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1. INTRODUCTION.
Functional differential equations (FDE) with delay provide a mathematical model for a

physical or biological system in which the rate of change of the system depends upon its past

history. Although the general theory and basic results for FDE have by now been thoroughly
investigated, the literature devoted to this area of research continues to grow very rapidly. The

number of interesting works is very large, so that our knowledge of FDE has been substantially

enlarged in recent years. Naturally, new important problems and directions arise continually in

this intensively developing field.

The article summarizes the results in the study and addresses the need for further

investigation of generalized solutions to broad classes of FDE. The survey concentrates on

differential equations with piecewise continuous arguments (EPCA), the exploration of which has

been initiated in our papers a few years ago. These equations arise in an attempt to extend the

theory of FDE with continuous arguments to differential equations with discontinuous

arguments. This task is also of considerable applied interest since EPCA include, as particular

cases, impulsive and loaded equations of control theory and are similar to those found in some

biomedical models. A typical EPCA contains arguments that are constant on certain intervals.

A solution is defined as a continuous, sectionally smooth function that satisfies the equation
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within these intervals. Continuity of a solution at a point joining any two consecutive intervals

leads to recursion relations for the solution at such points. Hence, the solutions are determined

by a finite set of initial data, rather than by an initial function as in the case of general FDE.

Therefore, underlying each EPCA is a dynamical system governed by a difference equation of a

discrete argument which describes its stability, oscillation, and periodic properties. It is not

surprising then that recent work on EPCA has caused a new surge in the study of difference

equations. Of significant interest is the exploration of partial differential equations (PDE) with

piecewise continuous delays. Boundary and initial-value problems for some EPCA with partial

derivatives were considered and the behavior of their solutions investigated. The results were

also extended to equations with positive definite operators in Hilbert spaces. This topic is of

great theoretical, computational, and applied value since it opens the possibility of approximating

complicated problems of mathematical physics by simpler EPCA.
It is well known that profound and close links exist between functional and functional

differential equations. Thus the study of the first often enables one to predict properties of

differential equations of neutral type. On the other hand, some methods for the latter in the

special case when the argument deviation vanishes at individual points have been used to

investigate functional equations. Functional equations are directly related to difference equations

of a discrete argument, and bordering on difference equations are impulsive FDE with impacts

and switching and loaded equations (that is, those including values of the unknown solution for

given constant values of the argument). The argument deviations of the EPCA considered in the

paper vanish at countable sets of points, and it would be interesting to investigate the

relationship between EPCA and functional equations. Another deserving direction of future

research is the exploration of hybrid systems consisting of EPCA and functional equations.

Furthermore, EPCA are intrinsically closer to difference rather than to differential equations.

Equations with piecewise constant delay can be used to approximate differential equations that

contain discrete delays. It would be useful to draw a detailed comparison of the qualitative and

asymptotic properties of differential equations with continuous arguments and their EPCA
approximations, which has been widely used for ordinary differential equations and their

difference approximations. Since the arguments of an EPCA have intervals of constancy we

must relinquish smoothness of the solutions, but we still retain their continuity. This enables us

to derive a homogeneous difference equation for the values of a solution at the endpoints of the

intervals of constancy and to employ it in the study of the original EPCA, thus revealing

remarkable asymptotic, oscillatory, and periodic properties of this type of FDE. Of course, it is

possible to further generalize the definition of a solution for an EPCA, by abandoning its

continuity, and to include in the fraxnework of EPCA the impulsive functional differential

equations.

A typical EPCA is of the form

’()-/(t, z(t), (h(t))), (1.1)

where the argument h(() has ntervals of constancy. For examp|e, n [1], equations wth

h(() [(], [(-n], -n[] were nvestgated, where n s a positive integer and [. denotes the

greatest-nl;eger function. Note that h(() is dscontnuous n these cases, and although the

equation fits thn the general paradigm of de]ay dJerental or functional dfferent]al equations,

the delays are discontinuous functions. Also note that the equation is nonautonomous, since the
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delays vary with t. Moreover, as we have mentioned, the solutions are determined by a finite set

of initial data, rather than by an initial function, as in the case of general FDE. In fact, EPCA

have the structure of continuous dynamical systems within intervals of certain lengths.

Continuity of a solution at a point joining any two consecutive intervals then implies recursion

relations for the solution at such points. Ther’fore, EPCA represent a hybrid of continuous and

discrete dynamical systems and combine the, properties of both differential and difference

equations.

An equation in which z(t) is given by a function of z evaluated at and at argmnents

It],..-,It-N], where N is a non-negative integer, may be called of retarded or delay tpe. If

the arguments are and [t + 1],. .,[t + N], the equation is of advanced tgpe. If both types of

arguments appear in the equation, it may be called of mized type. If the derivative of highest

order appears at and at another point, the equation is generally said to be of neutral type. All

types of EPCA share similar characteristics. First of all, it is natural to pose the initial-value

problem for such equations not on an interval, but at a number of individual points. Secondly,

for ordinary differential equations with a continuous vector field the solution exists to the right

and left of the initial t-value. For retarded FDE, this is not necessarily the cse [2].
Furthermore, it appears that advanced equations, in general, lose their margin of

smoothness, and the method of successive integration shows that after several steps to the right

from the initial interval the solution may even not exist. However, two-sided solutions do exist

for all types of EPCA. Finally, the problems for EPCA studied so far are closely related to

ordinary difference equations and indeed have stimulated new work on these.

It is important to note that EPCA provide the simplest exanples of differential equations

capable of displaying chaotic behavior. For instance, following Ladas [3], one can see that the

unique solution of the initial-value problem

x’(t) 3x([t])- x2([t]), x(0)= co (1.2aS)

where [t] is the greatest-integer function, has the property that

z(n + 1) 4x(n)- x(n), n 0,1,--- (1.3)

If we choose Co 4sin(r/9), then the unique solution of this difference equation is

x(n)=4sin(2 -’r) (1.4)

which has period three. By the well-known result [4] which states that "period three implies
chaos," the solution of the above differential equation exhibits chaos. Furthermore, the equation

of Carvalho and Cooke

x’(t) ax(t)(1 x([t])) (1.5)

is analagous to the famous logistic differential equation, but in one argument has been replaced
by [t]. As a result, the equation has solutions that display complicated dynamics [5]. It seems

likely that other simple nonlinear EPCA may display other interesting behavior.

The numerical approximation of differential equations can give rise to EPCA in a natural

way, although it is unusual to take this point of view. For example, the simple Euler scheme for

a differential equation x’(t) f(z(t)) has the form x, +1 Xn hf(x,), where z,, x(nh) and h is

the step size. This is equivalent to the EPCA
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x’(t) f(x([t/h]h)). (1.6)

Impulsive differential equations and loaded equations of control theory fit within the general
paradigm of EPCA. Another potential application of EPCA is the stabilization of hybrid control

systems with feedback delay. By a hybrid system we mean one with a continuous plant and with

discrete (sampled) controller. Some of these systems may be described by EPCA [6].
Considerable work on EPCA has been done in recent years. In each of the areas-existence,

asymptotic behavior, periodic and oscillating solutions, approximation, application to control

theory, biomedical models, and problems of mathematical physics-there appears to be ample
opportunity for extending the known results. A brief survey of ordinary differential equations

with piecewise continuous arguments is given in [7].
2. BOUNDARY-VALUE PROBLEMS.

The first fundamental paper [8] in this direction appeared in 1991. It has been shown in [8]
that these equations naturally arise in the process of approximating PDE by using piecewise
constant arguments. Thus, for example, if in the equation

ut au bu, (2.1)

which describes heat flow in a rod with both diffusion au along the rod and heat loss (or gain)
across the lateral sides of the rod, the lateral heat change is measured at discrete times, then we

get an equation with piecewise constant argument (EPCA)

ut(x,t a2uxx(x,t)-bu(x, nh), e [nh,(n -- 1)hi, n 0,1,. (2.2)

where h > 0 is some constant. This equation can be written in the form

ut(x t) aZux(x, t) bu(x, [t/h]h ), (2.3)

where [. designates the greatest-integer function.

The diffusion-convection equation

ut auxx rUx (2.4)

describes, for instance, the concentration u(x, t) of a pollutant carried along in a stream moving
with velocity r. The term aZuxx is the diffusion contribution and -ru is the convection

component. If the convection part is measured at discrete times nh, the process results in the

equation

ut(x,t auz(z,t)- ru(x,[t/h]h). (2.5)

These examples indicate at the considerable potential of EPCA as an analytical and

computational tool in solving some complicated problems of mathematical physics. Therefore, it

is important to investigate boundary-value problems (BVP) and initial-value problems (IVP) for
EPCA in partial derivatives, and explore the influence of certain discontinuous delays on the
behavior of solutions to some typical problems of mathematical physics.

The topic of [8] is the BVP consisting of the equation

O(x,t)

where P and Q are polynomials of the highest degree m with coefficients that may depend only
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on z, the boundary conditions

and the initial condition

Lu (M,( -’)(0) + N,.u(- 1)(t)) 0, (2.7)
k=l

and Nsk are constants, j 1,. ,)

,,( .., o .o(X). (2.s)

where (x,t)E [0,1] [0,c), and h const. > 0. Conditions (2.7) will be written briefly as

L. 0. (2.9)

An important result has been established that BVP (2.6)-(2.8) has a solution in

[0,1] [nh,(n + 1)hi, if the following hypotheses hold true:

(i) The boundary-value problem

P (d-) X-,\X O, LX O (2.10)

is self-adjoint, all its eigenvalues A are positive.

(ii) For each A3, the roots of the equation P(z)- A 0 have non-positive real parts.

(iii) The initial function Uo(X) C’[0,1] satisfies (2.7).
The solution u,(x,t) of BVP (2.6)-(2.8) on the interval nh < < (n + 1)h is represented in the

form of a Fourier series

u,(x,t)= X(x)T,(t), (2.11)
j=l

where X(x) are the eigenvalues of the operator P. The functions T,(t) are solutions of ordinary

EPCA that arise after separation of variables.

For instance, in [0,][h,(=+X)h], the solution u,(x,t) of Eq. (2.3) with boundary

conditions u,(x, nh) u,(x)is sought in form (2.11). Separation of variables produces

X(x) vfsin(rjx), Tt.s(t) + arjT.(t) bT.s(nh), (2.12)

whence

T.s(t)
We put nh in this equation to obtain

that is,

where

At (n + 1)h we have

and since

b
a2r2j2 T.s(nh ). (2.13)

C-s (1 +arbj2) T.s(nh),

T.s(t) E(t- nh)T.s(nh),

a2-2j2"

T.s((n + 1)h)= E3(h)T.s(nh)

(2.14)
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then

T.j((n + 1)h) T.+ 1, j((n + 1)h),

and

T.+ 1,i((n + 1)h) Ei(h)T.i(nh)

T.(nh) E(h)To(O).
Therefore,

and

Putting 0, n 0 gives

where

T.j(t) E(t- nh)E’(h)To(O)

u.(x,t) y vE(h)Toj(O)Ej(t- nh)sin(rjx). (2.16)

Uo(X)= Toj(O)v/’sin(rjx)dx (2.17)
j=l

To1(0) / /1 Uo(x)sin(rjx)dx.
0

If IE(h) < 1, then solution (2.16) decays exponentially as to, uniformly with respect to x.

From (2.14) it follows that this is true if

-a2r < b < a2r ea22h +
a22h 1"

Furthermore, from the equations

T.j(nh) E(h)T0i(O), T.i((n + 1)h) E’ + l(h)To.(0)
we see that T,,i(nh)T.j((n + 1)h) < 0 if E(h) < 0. The latter inequality holds true if

a2b > eah 1" (2.18)

Hence, under condition (2.18) each function T.j(t)(j= 1,2,..-) has a zero in the interval

[nh,(n / 1)hi, in sharp contrast to the functions Ti(t) in the Fourier expansion for the solution of
the equation u, aUa- bu without time delay. Moreover, the inequality E(h)< 0 takes place
for sufficiently large j and any b > O. Therefore, for b > 0 and sufficiently large j, the functions

T,i(t are oscillatory.

Eq. (2.5) on nh < < (n + 1)h becomes

0.(,0 0.(,t) ,.(),Ot ’Oz

and we differentiate the latter with respect to to obtain the equation

Oy,, aS Oy.Ot Oz Y" --’
whose solution is sought in form (2.11). Separation of variables leads to the equations
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X"(x) + AX(.r) 0, Tr.(t)+ a2AT.(t) 0, (2.19)

and the boundary conditions u.(O,t) u,,(1,t) 0 give Aj 32rr and

y,(x,t) v T,,j(,h)e-’(t-"h)sn(rj,r).
j=l

Since

(2.20)

then

and

Finally

,u(x)- ru,(x) T,u(nh)sm(rjx
j=l

T,,(nh) a=r3=x/f lu,(x)sin(rjx)dx + rrjv// lu,(x)co,(rux)dx.
0 0

.(x,t) .(x) + aZrZjz (2.21)
)=1

Given the initial function u(x,O)=uo(x), we Can find the cfficients T0(0 and the solution

Uo(x,t on 0 h. Since Uo(x,h)=u(x), we can calculate the coefficients T(h) d the

solution u(x,t) on h 5 2h. By the method of steps the solution can be extended to any
interval [nh, (n + 1)hi.

The equation

Ou(x, t) q Ou(x, t)iq Ot 2m00x+V(x)u(x’[] h) (2.22)

is a piecewise constant analogue of the one-dimensional Schr6dinger equation

q2
iqtp,(x,t) &.(x,t) + V(x)O(x,t). (2.23)

If u(x,t) satisfies conditions (2.4) and (2.5), with m 2, then separation of variables produces a

formal solution

u.(x,t) y C.aexp[- ,(t nh)/q] X,(x) + P-1Qu.(x), (2.24)

for nh <_ <_ (n + 1)h. Here, X,(x) are the eigenfunctions of the operator q2(d2/dx)/2mo, and

P-aQu.(x) is the solution v.(x) of the equation

qv(x) 2moV(x)u,(x

that satisfies (2.7).
The Fourier method was also used to find weak solutions of the boundary-value problem

(2.6)-(2.8) and it is easily generalized to similar problems in Hilbert space. First, we remind a

few well-known definitions. Let H be a Hilbert space and let P be a linear operator in H
(additive and homogeneous but, possibly, unbounded) whose domain (P) is dense in H,, that is

(P) H. The operator P is called symmetric if (Pu, v)= (u, Pv), for any u, v E fi)(P). If P is
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symmetric, then (Pu, v) is a symmetric bilinear functional and (Pu, u) is a quadratic form. A
symmetric operator P is called positive if (P,,u)>_0 and (Pu, u)=O if and only if u-0. A
symmetric operator P is called;positive definite if there exists a constant 72> 0 such that

(Pu, u) _> 7 u . With every positive operator P a certain Hilbert space Hv can be associated,
which is called the energy space of P. It is the completion of (P), with the inner product

(u,v)p (Pu, v); u,v e (P). This product induces a new norm u P (P,,u)’/2, u e (P),
and if P is positive definite, then u -* u P, Since (P)is dense in H, it follows by

using the latter inequality that the energy space Hp of a positive definite operator P is dense in

the original space H.

Assuming P is positive definite, we may consider the solution u(z,t)of (2.6)-(2.8) for a fixed

as an element of Hp. If (Q)c H, then Qu(x,[t/h]h) may be treated as an abstract function

Qu([t/h]h) with the values in H. Therefore, the given BVP is reduced to the abstract Cauchy
problem

d + Pu qu h > O, u It o Uo e H. (2.25)

If (2.25) has a solution, we multiply each term by an bitrary function g(t) G Hp in the sense of

inner product in H and get on the interval nh < (n + 1)h the equation

, g + (u,g)e (qu,,g), (2.26)

where u, u(nh). Conversely, if u C((nh,(n + 1)h);(P)) for M1 integers n 0 and satisfies

(2.26), then it also satisfies (2.25). Indeed, if u (P), then (u,g)e (Pu, g), and (2.26) can be

written as

Since Hp is dense in H, then u(t) is a solution of (2.25).
DEFINITION. An abstract function u(t):[O, cx)-,H is called a weak solution of problem

(2.25) if it satisfies the conditions:

(i) u(t) is continuous for > 0 and strongly continuously differentiable for > 0, with the

possible exception of the points nh where one-sided derivatives exist.

(ii) u(t) is continuous for > 0 as an abstract function with the values in Hp and satisfies

(2.26) on each interval nh < < (n + 1)h, for any function g(t):[O, cx)--Hp.
(iii) u(t) satisfies the initial condition (2.25), that is,

lira u(t) uo u O.
t-o

A weak solution u(t)is also an ordinary solution if u(t) E(P), for any >0, and

u(z,t)uo(z as t0 not only in the norm of H but uniformly as well. It is said that a

symmetric operator P has a discrete spectrum if it has an infinite sequence {I} of eigenvalues
with a single limit point at infinity and a sequence {X} of eigenfunctions which is complete in

H. Suppose the operator P in (2.26) is positive definite and has a discrete spectrum and assume

the existence of a solution u(t)= u(z,t) to (2.26) with the condition u(0)= u0. On the interval

nh <t< (n + 1)h this solution can be expanded into series (2.11), where T,(t)= (u(t),X). To
find the coefficients Tj(t), we put a(t)= x in (2.26) and since X does not depend on t, then
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(u, Xa)p (Pu, Xa) (,,PXk) k(u,X) tTk(t),

which leads to the equation

T’,(t) + r,,/t

By selecting a proper space H, a weak solution corresponding to conditions (2.7) can be

constructed. A theorem has been stated in [8] that if P and Q are linear operators in a Hilbert

space and P is positive definite with a discrete spectrum, then there exists a unique weak

solution of problem (2.25).
3. INITIAL-VALUE PROBLEMS.

The topic has been explored by Wiener and Debnath in [9]. Eq. (2.6) with constant

coefficients and initial condition (2.8) has been considered in the domain

where

Write

Let u,(x,t) be the solution of the given problem on nh <_ < (n + }h, then

which gives the equation

and require that

O.(x,t)
Ot + Pu.(x,t) Qu.(x), (3.1)

u,(x) u,(x, nh). (3.2)

..(, t) .(=, t) + .(),

OW
Ot + Pw, + Pv,(x) Qu,(x),

OW
Ot + Pw, O, (3.3)

Pv,(z) Qu,(z). (3.4)

If v.(z) is a solution of ODE (3.4), then at nh we have

w,(x, nh) u,(z)- v,(x), (3.5)

and it remains to consider (3.3) with initial condition (3.5). It is well known that the solution

E(x, t) of the problem

Ow
O’--T + Pw O, w(x, O)= Wo(X), (3.6)

with ,,,o(=)= ,(=), whe,: ,(=)is th Dir,c dl fu-aio-,], is ]d its [,,,dam,tat ,oa,to,,.
The solution of IVP (3.6) is given by the convolution

w(z,t) E(z,t),Wo(Z). (3.7)

Hence, the solution of problem (3.3), (3.5) can be written as
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and the solution of (3.1), (3.2) is

w,(z,t) E(’,t-

u,(z,t) E(.r, t- nh).(u,(x)- t,,,(.r))+ v,(x),

Continuity of the solution at (72 + 1)t2 implies

(3.8)

(nh <_ < (,2 + 1)h). (3.9)

u,(z,(n + 1)h)= u,,+ l(x,(n + 1)h)= u.+
that is,

u, + ,(x) E(x,h),(u,(x)- v,(x)) + v,(x). (3.10)

Formulas (3.9) and (3.10) successively deterrnine the solution of IVP (2.6), (2.8) on each interval

nh (n + 1)h. Indeed, from Pvo(x Quo(x we find Vo(X and substitute both Uo(X and Vo(Z)
in (3.9) and (3.10) to obtain Uo(z,t and u(x). Then we use Ul(X in (3.4) to find ’v(z)and
substitute Ul(Z and Vl(X in (3.9) and (3.10), which yields u(z,t) and u2(z). Continuing this

procedure leads to u,(x,t), the solution of (2.6) on [nh,(n + 1)h]. The solution v,(x)of (3.4)is
defined to within an arbitrary polynomial q(z) of degree < m. Since q(z) is a solution of (3.6)
with the initial condition w(x,O)= q(x), then q(x)= E(z,t),q(x), and q(x) cancels in the formulas

(3.9) and (3.10). This proves that if (3.6) with w(x,O) Uo(X) has a unique solution on (0,),
then there exists a unique solution of IVP (2.5), (2.8) on (0,) and it is given by (3.9) for each

interval nht(n+l)h. Thus, there exist unique solutions of (2.3) and (2.5), with

u(x,O) u0(z); in the class of functions that grow to infinity slower that exp(z2) as Ix ]. For

(2.3) and (2.5) we have

v,(x) a-2b/X(x- s)u,(s)ds and v,(x) a-2r/Xu,(s)ds,
0 0

respectively, and E(x, t) exp( x2/4a=t)/2a.
Formula (3.9) for the solution of the problem

on nh < < (n + 1)h becomes

u,(x,t) =(1--)E(x,t-nh),u,(x) + u,(x),

where E(x,t)is the same as in (2.3) and (2.5).
The above method may also be used to solve IVP for PDE of any order in with piecewise

constant delay or systems of such equations. In the latter case, P and Q in (2.6) are square

matrices of linear differential operators and u(z, t) is a vector function. Thus, the solution u,(x,t)
of the problem

utt(x,t a2uxx(x,t) bux,(x,[t]),

u(x, O) fo(x), ut(x, O) go(X)

on n _< < n+ is sought in the form u,(x,t)=w,(z,t)+v,(x) whence a:v(x)-bu(x,n)=O
and i)w,,/i)t= a202w,/i)x. Setting u(x,n)= f,(x),ut(x,n g,(x) gives
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and

v,(x) a-2bf,(x), w(x,,)= (1 -a-2b)f,(x), wt(x,n g,(x),

Un(X, t)
a .] 2 gn(s)ds.

Putting n + produces the recursion relations

+ g.(s)ds,

b ) af(x + a) a/(x a)
.an + 1(x) - 2 + 1/2 (g.( + ) + g.( a)).

Loaded partial differential equations have properties similar to those of equations with

piecewise constant delay. The IVP for the following class of loaded equations- P u(x,t) + Q, u(x,t,), (3.11)
j=l

(, o) o()

was considered in [9] and [10], where (x,t)6 JR" x [0,T], the t, e (0,T] are given, P(s) and Q(s)are
polynomials in s (sl,’’ .,s.), and EIQ(s) O. Eq. (3.11) arises in solving certain inverse

problems for systems with elements concentrated at specific moments of time. The Fourier

transform U(s, t) of u(z, t) satisfies the equation
q

Vt(s, t) P(is)V(s, t) + .y: Q,(is)U(s,
3=1

whence,
q

U(s,t) Uo(s)eP(’)’ + k(P(is),t) . Q#(is)U(s,t,), (3.12)
3=1

where Uo(s)is the Fourier transform of Uo(X and

Denote

k(P(is), t) / texp{P(s)u}du.
0

q
A, Uo(s)eP(i’)’’, k, k(P(is),t,), B y. Q,(is)U(s,t,), (3.13)

j=l

then multiply by Qi(is) each of the equations

and add them. Hence,

or

The equation

U(s, t,) A + k,B, j 1, ., q

q q
B= y] AjQj(ia)+ B._, kO(is)

j=l 3=1

( q ) q
1- _, kiQ,(is) B= A,Q,(is).

j=l j=l
(3.14)
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A(s) Z o,(is)k(P(is),ta) 0 (3.15)
=i

is called the characteristic equation for (3.11) and its solution set Z is called the characteristic

variety of (3.11). It is said [10] that (3.11) is absolutely nondegenerate if Z , nondegenerate of

type a if

a inf Irn s <co, s E Z # C",

and degenerate if Z C". The case Z q implies A(s)= constant, since A(s) is meromorphic,

and a meromorphic function that is not constant assumes every complex value with at most two

exceptions. The equation A(s)= C can be written as

q q
P(is) + y Q,(is)- y Q(is)exp(P(i)t3) CP(is)

1=1 3=1
and is possible for q > only if P(s)= constant, otherwise exp(P(is)t3) would grow faster than

any polynomial, which breaks the latter equality. For q we have

A(s) P(i) + Q,(is) Qa(is) e

P(is)

and in this case Z is equivalent to P(is) + Q,(is) O. On the other hand, A(s) 0 is

equivalent to

q q
P(,o)tP(i,) + Q,(is) Q,(is)e O,

3=1 3=1
which implies P(s)= constant. This establishes the following proposition which was stated in

[10] without proof, namely (3.11) is absolutely nondegenerate if and only if either of the following
conditions holds true:

q
(i) P(s) =_ C,, y] Q,(s)k(C,,t,) =_ C2 # 1;

3=1
or

(ii) q 1, P(s) + QI(S) 0.

Eq. (3.11) is degenerate if and only if

q
P(s) C,, y Q,(s)k(C1, tj) 1.

3=1
Substituting B from (3.14) in (3.12) leads to the proof that the uniqueness classes for the solution

of the Cauchy problem for an absolutely nondegenerate equation (3.11) axe the same as those for

the equation (without "loads") u,(x,t)= Pu(x,t). The homogeneous degenerate IVP (3.11)
(Uo(X) 0) has nontrivial solutions, with compact support. Suppose that (3.11) is of finite type

a(0 < a < c) and that u(x,t)is a solution of (3.11) with Uo(X =_ O. If

I,,(=,t) _< Ce,,l=l, x C= In, e [O,t], (3.16)

and a < a, then u(x,t) =_ O. For any a > a there exists a solution u(x,t) # 0 of (3.11) with

Uo(X =_ 0 satisfying (3.16). Integral transformations have also been used in the study of EPCA.
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Consider the nonlinear initial-value problem

Ou A(D)u(.r,t) + f(t,u(.r,[t])),

u(x, 0) %(x),

where u(x,t) and Uo(X are m-vectors, x (xl,,rz,... ,XN) E Rv,

A(D)= AD,

(3.17)

D"= D’. D]V,D,. O/cOxk(k 1,2,...,N),

the coefficients A, are given constant matrices of order m xm, and the m-vector

f _CI([n,n+I)x(RN),(RN)) n=0,1,2,.... The number r is called the order of the

system. It is assumed that u0 (RN), and the solutions sought are such that u(x,t)_ (RN),
for every >_ 0. Let #l(S),(s),-.- ,p,(s) be the eigenvalues of the matrix A(s). The system

Ou_ A(D)u (3.18)

is said to be parabolic by Shilov if

Re #(s)

_
-c Is [ + b, j 1,. .,m

where h > 0,c > 0, and b are constants. For a fixed we may consider the solution u(x,t) as an

element of (RN), and f(t,u(x,[t]))may be treated as an abstract function f(t,u([t]))with the

values in . Therefore, IVP (3.17) is reduced to the abstract Cauchy problem

d__u_u_ Au + f(t, u([t])), u It 0 u0 - (3.19)dr-

Applying to (3.18), with the initial condition u(z,O)= So(Z), the Fourier transformation in x

produces the system of ordinary differential equations

V,(s,t) A(s)U(s,t), (3.20)

with the initial condition U(s,O) Uo(s), where U(s,t) (u(x,t)),Uo(s) 5(Uo(X)), and A(s) is a

matrix with polynomial entries depending on s (Sl, S2,.. ",sN). The solution of (3.20) is given

by the formula

v(, t) dA(’)Vo().
Parabolicity of (3.18) by Shilov implies that the semigroup T(t) of operators of multiplication by
ea(’), for > 0, is an infinitely smooth semigroup of operators bounded in (RN). Together with

the requirement h r, this ensures that the Cauchy problem for (3.18) is uniformly correct in

(RN) and all its solutions are infinitely smooth functions of t, for > 0. Since f is continuously

differentiable, problem (a.17) has a unique solution on [0,1)

u(t) T(t)uo + / T(t s)f(s, uo)ds.
0

Denoting u, u(1), we can find the solution
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()----(--1)+ / ul)ds

of (3.17) on [1,2) and continue this procedure successively. If

f(t, u([t])) Bu([t]),

where B is a constant matrix, the solution of (3.17) for E [0,cx) is given by

. t]
This proves that problem (3.17) has a unique solution on RN [0,c)if system (3.18) is parabolic

by Shilov, the index of parabolicity h coincides with its order r, and f
2.2(1N)), n 0,1,2,.
4. WAVE EQUATIONS WlTIt DISCONTINUOUS TIME DELAY.

The influence of terms with piecewise constant time on the behavior of the solutions,

especially their oscillatory properties, of the wave equation was initiated in 1991 by Wiener and

Debnath ([11], [12]).
First, we shall discuss separation of variables in systems of PDE. Consider the BVP

consisting of the equation

the boundary conditions

and the initiM condition

Ut(x,t) AUzx(x,t) / BUxx(x,[t])

gives

whence

V(m, O) Uo(x). (4.3)

Here, U(x,t) and U0(x) are reM m m matrices, A and B are real constant m m matrices and

[. denotes the greatest-integer function. Looking for a solution in the form

U(z,t) T(t)X(x) (4.4)

T’(t)X(z) AT(t)X"(z) + BT([tl)X"(x),

(AT(t) + BT([t]))- XT’(t) X"(x)X- l(x) P,

which generates the BVP

X"(x) + P2X(x) O,

X(O) X(1) 0

and the equation with piecewise constant argument

T’(t) AT(t)P- BT([t])P.
The general solution of (4.5) is

X(x) cos(xP)C, + sin(xP)C2,

U(O,t) U(1,t) O, (4.2)
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where
oc 1)-x-p- c 1)-x- + 1p-+1

cos(xP)= (2n)! n(xP)= (2,,+1)!n 0 n 0

and C,C2 are arbitrary constant matrices. From X(0)= 0 we conclude that C 0, d the

condition X(1)= 0 enables us to chse sinP 0 (although this is not the necessary consequence

of the equation (smP)C2 =0). This can be written e*P--e-’P= 0,2’p I. Assuming that all

eigenvalues p,p2,...,p of P are distinct and S-PS==diag(p,p,...,p), we have

exp(2iSS- ) I, Se2’S- I, and e2’ I. Therefore, dzag(j, j2, ., j), where

the j are integers, and P SS-,

P2 SS- S diag(2j,j, .,j)S 1,

sin(xP) S sin(x)S S diag(sinjx, ,sinjx)$- . Furthermore, we c put

P =diag(r(m(j-1)+ l), .,;rmj), (j=l,2,..-)

in (4.5) and obtain the following result:

There exists an infinite sequence of matrix eigenfunctions for BVP (4.5)

X(x) v diag(sinr(m(j- 1)+ 1)x,...,sinrmjx), (j 1,2,...

which is complete and orthonormal in the space 2[0,1] of rn x m matrices, that is,

0,

fo1X,(x)X(x)ds I, j=k

where I is the identity matrix.

Let E(t) be the solution of the problem

T’(t) AT(t)P,
and let

T(0) I

(4.7)

(4.8)

(4.9)

M(t) E(t) + (E(t) I)A- lB. (4.10)

If the matrix A is nonsingular, then (4.6) with the initial condition T(0)= Co has on [0,cx) a

unique solution

T(t) M(t -[t])M[’](1)Co (4.11)

If U(1)II < 1, then T(t)II exponentially tends to zero as t 4- .
For the scalar parabolic equation

,(x,t) (,t) +(,It])

we have m=l and P=rj, according to (4.7). For (4.9) with A=a and P=P,, we have

E(t) ( .jt) =d

M,(t) e -2"22t -(1
Hence, the inequality M(1) < 1 is equivalent to

-1 <e-a2" -a2b-- (1 -e a2"J2) < 1,
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whence

-a < b < a +e
C a2+r232"

Since the function (1 + e-’)/(1-e -t) is decreasing, all functions T(t)exponentially tend to zero

as t--,c if and only if

-a < b < as. (4.12)

If b < -a2, then all Tj(t) monotonically tend to infinity as t--}; and if

a2r
b>a l+e

e a2’2

then all Tj(t) are unbounded and oscillatory. For any b > as, there exists a positive integer J0
such that the T(t) are unbounded and oscillatory, for j > J0. Indeed, letting b a + and

solving the inequality

gives

a2+e>a l+e -’2"2a2

e a2+r2"/2"

a2r232e <
2a -+ ,

which holds for any positive e and sufficiently large j and implies M(1) < 1. If b -a2, then

M(t)= 1,Tj(t)= Tj(0), and u(x,t)=Uo(X), for all t. Therefore, the condition b] _< a is

necessary and sufficient for the series

u(x,t)= _, Tj(t)Xs(x) (4.13)
j=l

to be a solution of the scalar BVP (4.1)-(4.3), with A =a and B b, if Uo(X is three times

continuously differentiable. The coefficients Tj(0) are given by

T(O) f luo(z)Xj(z)dx,
0

where Xi(x) v/ sin(rjx) and Uo(X E C3[0,1] satisfies

Uo(0) o(1 0.

The solution T 0 of (4.6) is globally asymptotically stable as t---} + oo if and only if the

eigenvalues Ar of the matrix M(1) satisfy the inequalities

A < 1, 1,. .,m. (4.14)

If all eigenvalues of A have positive real parts and Uo(z) EC3[O, 1], IIA-’BII <1, then BVP

(4.1)-(4.3) has a solution (4.13). This series and all its term-by-term derivatives converge

uniformly.

Separation of variables in the equation with constant coefficients

utt(z, t) au(z, t) bu**(z,[t])

and boundary conditions (4.2) yields Xj(x)= v sin(rjx) and leads to the EPCA

(4.15)
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TT(t) + a2rr2j2Tj(t) br2j2Tj([t]). (4.16)

For brevity, omit the subindex j and use the .substitution T’(t)= V(t), which changes (4.16) to a

vector EPCA

where w col(T, V) and

.,’() A,(t)+ B([]),

0 ) B=A
a2r2j 0

Eq. (4.17) on the interval n < < n + becomes

with the solution

where

w’(t) A(t)+ ec.,

w(t) M(t n)c,,

M(t) em + (eA’- I)A-B. (4.18)

Therefore, (4.17) with the initial condition w(0)= Co has on [0,oo) a unique solution given by the

right-hand side of (4.11) where M(t)is defined in (4.18).
For b < 0, the solution w 0 of Eq. (4.17) is unstable. Indeed, computations show that

and

where w aTrj. Also

Hence,

and

eAt cos(wt)I + w-lsin(wt)A

eAt I
cos wt-

\

--w szn wt cos wt--

b(1 cos wt)/a 0 )(eAt- I)A-’B+ (bw sin wt)/a 0

cos cot + ba 2(1 cos wt) w- sin wt
M(t)

(ba 1)w sin wt cos wt

det M(1)= l-b+ b
a2 - Co8 .

The condition b < 0 implies detM(1) > and shows that at least one of the eigenvalues of M(1)
satisfies 11 > 1. Therefore, w(t)II o0 as t + oo, for some initial vector Co # 0.

For b > a2, the solution w 0 of Eq. (4.17) is unstable. Calculations give

det(M(1)_M)=)2_2(coso+b sin2))+l_ b b
a2 + cos w
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and the expressions + + d, a d for tl,, eigenvalues , of 31(1), where

.s cos +-- .sin , d -1 sin + sm .
The condition b > a shows that d > 0 and > 1. The latter inequality implies ,,()II as

t + , for sone initial vector c0 0.

The solution w 0 of (4.17) is asymptotically stable as t + if and only if

0 < b < a, (4.19)

and w 2n,n 0,1,2, The condition d < 0, which means that the eigenvalues of M(1)
are complex, leads to

whence

bcs2 - >
2a b)2’

b< a (1- tan ) or b < a2(1-cot f).
Since A11 ]A2 and detM(1)= A1A2, the inequality A11 < is equivalent to detM(1) < 1,

that is, to b > 0. Therefore, in the case of complex eigenvalues, a criterion for asymptotic
stability is

0 <b < max (a2(1 tan ) a2(1 cot )).
The inequality d > 0 in the case of distinct real eigenvalues leads to

b > max (a2(1 tan ), a2(1 -cot )),
and the inequalities "1 < 1, ,2 > -1 yield b < a. Hence, in this case a criterion of asymptotic

stability is

max (a2(1-tan2 ), a2(1-cot2 ))< b < a2.

Finally, if

b max (a2(1 -tan

then d 0 and ’1 /2 CO8 aJ -- ba- sinw/2, whence

cos w < < cosw/2
and I,ll < 1. According to (4.14), this implies asymptotic stability and completes the proof of
criterion (4.19).

If b=a, then ,a 1,$2=cosw, and the solutions of (4.17) are bounded but not

asymptotically stable. If w 2rn, then 1, which leads to the existence of unbounded
solutions for (4.17). If the coefficient a is irrational, then (4.19) is a criterion of asymptotic
stability of the solutions to (4.16) for all j, since recalling that w wj arj, we note that the
equality arrj 2rn is impossible for any irrational a. For any rational a, there exist infinitely
many integers j such that the corresponding solutions w(t) of (4.17) are unbounded.
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Furthermore, each component of every solution of (4.17) oscillates if and only if either of the

following conditions holds true:

<

< <
2

In conclusion, it is worth noting that the asymptotic properties of (4.16) depend on the

algebraic nature of the cfficient a. For b < 0, all solutions of (4.16) are unstable and oscillatory;

for b > a all solutions of (4.16) are unstable and nonoscillatory. These two cases hold true for

both rational and irrational values of a. For

0 <b< max (a2(1 tan a(1- cot )),

all solutions of (4.16) are asymptotically stable and oscillatory, provided that w # 2rn. However,
for any rational a, there exist infinitely many integers j such that w 2rn, which leads to the

existence of unbounded solutions for (4.16). Furthermore, since w wj arj the inequality

cosw < 1/2 breaks down for infinitely many integers j. Therefore, under the above hypothesis

(ii), there are infinitely many solutions of (4.16) which are asymptotically stable and oscillatory,

as well as infinitely many solutions which are asymptotically stable and nonoscillatory (w 2rn).
Also, for w 2rn and a2/2sin2(w/2) < b < a, the solutions of (4.16) are asymptotically stable

and nonoscillatory. Problems of this nature deserve further investigation. The following topics

which are, in our opinion, of considerable interest either have not been explored at all or deserve

deeper study.

(1)

(2)

(3)

(4)

()

(7)

(s)

Partial differential equations with both constant and piecewise constant delays.

Cauchy-Kovalevsky type existence-uniqueness theorems for partial differential
equations with the argument 0 < A(t) _< by using piecewise constant delays.

Boundary and initial-value problems for PDE with alternately retarded and advanced
piecewise continuous arguments.

Parabolic PDE of neutral type with piecewise constant time.

Bounded solutions of nonlinear parabolic equations with piecewise continuous
arguments.

Boundary and initial-value problems for the wave equation with the argument [At/h]h,
O<A<I, h>O.

Bounded solutions of nonlinear hyperbolic equations with the argument [At/h]h.

Loaded partial differential-difference equations.

In conclusion, we note that parabolic equations with unbounded piecewise constant delay were

studied in [13], and the first monograph on equations with piecewise continuous arguments was

published in 1993 [14].
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