢ > 0,
2 2
/0 (h(t,u, o' u") — Q" (@ — @) + /0 r(t,u, o', ") (@ — @)
27 2n
[ el + [ v -al

2 "2 §b 2 2
< gl vt el

I ™ §b/2" 2 2
< —_— —_—
25/0 u'* + 5 Jo U + €l|ul|Fs

IN
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for ||ullg2 > R, with R big enough.
So we can apply Theorem 2.
REMARK. 1) In the case where a = 0, the result is still true provided that we replace (4.2)
by a strict inequality.
2) In the case where b = 0, we obtain the same conditions as in the symmetric case.
3) As the following example shows, the above result is not contained in the results of Del Pino-
Manasevich [5]. Consider the case where p = —2,q = —4,a = 13/15 and b € |1/15,2/15]. The
existence of a solution can be proven by our theorem with £ = 1, whereas the results of Del
Pino-Manasevich do not apply in that case.
4.2 AT THE LEFT OF ALL EIGENLINES
In this subsection, we come back to the situation where the nonlinearity can be considered
to be asymptotically “at the left of all eigenlines”, leading to one-sided existence conditions. We
consider two different situations, depending on the regularity of the limiting functions.
THEOREM 12. Let f : [0,27] x R® — R be a function which satisfies hypothesis (H4) of
Theorem 9. Assume that there exists a € R, b> 0, ¢ € R, a,v € L!((0,27),R*) such that for all
(u,v,w) € R® and a.e. t € [0, 27],
() (f(t u,v,w) — quw)u < a(t)u? + bluw| + y(t)[ul;
(ii) a(t) Sa
(iii) there exists & > b/2 such that for all k € N

26
Then, there exists at least one solution u of (4.3)-(4.4).
PROOF. We apply Theorem 4 with H = X = HZ,, V = L!,

4
k4+qk22a+b(-lg~+g).

L : dom L= {ue W*!: usatisfies (4.4)} — L' : u — u¥,
B : H: —L':u— a(t)u+qu”,
G : H: - L':u— oty + qu”,
Q : HZ - L':u— f(t,u,u',u") — [a(t)u+ qu"].
The proof follows by arguments similar to those of Theorem 11.

A slightly different result can be obtained, assuming more regularity on S.

THEOREM 13. Let f : [0,27] x R® — R be a function which satisfies hypothesis (H4) of
Theorem 9. Assume that there exist ¢,a € R, a,v € L*((0,27),R*), 8 € C%(0,27) such that
B(0) = B(2r), #'(0) = B'(27) and for all (u,v,w) € R® and a.e. t € [0,2n],

() (f¢tu,v,w) - qu)u < a(t)u® + Bt)uw + 7(t)|ul;
(ii) a(t) <a,B(t) 20,8"(t) <
(iii) forall k e N
K*+qk*—(a+r/2)>0.
Then, there exists at least one solution u of (4.3)-(4.4).

PROOF. We apply Theorem 4 with H = X = HZ , V = L},

L : dom L= {ue€ W*': usatisfies (4.4)} — L' : u — u™®,
B : H: — L':u—a(t)u+ (B(t) + )",

G : HZ - L':u— f(t,u,u' u") — y(t)sgnu,

Q : HZ, - L':u— v(t)sgnu.

The only significant difference in the proof of this theorem is the way the inequality

/021r [u® — a(t)u — (B(t) + ¢)u"]u > 0
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is obtained. In this case, we use integration by parts. We obtain. for u # 0,
2n 2
/ [ - a(t)u — (B) + Q)u"u = / [ + qu”? — a(t)u® — B(t)uu”]
0 0
2n . 2 u2
> / [ + gu® - au? + Bt - 8(1) 5]
0
2 "2 ”2 T\, 2
>/ [+ qu —(a+§)u ]
0

which, by (iii), proves the required inequality.
5.  EXTENSIONS
1) We can generalize Theorems 6 and 9 to the problem

(PU”)” — f(t, u, UI, U“,u”’),
u(0) = u(2r), u'(0) = u'(27),

(pu")(0) = (pu")(27), (pu")'(0) = (pu")' (27),

where p € W21(0,27) is such that p(t) > 0 in [0, 27).

2) We can improve Theorem 11 by introducing in f a linear dependence in u'. We obtain for
example the following result :

THEOREM 14. Let f : [0,27] x R® — R be a L'-Carathéodory function. Assume that there
exist p,q,r € R, a >0,b,¢>0, a,6 € L' such that
() 1ftu,v,w,) — pu—rv— quw| < a(t)|u] + blv| + clw| + 6(t);
(ii) a(t) <a;
(iil) there exist n > ¢/2,€ > 0 such that for all k € N

K+ gk —p+#0,

2
+D+b(5+5) +a
k* + g k* — p| '
Then, the problem (4.3)-(4.4) has at least one solution.
3) We can consider, in a similar way, other boundary conditions as, for example,

’C‘
oK
1> (37

u(0) = u(r) = 0 = v'(0) = v'(r);
u(0) = u(m) = 0 = u"(0) = u"(m);
w'(0) = v'(r) = 0 = u"(0) = u"(n);
u(0) = 4'(1) = 0 = «"(0) = u"'(1);
u(0) = u(m) = 0 = v'(0) = u’(m);

4) We can improve the abstract Theorem 2 in the following way. We do not need to assume that
the operators L, A, B and the operators of F(X, V) are symmetric but only that they satisfy for
allu,ve XNH

(Lu, Pv) = (Lv, Pu), (Au, Pv) = (Auv, Pu)

(Bu, Pv) = (Bv, Pu), (Su, Pv) = (Sv, Pu)
for some continuous linear operator P : H — V’. Then we define A by A(u,v) = (Au, Pv); the
other bilinear forms are defined in a similar way. The inequality (2.2) will be replaced by

(Q(a+a), Pu— Pa) < D(@+ 4, + @).

When we study the problem (1.3)-(1.4) on H? N H}, we can obtain existence results by using
this approach with Pu = —u”. This is due to the fact that on H2N H{}, the kernel of P reduces to
{0}. Unfortunately, this is not the case for the periodic problem. Still, the same idea can be used,
but with the more complicated operator Pu = —u” + mu on HZ,_, with m > 0. This leads to
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THEOREM 15. Let f : [0.27] x R* — R be mcasurable in ¢ € |0,27] for all X € R® and

continuous in X € R* for a.e. t € [0,27]. Assume that there exist p,g € R, a > 0, b > 0,
a, B,y € LY((0,2r),R) such that for all (u,v,w) € R* and ae. t € 0,27,

(i)

[f(t,u,v,w) —pu— quel < a(u] + ()] t+ ~(t);

(i) a(t) < a,pB(t) <
(iii) there exist 7, € R, m > 0 such that for all k € N

K 4 gk?—p /o0,

a(% + £ +m) + b(k* 4 m% 4 %)
- (k2 4+ m)|(k* 4 gk? —p)|

Then the problem (4.3)-(4.4) has at least one solution.

Morcover, as we are working in 173, we can mtroduce in f a linear dependence in u''.

5) Finally the ideas developped in this work can be used to study other boundary value

problems. For example, the idea of Theorem 6 can be applied to the problem

—u® = ft,u,,u" u" @),

w'(0) = ' (7) = u®(0) = u®(n) = u®(0) = «®(x) = 0,

with a function f of the form

Ftu, ! u” u™ a®) = (go(t, w)u")” — (g1 (1, w)e’) + golt, w)u + q(t, w),

whereas the idea of Theorem 12 can be applied to the third order boundary value problem

10.

v = f(t,u, v, u"),

u(0) = u(27), v'(0) = «'(27), v’ (0) = u”(2x).
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