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ABSTRACT. In this paper we prove the existence and uniqueness theorem for almost everywhere

solution of the hyperbolic equation using the method of successive approximations [1].
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1. INTRODUCTION.
Mixed problems for partial differential equations have been investigated by a number of

authors [2], [3], [4], [5]. In this case we investigate the almost everywhere solution for the

hyperbolic equation that have been studied in [6]. Namely, the solution for the hyperbolic equation
D2,1 with a nonlinear operator at the right hand side.in the space ’2, 2, T

2. STATEMENT OF THE PROBLEM.
Consider the following system

utt(t,x Lu(t,=) F(u(t,=)) in QT (2.1)

subject to the initial conditions

u(0,z) (z) ut(0,z (z) z e fl, (2.2)

and the boundary condition

(=,=) r o E [0,T] (2.3)

where QT [0, T] x i2, 0 < T < oo, f is a bounded domain in Rn and G is the boundary of O;

,,j--
ij(=) -a()u,

and moreover the functions aij(z have continuous and

in f and satisfy the following conditions in f

Oaij(ze)
a(=) are measurable and boundedOzk

aij(z aji(=), a(z) > 0, aij(z)ij > a 2i
i,j= i=

i are any real number; (0, () are given functions in f; F is a nonlinear operator.

3. PRELIMINARIES.

(2.5)
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DEFINITION 1. The almost everywhere solution for the problem (2.1)-(2.3) is the function

u(z,t), element of W(QT), belongs to DOI(QT and satisfies (2.1) almost everywhere in QT and t--.+0

satisfies the following

I rou( t, z)[u(t,z}-(x)]2dx 0 Ot P(x)]2dx 0 (2.6)

a0, a oo
DEFINITION 2. We define the space B0 e,T

of all functions u(t,)= us(t)s(z in

QT=[O,T]f, where %(z) are eigenfunctions for the operator L with the boundary condition (2.3)
corresponding to the eigenvalues ’s

(0 < ,s- as s-,o) [7],

times continuously differentiable in [0, T] and

us(t are > 0

i=1 s=l O<t<T
u!i)(t) i}

1/1i
< + c (2.7)

and has the norm

where

DEFINITION 3. The function us(t is called the s-component of the function

u,(t,z) %(t)ts(

aO,...,a.
and pz(s 1,2 is the set of all s-components of elements of p where t c: BO,..,,, T.

a0,...,aTHEOREM 2.1. The necessary and sufficient conditions for p to be compact in

(a) for every s(s 1,2 the sset t is compact in C[0,T]; and

(b) for any given > 0 there exists a natural number ne so that for all u(t,z) usts(z
ltaits’

s-

A max I!i)()1 <.
i=1 s=n O<t<T

This theorem can be proved analogously as in ([9] page 277-278).
LEMMA 1. For any almost everywhere solution u(t,z) of (2.1) (2.3) functions

us(t) I u(t’z)ts(z)d satisfy the following system ([7] [8])

%(0 Cs cos ,s +- sin ,s +
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where

Os---- f l/’(.r)Os(.r)d,r ’s f ’(,r)Os(,r)dx

3. ASSUMPTION AND RESULTS.
THEOREM 3.1. Let

1. aj(,r) are continuously differentiablc on f and a(x) continuous on ;
2. The eigc1:functions 0 are twice continuously differentiabie on "3. ,(x)eW()nD(N). ,/,(.r) e D();. r. , yU(W(qr) .’ r) w’t,2(QT) and satisfies

F(u(,=)) -< ()+ ()II-
w(n)

for all e ,_,r wr (),a() L2(0, T.
5. For any u, v Eo (where Eo is the sphere u B2 Co)

2,2, T

f(u,t,x))- f(v(t,x) g(t) - v
B2,W (n) 2,2,,

where

g(t) e L2(0, T),

(3.1)

(3.2)

and

{[Co= 211w(t,x)ll2:2,r
1/2

r(0,T/

max n. max aij{x)II a(.)Ii
’. c() c()

(3.3)

and

For any u e B2’ (W (Qr) n B1’2,{T U 2,20,T) and [O,T]F(u(t,x)) D(fl).
Then the problem (2.1)- (2.3) has a unique solution,
PROOF. Let

W(x, t)= (s cos st + sin st)Os(x),
s--1

F(u(r,x)). Os(x) sin s(t r)dx dr. s(x)PF(u) =s__
0 f

From (3.4) and (3.5) let us assume that

Q(u) W + PF(u)

Then it is easy to see that the operator Q acts in B2’ and satisfies Lipschitz condition2, 2, T

(3.4)

(3.5)

(3.6)

Q(u)-Q(v)II B22:12, < 2dTa a(t)II L2(0, T
,-, v B: :,

(3.7)

in the sphere %0.
Consider the sequence Uk(t,x Q(uk l(t,x))in B2’1 where uo(t,z)= 0. Using (3.1) and2,2, T
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the Inathematical induction we get for any k(k 1,2,3 and E [0, T]:

-. "-’-;..,o < 2 v II’.,": + 8ra; F(,,_ (,..))II v4(a)B-’2’T 0

+ 16Ta c2(r)d + d2(r) 2., drB,.I)

A2 + f %2(r) uk 111 2B29,.,1.) dr

}._l(r)d-

< A + A2 I %2 (r)dr +... + A2 0

(k- 1)!
o

where

(3.8)

and
+ 16Ta2o c(t)II ;2(0, T) (3.9)

%2(t)- 16Ta2od2(t)

From (3.8) for any k(k 1,2,...), we get

exp 2(r)dr C2o (3.10)

i.e., all uk(t,z) are contained in the sphere %0. Further, using (a.2) and (a.a) we get for y

e [0,T] d k(k 1,2,3,...)

+ Uk 2B:2,t1 -< 4Ta2o F(ul(r,x))- F(ul l(r,x))II 2L2( d

{4Ta2oig2(’r)dr}
k"

(3.11)

Therefore,

{4Ta2o g(t)II }*
< C2 k!

/’:2 (0, T)
,(k 1,2,...) (3.12)
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Then {uk(t,z)} is a fundamental sequence in B2’1 Since B2
2,2,T" 2’,21,T complete, then

uk(t x) B2’1 u(t,z) 6 %o as k---,c (3.13)2,2,7"

Since Q is continuous in %0, then from the relation uk(t,x Q(uk

we have

u,(t,z) Q(u(t,z))

Therefore, as in (3.11), (3.12) the speed of convergence is governed by the following inequality

21B212, T

4T32o (t)II 2 }/
< Uo-

2 r2(0, T)
o k!B212, T

4T32o g(t)II 2(0,T
_< Co ! ,( ,2 ). (3.14)

Now to prove the uniqueness let us assume the u(t,z)= us(t)e2(z) solution to (2.1) (2.3) then
s=l

F(u(t,z)) 6 L2(QT). By Lemma (1) Us(t satisfy (2.9); from (2.9) we get

,(t, :)II Bl’02;,t -< w(t,=)II B2: 2,T
/ 2V r(u(t,=))II L2(QT) < + oo (3.15)

10Therefore u eB21:02t., Since u(t,x) EW(QT)ClB2:2, T then by (3.1) F(u(t,x))EWx’O:e,t,2(QT), but by
O

condition 6 Theorem 2 for all E [O,T],E(u(t,x)) E D(gt). Thus using (2.9) with some manipulation

-< W(t,=)II 2Z + 2 % F(u(t,=))II uzl,0 (3.16)u(t,=)II B:2, B22: ,T =,t, 2(QT) < +c

Therefore, u B2’ Then, using (3.1) (3.8), (3.10) we get Ilu(t,)ll B:2,t2,12,T" < Co. Thus, all

almost everywhere solutions (2.1)-(2.3) belong to the sphere Ko and they axe fixed points in B:2, T
for operator Q. Le u,v be two solutions to (2.1)-(2.3), then by (3.2) we get

u v ]1202,1 < 4Ta2
aI f(u(r,z)) f(v(r,z)) 2

W(12) dr
"-’2, 2, o

2 dr< 4T32o g2(r) "- v B:2,0

Therefore, using Belmann’s inequality [10] we have
2

u- v 0 in [0, T]. Therefore, u v.
2,2,

(3.17)
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