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1. INTRODUCTION

The concept of visible-from-the-origin lattice points in the X- Y plane was described in Apostol

[2], where their density in the space was calculated. Visible from the origin lattice points have the

property that their coordinates are relatively prime. Recently, a host of new identities were found, based

on summation or products taken on these points (see Campbell [4], [5], [6]). We present here some of

the more notable results from these three papers, then extend them to higher dimensions giving general
theorems accordingly.

Firstly, we have the three "companion identities," so called because of their interdependence, and

their relation to the visible from origin lattice points in the first quadrant. We use the operators defined

by

where 9, is the set of positive integers less than and relatively prime to k.

The three "companions" given in [4], [5], and [6] are

(1-y),Hi(1 x:y*)/ (l-Y)
1-)

(x, 1) (1.1)
1-xy

1-1/1 )1/(1 -x)(1-xy),Fl,(1-x y =(1-xy (1.2)

0 x)(1-y)(1-xy)I-I.(1-xy)’/(1-x y =(l-y)t/tt- (1.3)

where convergence occurs respectively for xy aridly [< 1, ix aria Ixy I< 1, Ix and ly l< 1. It is

worth noting that the left side of (1.3) can be rewritten

)l/b(l-y) H (1 x"y
(.,b)-
a,b

where (a, b) denotes the greatest common divisor of a and b. A generalization of this gcd idea will be

applied later in this paper.
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It is clear that the identities (1.1), (1.2) and (1.3) belong naturally together when we see that any

one of them implies the other two. The reader can easily verify by iterative multiplication on (1.1) that

xy, x2y substituted for y leads to (1.3). (1.3) then divided on both sides by (1.1) gives next (1.2). If

y/x is substituted for y in (1.2) we obtain (1.3).
Later we shall prove generalizations of (1.1) to (1.3) both in two dimensions and in higher

dimensions. The "companion identity" idea is not restricted to just the above formulae. In [6], for

example, the new products taken over prime numbersp were given as follows

n),I-l(jm +kn)#’ I-I I-P4"/")), -p-"
(1.4)

m + n ),IIi(km +in)0 li(l _p_+,, /,,))-u-,-’), (1.5)

_,)-11-p-) (1.6)n)m + n ),Flijm + kn )u’lon +jn)u li (I p

valid with p" , for respectively Re m + n and Re n > l,Re m and Re m + n > l,Re m andre n > I.

These identities were derived from (I.I) to (1.3) by substitution of x -p-’, y -p-", and forming the

product over primes p on each side. (1.4) to (1.6) led to results concerning the multiplicative function

co(re,k)- {-I 1/(l-P2)
with k- lip,

-1 a -1

As with the products (1.1) to (1.3), we shall give generalized versions of (1.4) to (1.6), or at least methods

for doing so.

The underlying theorems for the products (1.1) to (1.3) were

THEOREM 1.1. If (a,) and (b,) are sequences offunctions chosen so the following series converge,

then

1-exp(bkq)
E Sk, (1.7),.a, 1-exp(b,q/k) k-1

where Sk is defined by

ai, k- 1, (1.8)
Sk.

jl

[.i,a#,,, e,,, exp(bi,hq/k) k>l (1.9)

and , is the set of sitive intege le than and relatively prime to k.

For a proof of is see mpbell [4]. (1.1) derives ome case ofe theorem where a, y*k-,
b, k logx q-. condly, a finite vemion of eorem 1.1 was given in mpbell [5].
EOM 1.2. (a,) and (b,) are arbitra sequences thorn so thak mgeer with choice of

x, the following nctions are all defined then

1-exb) [--]
a, a + a.,exb.,jx/m) (1.10)

1 exb/k)

where In denotes the eatest integer in n.

Each theorem above is equivalent, and each theorem has advantages over the other. eorem 1.1

is easier to asp and apply in a range of situations, and eorem 1.2 is better for examining convergence
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questions associated with the substituted functions as n is permitted to increase. Either theorem could

be used (although Theorem 1.2 was applied in Campbell [5]) to obtain new identities for Jacobi theta

functions. The diversity of, say (1.10), is that it yields also proofs of classical results such as

o_s(n )(s + 1)- , c(n )k -l, Re s >
k,,l

due to Ramanujan, where os(n is the sum ofsth powers of the divisors ofn, and c(n is the multiplicative

function

q(n)- X cos

Also, in [5], further results were obtained, such as

and, the rather unusual formula for lq < 1,

in which

lyl<l,

exp 4
q

2kctsin2kl
1-

O,(z,q)=O(z)-- 2q’ X (-1)q’tk +’)sin(2k + 1)z.
k-o

Evidently there is scope for much research on these types of indentities, and whilst Theorems 1.1 and

1.2 may have easily stated generalizations in higher dimensions, or even "companions" in the sense of

(1.1), (1.2), and (1.3), in this paper we shall specialize although still in higher dimensions, and obtain

numerous new and simple identities.

2. AN INFINITE PRODUCTTHEOREM IN N-SPACE
In this section we give a general theorem on multivariate infinite products and a method for obtaining

an infinite variety of similar theorems. The drawback from this is that most of the other obtainable

theorems will require extra effort to work out. The ideas regarding companion identities as stated in 1
may help us to simply determine whole classes of interdependent formulae in higher dimensional

Euclidean space. We use the notation (a,a ,an) to mean "the greatest common divisor of all of

at, a2 an together." It will be important to distinguish between this and the ordered n-tuple given by
the vector notation (al, a2, ...,an). In either case we will be concerned with lattice points in the relevant

space, hence any vector or gcd will be over integer coordinates. The infinite product (1.3) is a particular
case of the

THEOREM 2.1. If 1,2 ,n, then for each Ix, < 1, and b C,

bit

FI (1 x:’x2...Xn’) "’ 2 "" (2.1)
(al,a aa)-

a fZ

-exp, lit,.)
provided

,-1
b,- 1.

Before proving this we state a definition and prove a lemma. These will be re-used in later work.
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DEFINITION 2.2. Any Euclidean vector (al, a2,...,a) for which (al,a2,...,a)- we call a

visible point vector, abbreviated vpv.

LEMMA 2.3. Consider an infinite region raying out of the origin in any Euclidean vector space.
The set of all lattice point vectors apart from the origin in that region is precisely the set of positive

integer multiples of the visible point vectors (vpv’s) in that region.

PROOF. Each vpv will have integer coordinates whose greatest common divisor is unity. Viewed

from the origin, all other lattice points are obscured behind the vpv end points. Ifx is a vpv in the region

then all vectors in that region from the origin with direction ofx preserved are enumerated by a sequence
lx, 2.x, 3x and the greatest common divisor of the components of nx is clearly n. This is because if

the scalar n is non-integer at least one of the coordinates of nx would be non-integer. Therefore, if the

vpv’s in the region are countably given by xt,x2,x3 then all lattice point vectors from the origin in

the region are

lxt, 2x, 3x lx:, 2x:,, 3x2,..., lx3, 2x, 3x etc.

Completion of the proof comes with recognition that the set of all vpv’s in any "rayed from the origin"

region in any Euclidean vector space is a countable set. Proof of this last assertion is by induction on

the dimension, knowing that the lattice points are countable in any two dimensional region. As we count

each lattice point vector in the desired region we decide whether it is a vpv simply by observing whether

its coordinates are relatively prime as a whole. End of proof.
PROOF OF THEOREM 2.1. We start with the multiple sum

which, due to Lemma 2.3, also equals (letting b ,. b,)

",.’....,.)- 1; +
2

+
3

+
4 ba a ...a,,"

y
’ "’-1 log(1-xlx’ .x’)

(aa,a- .,a,,)- al a2 ...an"
if b-1.

Exponentiating both sides then yields Theorem 2.1. End of proof.

The cases with n 2 and n 3 are stated easily, in the forms

FI (1-xy)--’-’-exp . ? s+t-l" (2.2)
(a,b

H (l--xybzC,-"-’b-’c-’---exp{ X’
(a,b,c)-I i-l? 1--" s +t +u -1; (2.3)

where Ix l, Y l, z < 1, and s, t, u, are complex numbers.

The case of (2.2) with s 0 is equivalent to (1.3). In fact (2.2) is a companion to a result given in

Campbell [4], namely, for positive integers m,

(R)Y’ (ml iitx’) (xY)iItrli(1-xiY’)i’/it"--expl-(,i’x’)(;’--F+- It-ok k (,., (,. -7i- }, (2.4)

where, it was shown in [4], if the power series in x on the right side of (2.4) are replaced by
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g,,,(x) d--(1 -e:)
-1

(2.5)
Iogx

then (2.4) holds for xy and ly l< 1.

We shall investigate such companion identities in the next section. As indicated in 1, such results

can imply a large range of new and curious identities, some of which were alluded to in Campbell [5].
However, the classical methods of asymptotics of infinite product generating functions as given in

Andrews [1, Chapter 6] will apply to each of the numerous infinite products stated and implied here.

Lemma 2.3 is also applicable to many of the lattice sums given in Glasser and Zucker [15] and to the

lattice sums presented with applications to mathematical physics as given in Frankel, Glasser, Hughes

and Ninham 14]. The latter paper applies simple MObius and Mellin inversions to lattice sums, obtaining

selected applications to electrostatics and statistical mechanics. In the sequel here, we may also draw

parallel conclusions to some of the ideas stated in Andrews [1, Chapter 12] describing partitions into

vectors. In the present paper we have examples of "weighted" vector partitions, and quite a diversity

of results.

The simplicity of our proof of Theorem 2.1 depended largely on the fact that our chosen "raying

from origin" region was lhe first hyperquadrant, that is, the region having all positive integer coordinates

in the n-space concerned. This meant we had no difficulty in seeing that the multiple summation was

simply a product of summations of the same kind on the different variables. For other choices of "rayed

from origin" regions this is clearly not such a straightforward matter. It is not, however, an impossible

matter. To demonstrate this, we apply Lemma 2.3 to the region in 3-space defined by <X < Y < Z,

noting that it rays out of the origin in the manner required. The elements of the set of vectors from the

origin to the lattice points in this region can be easily written down, and are countable, as we would

expect. Thus we have

<1,2,3>,

(I, 2, 4), (I, 3, 4), <2, 3, 4),

<I, 2, 5>, <I, 3, 5>, <I, 4,5>, <2, 3, 5>, <2, 4,5>, <3, 4,5>,

<1,2, 6>, <1,3, 6>, <1, 4, 6>, <1,5, 6>, <2,3, 6>, <2, 4, 6>, <2,5, 6>, <3, 4, 6>, <3,5, 6>, <4,5, 6>,
and so on. A suitable mapping from these vectors results in the summation, x’ybz c -I (2.6)

O<a<b<c
a,b,c

which formally reduces to

z2/’ xy2(ll-Yt-x 1-x’Y’l,-1 2 + k 1 x y -"xy
which converges for z l, Yz l, [xyz I< to (for non-zero denominators)

--yz +.xyz-
+ log(1 yz) +

(1 -x)(1 -y)(1 -xy) (1 -x)(1 -y) ( -x)( -xy)
log(1 xyz

(1 -y)(1 -xy)
log(1 z). (2.7)

(2.8)

sum

E xaybZcC-1
(a,b,c)-
O<a <b

a,b,c

A similar mapping process to that yielding (2.6) can be applied to the vpv’s in the region to obtain the
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convergent for the same conditions as the sum which led to (2.7). Application of Lemma 2.3 then

transforms (2.8) into (2.7), much in the way we proved Theorem 2.1. This leads us to

THEOREM 2.4. If x,y,xy 1, and z I, YZ [, [xyz [< 1, then

FI (1-x’ybzC)-/c (1 yz)" (1 xyz)’’-’’r....’(1 z)"...... "G(x,y,z), (2.9)
(a,b,c)-
O<a<b<c
a,b,c"

where

yzG(x,y,z)-exp -xyzl2"xyz +-xyz
(1 -x)(1 -y)(1 -xy)

Although this theorem looks quite impressive to the reader new to such ideas, it is clearly only

comparable to say, a corollary of Theorem 2.1 when apparent depth and dimensionality are considered.

The problems faced in trying to make Theorem 2.4 a corollary of Theorem 2.1 involve: firstly, how to

divide the hyperquadrant region into subregions, one of which is the region relevant to Theorem 2.4;

secondly, to then find the appropriate transform so that not just the right region is covered, but that the

index "-l/c" in the left side product is obtainable. In many cases it seems more practical to choose a

region and apply Lemma 2.3, but there will be situations worth examining where the hyperspace divides

naturally into regions yielding companion identities. In order to classify all such identities it may be

necessary to use group theory and isometrics.

So it seems that (2.9) is not in any obvious sense a companion identity for (2.3), nor for a case of

it. Similarly, this appears so for the following result, obtained from summing on the lattice points in

the inverted right square pyramid IX and Y ]< Z in the X Y Z space.

THEOREM 2.4. Ifx, y, l-x, 1-y, are allnon-zero, and each oflz l, xz I, Iz/x I, lYz l, Iz/Y l,
IxYz I, Iz/(xY)l, Ixz/Y I, lYz/x < 1, then

(1 -z)(1 -xyz)’ )"’-;)"-"(1 -xz):(1 yz)
FI (1 -xybzC)/ (2.10)

(a,b,c
la Ib I<c Z,"

a,bz,

This result suggests the existence of an analogue of Theorem 2.1 where summation is taken over

the vpv’s and lattice points in the appropriately defined hyperpyramid in Euclidean n-space. Clearly
the hyperquadrant appears not to easily transform into the hyperpyramid, and vice versa, thus a totally
different set of companion identities are implied. There are also problems related to the consideration

of the branching effects of the complex roots involved. For example, in exactly which sense do both

sides of (2.10) satisfy the functional equation f(x,y,z) f(1/x, I/y, I/z)?

3. NATURAL CASES AND A FURTHERN-SPACE THEOREM
There are natural and simple cases of Theorem 2.1 to consider. Let us first enlarge the theorem’s

positive coordinate hyperquadrant to include lattice points on each axis except for the highest or nth

dimension. Thus we can easily obtain the following
COROLLARY 3.1.

l/b
I-I (1 -x"y (1 y)-x) (3.1)

(a.t,)
a,O,b,l

FI (l-x’y’z)/ =(l-z)I/-’)-))
(a,b,)-
a,b,,O,c .l
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H (I v"xyza)TM
(I z)(-’)(-’)(-’)),

{a.b.c.d)
a.b c=.O.d,l

H (I -vx’y’)/ =(I ))(-’)(-’)() -)(-’),
( b.c.d.e)=
a,b,c.d O,e

each valid when absolute values of u, , x, y, and z are all less than unity.

The n-space veion is then

COROLRY 3.2. If for 1,2 n’lx I< ,h

’ .x._z =(l-z) -’-’H -x x
(a,a..,a)-
al.a2. ,an_ I0

a l

At this im we can apply mma 2.3 to rollary 3.2. In other words we gel rid of the criterion

on the left side product from (3.5) that (a,a2 a,) I. We shall rate the result of this as a theorem

since the subsequent corollaries will be of a distinctly different kind from our earlier identities.

THEOM 3.3. For the same conditions as (3.5) we have

H (1-x x2 ...x.[-z H(1- (3.6)
a, a._ =0 k=

PROOF. If the left side of (3.5) is defined by f(x,x x ,z) then by mma 2.3 this transforms

into the left side of (3.6) by forming

k)l

Appling the me operation to the right side of (3.5) ields the right side of (3.6). End of proof.

We can llow in eorem 3.3 lo obtain some imeresting resulm. Firstly, if x, -p with

p denoting the ith prime we have

COROLRY 3.4. If Re s > and[z [<,, (1 -xa) (3.7)

Particular cases of this lead to the Nrther

sin())
v

(1 (3.8)

H (co*))v* H (I z)4x (3.9)

(sinh(’) 2 sinh(’)co’))
la

Z6K)6Kn (1 + (3.o)
4z

The latter of these results is affected with the aid of the following product apparently due to

Ramanujan. If x is any non-zero complex number

x sinh(2)- 2 sinh()co)
1+- 4x3

(3.3)

(3.5)

For a proof of this see Berndt [3, pp. 107-108].
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Again employing the case of Theorem 3.3 with n and this time letting x, x’ we can obtain

new relations involving p(n), the number of unrestricted partitions of n. It is well known that (see
Andrews ])

?i Ix I<
-0 k-I

Likewise, if po(n is the number of partitions of n into odd parts

po(n)x 17I(1-x2t-)-l’-go(x), Ix l< 1. (3.12)
-0 -1

COROLLARY 3.6. U lx and lz <

rl (1 -xz’)’)/ FI (1 -xX)x (3.13)
/,0 k.l
k:,l

1"I (1 -xz)’)- F1 (1 -x)’? (3.13)
/a0
k,l

Clearly there is scope for further research into identities such as these, especially given the already

existing wealth ofmaterial on partition identities. An alternative version of(3.13) for the same conditions

is

I’I (1-xz*)e)/’ l’I I-I (1-xa)’(’/a)/a? (3.15)
l,k,l k,l d]k

Another natural concept arising from the above work is p.(j), the number of partitions ofj into parts at

least one of which is relatively prime to k. In other words (a,a a,,k) 1, or equivalently an a
from and the form taken for such a partition ofj is then

j -Ala +A2a + +A.a., (for any m 1)

where theA are positive integers without restriction. Setting pc.(0):-- 1 and employing our definition,

then allowing n in Corollary 3.2 setting x -x, the result follows that

COROLLARY 3.7. If Ix land Iz l< then for x)as in (3.11),

),,o,,n(1 x’z’ --(1- (3.16)
io
kl

4. COMPANION IDENTITIES AND VISIBLE POINT VECTOR PARTITIONS
In the book on Partitions by G. E. Andrews 1, Chapter 12] it is stated that "we do not have a device

like Euler’s pentagonal number theorem for the rapid calculation of any multipartite functions." The

preceding sections of this paper and its predecessors [4 to 6] indicate developments in this direction,

due to the often easy expansion of the functions concerned, e.g. The right sides of (3.2) through to (3.6)
are easily expanded as power series in z. Andrews mentions how Carlitz and others [7 to 9, and 11, 12]
considered problems of restricted multipartite partitions. In particular, k-partite partitions

(nl, n n,) (m,i,mi
1-1

subject to the decreasing condition

min(m,, rnz,..., rn,) max(mL ,mz. , ...,m,. )

It is shown in [1] that if l-I(n,m) is the number of partitions of (n,m) into steadily decreasing parts then

forlx andly [<
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E H<n,m)x"y" FI (1 -x"y"-’)-(l-x"-’y")-(l -xZ"yZ")-n.m,O n,l

From this it tbllows easily that if I-l<n,m> is the number of bipartite partitions of <n,m> in which all

parts are of the Ibrms <2a, 2a >or <a 1, a or <a, a 1> then for all n and m, l-I<n ,m l-I <n ,m >. Andrews
states that this result is of a different kind than those arising from the simple extensions of partition

ideals of order considered in his book.

In the light of our work in this paper it now becomes natural to consider partitions into visible point

veclors (vpv’s) within rayed-from-origin regions of vector spaces. Our notion of "companion identities,"

imprecise though it be at this state, due to ambiguities as presented, will still be useful when we obtain

theorems involving "the number of vpv partitions" of various kinds of vectors.

As promised in 1, we now present a generalization of the companion identities (1.1), (1.2), and

(1.3).

CONJECTURE 4.1. Let s and be complex and such that s + 1. Then respectively for xy

aridly I< 1, Ix and ]xy ]< 1, Ix and ly ]< 1,

+ (4.2)(1 -xy)erL(1 -xy)- --exp -,.
(1 -xy),Fl,,(1--x"y)--’b-’(1 --xy =exp ,., ’’’7 (4.3)

where it is understood that any divergent multilogarithmic power series on the right sides can be replaced

by the function defined in (2.5).
Partialproof. (4.3) is seen to be equivalent to (2.2). Similarly, (2.4) is the case of (4.1) where for

positive integers m, tn + 1. However, (4.1) claims considerably more than (2.4); namely, that s and

can be complex numbers. (4.3) is obviously true for such s and t, so it would appear natural for (4.1)
to fulfill these conditions. Since (4.2) is a simple quotient of both sides of (4.3) over (4.1) it remains

only for us to establish that (4.1) is true for complex s and t. In Campbell [4] the proof of (2.4)depended
on an ruth derivative with respect to z logx of

f(n, y + ,, f(n,xy’)k (f(n, y f(n,xy ))/(1 -,x (4.4)

where ntE C and f(n,y)- E y’n-" with y l< 1. This led to

k
f(n + k,xy)g+ (x), (4.5)

for non-negative integers m and g,(x) as in (2.5). Allowing n in this yields (2.4) and hence (4.1)

and (4.2) for the values tn + Ix. To fully prove conjecture 4.1 would require complex iteration on

the derivative process applied above to (4.4). End of partial proof.
It seems worth noting at this stage, havingjust failed to prove conjecture 4.1 completely, that under

the conditions specified there, Lemma 2.3 when applied directly gives

,H,,(1-x"Y’)-"-’’-’-exp 1-+ " 2,)+ +2’+ 7 +.-.

.)4-’,-’ y y x y y__(l-xy)H,(l-x"y --expxy+ +’i- + "i7+2,+’ + 1+2+’ / (4.7)
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and of course, (4.3). This appears to add further weight to the likelihood of conjecture 4.1 being true.

It also shows that the summations exponentiated on the right sides of (4.6) and (4.7) are each valuable

in terms of a finite sum of multilogarithms (or polyiogarithms, see Lewin [16], and [17]) whenever

tn + for non-negative integer m, with s + 1. This could no doubt be developed further in a later

paper.
At this stage, let us return to the idea of vector partitions. More specifically, we consider vpv’s in

the first quadrant of the X Y plane. Basically, the vpv’s can be divided into three classes:

a) those above the line X Y, the upper vpv’s,

b) those below and on the line X Y, the lower vpv’s,
c) those of the entire quadrant, that is, all vpv’s.

We shall therefore look at U(n, m), l.,(n, m), A(n, m); the number of partitions of(n,m) into respectively,

upper, lower, and all vpv’s. Using the techniques in Andrews ], it is a simple matter to show that

+ U(n,m)x’y" ,FI(I -xy’)- (4.8)

+ E ln,m)x"Y’-(1-xy)-,Fl,(1-x*Yi)-, (4.9)

+,,.,. A<n,m>x"y" (1 xy)-Fl(1 x’y*)-(1 xy)- (4.10)

valid for the same respective conditions on x and y as imposed on (1.1), (1.2) and (1.3).
Each side of (4.8) satisfies the functional equation

f(x,y)= f(1/x,xy), (4.11)

provided f(1/x,y is first taken before proceedings to f(1/x,xy), the operations being not commutative.

The coefficients of y" in (4.8) are the polynomials
m-I

Y. U(n,m)x (4.12)
n-I

It therefore follows naively but significantly that,

THEOREM 4.2. For all positive integers n,m, U(m- n,m> U(n,m>.
The reasoning behind this theorem can equally be applied to numerous other results involving vpv

identities. For example, (4.9) and (1.2) both satisfy the functional equation

1-x
f(x, y) -"xf(xy, 1/y) (4.13)

where in this case f(x, 1/y) precedes arrival at f(xy, 1/y). For this reason we formalize the following

DEFINITION 4.3. Let p be a mapping applied to U(n,m), L(n, m), A(n,m), respectively to yield

p<n, m>, pt<n, m>, p.<n, m>. If

+ E <p..,m>x"y" F(x,y), (4.14)

+ E <Pt, m>xny =F,.(x,y), (4.14)

"I- n,, (0,, m)x"y" F(x,y) (4.14)

then F(x,y),F(x, y),F(x, y), are respectively called "upper vpv", "lower vpv", "all vpv" functions;

and likewise (4.14), (4.15), (4.16), called "upper vpv", "lower vpv", "all vpv" identities.

This definition will allow us to consider the two dimensional identities in more detail, and to be

more specific when analyzing them and related results. We mentioned in 1 how each of the "com-

panions" (1.1), (1.2), (1.3)implies each the other two. The following three statements can be equivalent:
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F(x,xy) FL(x, y (4.17)

F^(x, y , Fu(x,xy) (4.18)

F(x, y )F(x, y F(x,y (4.19)

In other words, if given a suitable "upper", "lower", or "all" vpv identity, we can manufacture a set of

companion identities. (1.1), (1.2) and (1.3) are essentially an example of this. Rather than labor this

point, we simply present the "all vpv" identity resulting from applying (4.18) to (2.4).
THEOREM 4.4. If Ix and y [< 1, g(x) as in (2.5), and h is any positive integer, then

y, h

l(
FI (1-x’y")a"/" -(1-)exp-g,(x),E j, ’(1 x’)

+ g,(x), j,. l_xi
a,b*
d(b)

This theorem is an almost unrecognizable generalization of (1.3), which would coffespond to e
case h 0. It is distinct from the other types of "all vpv" identities given so far. e cas with h

and h 2 are, with f(n, y) as in (4.4),

H (1 -xy)
/

exp{xf(E,y)(1 -x)-2 (1 -xy)- -)
(4.21)

(a.b)-
a,b

H (1 -x’y)a%’-exp{-(x + x:)(1 -x)-3f(3,y) x(1 -x)-:f(2,y)} (1 -xy)-t-) (4.22)
(a.b)-
a,b

Yet another method (and rhaps the most obvious) for manufacturing related "companions"
involves simply the o equations

Fx,y)-F(,y), and F(x,y)-F(x,). (4.23)

When using this method an adjustment may be made to e first te of an identity to tidy ings up.

Applying (4.23) to the "all vpv" (2.2) gives the "upper" and "lower" vpv identities, even ough ey
are trivially interdependent.

cononnv 4.s. u and are =ompl=x and + , hit and Y < for (4.Z);
and l [< for (4.25), then

,H,(I-xly’)-’ "-i’ exp{(i,) (i,) t (4.24,

(4.)
j’ /j"

iscorolla hi.lights the ssibilities for writing down different elates ofcompanion identities,

eachtof"companions" havingoften strikingly different appearance, evenwhenodistinct companion

sets may have one identity shared, as was the case in this ction. We mention at is juncture, at

nearly all of the companions given far have corollary companions derived om replacing certain of

the variables by their squares, enom the resulting identities, dividing through by the original identity.

To illustrate such results we give as an example om (1.1), (1.2), and (1.3),
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COROLLARY 4.6. For respective conditions on x and y as in (1.1), (1.2), and (1.3) we have

(1 + y),l-lj(1 +xy)
/ (1 --xY-f-(1- + Y)] vt-’)

(1-y)’(l+xy)/

1/(1 2)
(1 + xy ),FI.,(1 + x’y)

l/j ..x..y
(1 -xy)

1/(1 2)

(4.26)

(4.27)

_/ l+y
(1 +y)(1 +xy),I-li(1 +x’y’)l/’(1 +x y --, (l_y)

Application of the same method to (2.10) yields:

COROLLARY 4.7. For x, y, and z as in (2.10),

FI (1 +x=yz)/ (1 +z)’(1 +xyz)b(1 --X)’(1 --yz)
(.b,)- (1-z)’(1-xyz)r(1 +xz)(l +y)
a,b

where a- 1, b-x2y, e-x2y(1 +x)(1 +y)-x2, d- y2x(1 +x)(1 +y)_yZ, e-(1 +x)(1 +y)-1,

rxy(l +x)( +y)-xy, gx:,h- y.
It should be clear to the reader that (4.29) can, like (2.10), be derived om first principles by taking

an altemating sum on the lattice points and vpv’s in the rayed-from-origin region bounded by the inveed

right square defined in X Y Z space by Xl and Y I" Z.
In mpbell [4], similar suggestions for obtaining corollaries were given. other neat corollary

is obtained by swapping s and in (4.25), then dividing both sides of this into (4.24), so then

COROLRY 4.8. n s and are complex with s + 1, Ix and ly < 1,

H{ l_xy "t-r’

x’y exp((,( (,x’..k, )). 4.30

e identities of this section show that many of the simple properties of the companion identities

appear to be woh formalizing. For example, (4.30) indicates that the quotient of an "upper v" with

a "lower vpv" identity yields (or is expected to yield) an "all vpv" identity.
We continue this section by giving a set of companion identities in three dimensional space. In

this instance, we consider the first hyperquadrant of theX Y Z plane includingXand Yaxes whilst

excluding the Z axis. fact, if the first hyperquadrant is treated as an infinitely extended cube, then

the identities here coespond to the lattice points in:

a) the extended tetrahedron bounded by X,Y <Z,

b) the extended tetrahedron bounded by X,Z Y,
c) the extended tetrahedron bounded by Y,Z X,
d) the entire hyperquadrant which is the union of a), b), and c).
TEOM 4.9. ff a and b each sum over the non-negative integers and c the positive integers,

such that for a, b > 0, (a, b, c) 1 then

H (1--xaybgC)-/ ((1-xz)(1-yz))
1/((1-x)(1-y))

,,b,, (1-z)(1-z)
(4.31)

H (1 x’yz)-/ ((1-z
/(-)t-)

(4.32).... (1 yz

(4.28)

(4.29)
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II x"y’z)-/"
z )-/o -,,) -,) (4.34)

a,b,c

where the conditions for convergence are respectively,

lyzl, Ixyz <

Il, lyl,
with variables chosen for non-zero denominator.

PROOF. In the usual manner we consider the four lattice sums:

a,b b b, a,b,

The last of these we have already given in (3.2) as a case of (2.3) basically. e second and ird of

these are eentially theme as each other, by interchange ofx andy. ey easily reduce toe logarithm
of the right sides of (4.32) and (4.33) by e of the summation (I u and[z I< 1)

"( z’) -1

as pan of the proce. e first lattice sum is

((11 -)(1-.) (4.35)
z (1-x*)(1 y)

log- (1-x)(1-y) "(1-x)(1-y) -z)(1-z)
which is the logarithm ofthe right side of(4.31). Now each ofthe four lattice sums considered coespond
to the aforementioned "infinitely extended" tetrahedra which fit together to make up the first hyper-

quadrant. such, each tetrahedron is a "rayedom origin" region as ains tomma 2.3. erefore,

applying mma 2.3 to our four lattice sums, we have for example used the first sum that it ffansfos

into

(x"y"’)’/()- (-1/)og(-x"y"z’),
(a,b,e)- (a,b,e)-

and is establishes (4.31). Similar reasoning applied to e other ree lattice sums gives (4.32 (4.33)
and (4.34). End of proof.

ere is an interesting resemblance between eorems 4.9 and 2.4. e sum (4.35) shows at
identities like (4.31) can easily be generalized to nimensional space. Using sums like (4.35)e next

fews are

,.,.,, ( z)( )( )(_)
(4.a)

FI (1- v"w’x"yaz")-/"
a,b,c,d

(a,b,c,d,e)
a,b,c,d a0;

(1 vz)(1 wz)(1 -xz)(1 yz)(1 vwxz) (1 vwyz) (1 vxyz (.1. .-_ wxyz!l ......"
(1 -z)(1 vwz) (1 vxz) (1 vyz) (1 wxz) (1 wyz) (1 x’yz) (1 vwxyz) ]

(4.37)

where G(v, w,x,y) ((1 v) (1 w) (1 x) (1 y))-l" (4.36) and (4.37) need the absolute values of each

of z, vz, wz, xz vwz vwxz vwxyz to be appropriately less than unity.
In general dimension we have the following
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THEOREM 4.10. If Xo(xt,x2 xn) and X,(xi,x xn) are the sets of respectively odd and even

number of products of dissimilar xi, ...,x,, then for 1,2 ,n we have (assuming X, acting on the

empty set)

’’ ’ .x,’z )-/"rI l-x x2 ex.l- (4.38)

(at.a .a,)-
ai.a, ,a, ,0,a

valid for absolute values of "each element product of Xo and X, multiplied by z" to be less than unity,

and also z l< 1. Also none of the x, are unity.
This theorem has an interesting connection to partition theory ifwe permit n to increase indefinitely.

After this, letting x, x’, pt(0) 1, p,(0) 0(k > 1)

I,-,’)(,.2)(, _,,)..

n -x’z’-"’’ ( ( -#’(-xzf’’"
,.0.l (1 -z)(1 =’0(1 -x2z’... (4.39)

where pO’) is the number of partitions into paas < k, at least one pa from 1,

Po) is the number of paaitions ofj into an odd number of distinct paas,
p,) is the number of paitions ofj into an even number of distinct pas.

However, Euler’s ntagonal number theorem (see drews [1, pp. 10]) states that

Applying this to the right side of (4.39) gives

COROLRY 4.11. fflx and Iz l< 1,

(4.40)

It appears that the results of this ction are not the final word on the topic of companion identities and

vpv paifions. e connection with the own heo of paitions highligMed by results such as the

latter corollary also indicates a rich potential for Nher development.

5. EULER PRODUCT IDENTITIES AND MULTIPLICATIVE FUNCTIONS
The method outlined in 1 for obtaining (1.4), (1.5), and (1.6) is, as surmised fi’om Campbell [6],

capable of applying to almost all of the identities in our subsequent sections. Basically here we revisit

[6] and give natural extensions of the results of that paper. We start with the

DEFINITION 5.1. If FI[. jT’ is the prime decomposition of positive integer k then for non-zero

ml, m2,

(5.2)

and generally
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In [6] the function from (5.1) was shown to naturally occur in the Dirichlet series resulting from

(1.4), (1.5), and (1.6). For example, (1.6) is equivalent to the statement

FI (j’m +kn)-la’ . h(k)Oal(m,k)
Rern and Ren>l. (5.4)

o$, k

In this X(k)= I-I;. t(-1)" is Liouville’s arithmetic function (for an account of this function see Chart-

drasekharan 10]).
Given the results of our present paper, we can derive Dirichlet series generating functions for the

multiplicative functions of Definition 5.1. Firstly applying the product operator

H

to each side of the identities in Corollaries 3.1 and 3.2, we have, letting each variable, say x be replaced

by p-* before employing the product operator,

THEOREM 5.2. IfRe tn and Re n > then

and generally

H (arni +bn)-/b= Y.
k)tot(mt, k)

O,b ,,1 k-I k
(a,b )-

El (amt +bin +cn)-t/* , X(k)(mt’m2"k)
a,b .0;c k"
(a,b,c )-

I-[ (am +bin +cm +dn)-I/a k(k)J3(tnl’m2"m3’k)
a,b,e .0;d
(a,b,c,d)

(5.5)

(5.6)

(5.7)

H (arn +brn:, +cn)-/ rI(1 -p-)/((-’"’)(-’-’))
a,b O,c p
(a,b,)

From here we simply expand the right side of (5.9) into the appropriate Dirichlet series leading to (5.6).
This method can be just as well applied to the other identities in Corollary 5.2. End of proof.

Identities such as (5.9) can be written down immediately from many of the identities already

presented here; for example (4.36) implies

(5.9)

on both sides gives

H H(1 -pa,b ,0; p
(a,b,)-

which is equivalent to

II(1-p-*)

El (alm +a:zm +... +ahm +an)-/ , X(’k)ch(m’m2’""m"k). (5.8)
a O’,a k

(at,a.2., ab,a)-

PROOF. (5.5), as mentioned earlier, was given in [7]. To outline the proofwe will briefly follow

the logical path from (3.2) to (5.6). We choose this example as it allows the reader to see what is taking

place, rather than presenting a multivariate generalized case such as the path from (3.5) to (5.8). Replacing
x, y and z respectively by p-", p-m, andp-" wherep is prime, then forming the product over the primes
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I-I
(a.b.c,d)-

a,b,cl O,d

(ami + bm., + cm +dn )-t/a. I-I( (I -p-)(l -p-" +" +))(I p-"’ +" /"))
’ (1 p-0,,, +")) (1 p-" +")) (1

(1 p 4,,, /,,,, /,,))
(I -p’+"’ *" /"’ /"))

(5.10)

valid for real parts of the following: n,mt + n,m2 + n,m3 + n, m + m2 + n, m + m3 + n, m2 + m3 + n,

mt + m2 + m + n, all greater than unity. Also ml, m2,m3, n are * 0.

In [6], summations such as (5.5) were given some interpretation, showing that our function cot(re,k)

occurs naturally in each of the companion identities (1.4), (1.5), (1.6). In order to properly find inter-

pretations of the "prime products" presented it is necessary to use the

THEOREM 5.3. If Re(ira + kn) > for positive integer k then

O’m + kn)a/ f,(r)=,. r,,,+, (5.11)

then with r) the Liouville function,

(-1/kl=r)(-’/kl (5.12).,(r) 1.1I1(-1 )’ a, ,. a, ’
where {Ip is the prime decomposition of positive integer r.

For a proof of this see [6], however the proof is elementary and based on nothing more than the

binomial theorem and the Euler product form of the Riemann zeta function. Theorem 5.3 holds an

important key to interpreting many of the identities of our present work. It is clear from (5.12) that

,,(r) is really only a function of type f(r), and so for instance the function under the product operation

on left side of (5.10) is

(ami + bm2 + cm + dn)-t/a ]’(r)
(5.13)

am +bm + cm + dn

In applying the methods of [6] to the higher dimensional cases we straight away run into formal

difficulties unless we choose appropriate identities to examine. It seems that the identities of Corollaries

3.1 and 3.2 again arise, further supporting our assertion in {}3 that they represent a class of "natural

cases" ofTheorem 2.1. Although thej of,,(r) in (5.12) is seen to be superfluous we shall find it useful

to keep as a means of identifying that this function arises for the (jm + kn) function. We will distinguish
then between functions generated by (l"m + kn) and (j2m + kn). Indeed, for the higher dimensional

cases we will introduce further parameters to any .,(r), making it say f,,,:,i,(r), when arising for

(am + bm2 + cm3 +jm + kn)/. This allows us to identify the source of the Dirichlet generated coef-

ficients should they have same values as other coefficient functions in the products. At this point we

give our theorem, which essentially equates Dirichlet coefficients of (5.8). We first will need to give a

definition.

DEFINITION 5.4. Consider the lattice point arrived at from the origin by the vector (ai, a2, ...,a).
Let N(a, a_ ah) be an arbitrary positive integer associated with this lattice point in h-space.

THEOREM 5.5. IfN- and N(a,a ah) are any positive integers:
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t(N (N o(m t,m m,N

I-I f,,l., (N<a’ a2’ ah))N<al’ a2 ah)-"l’l h-l"- l) (5.14)
a,, .a_ 0

(a,%, ,a)-

with the summatio over all solutions of

al,, ,ah_ 0

ah

where all but a finit ,umber of the N<a, a a are unity and only the non-unity factors are considered

for (5.14) ( is the Mobius function).
PROOF. is ssentially parallels the proof of th analogous rsult iven in [6]. W start om

the finite product on the int8r seuenc (i), 1, j h,

)/’

This is easily proved by induction on s. All paaial products on the right side of (5.14) are of this kind

since the lattice ints in the hyperquadrant concerned are countable (recall our proof ofmma 2.3 in

2). If k is any positive integer the coefficient of k" in (5.16) is deteined om those tes r["
which are factors of k-. other words, the Dirichlet generated coefficient of k" in

where the summation is over each solution of k H. r, ’.

In (5.16) we may choose the a sequence to conform with the lattice ints in the product operators
of (5.14) and (5.15), owing to the countability of the lattice points in this "rayed om origin" region.

Hence the product operator of (5.1 transforms into that of (5.14) and (5.15), and we can allow s to

increase indefinitely. e Mobius Nnction on the left side of (5.14) is due to our considering e
reciprocal identity of (5.8) in order to better apply (5.11) to the analysis. is is e formal proo e
stipulation in the theorem that "all but a finite number of the N(a,a,...,a are unity" simply means

that, whilst any te under the product operator may be non-unity, be it the millionth te or e first

te in the paaial product, each product under the summation in (5.14) is considered finite. Of coume

the left side of (5.14)comes om the reciprocal identity produced om (5.8) ing Mobius inveion.

End of proof.
It is important to undetand that eorem 5.5 is essentially a multidimensional factorization

theorem where each visible lattice int in the region is allowed an arbitrary sitive integer value raised

to a cemin power, and all ssible products of such numbe are considered, g in eorem 5.5 we rake

the example where N is a prime, the complexity reduces to a simple result. (5.14) is basically a mul-

tidimensional Dirichlet summation representation of the arithmetic Nnction on its left side. e case

where h 2 of eorem 5.5 was given as paa of a theorem in [6].

6. CONCLUDING REMARKS
One of the main issues confronting the author has been to select salient results from the apparently

unending mass of results. Trying to determine or guess what is most natural is not easy, so an attempt

was made to give the results which appeared most striking. The careful reader will by now appreciate
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that a full classification of the identities herein would amount to a classification of symmetric rotations

in arbitrary dimensional lattices; not a simple matter. Nevertheless, the vpv idea exemplified in Lemma
2.3 is applicable to any rayed-from-origin Euclidean region. We have shown that classes of interde-

pendent vpv identities exist probably in any dimension, and there appears to be a variety of methods for

obtaining these. A consistent theoretical approach to classification of "companion identities" would

seem desirable at this stage, given that we have now opened the door to a sensible multivariate world.

In this paper we have refrained from entering deeply into particular logarithmic derivatives of the

products. Also we have not fully explored the interesting convergence boundary cases of many results.

We have not yet followed up higher dimensional analogues in the more general sense of Theorems 1.1

and 1.2, which lead us to numerous results on Ramanujan type arithmetic functions on the one hand,
and Jacobi theta function results on the other.

Future work on vpv identities may involve lattice sums of chemistry as presented in Glasser and

Zucker [15], applications to the theory of partitions, or some of the vpv work may find application in

additive number theory. This latter seems a natural application since additive functions are invariant

under some of the transforms in this paper. As such, vpv methods may be linked to some of the problems
given in Elliott 13, pp. 330-341 ].
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