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ABSTRACT. We consider several norms on the span of the set C of all copulas. Dominance and
equivalence relationships among the norms are discussed, and completeness issues are addressed.
The motivation for the study is discussed. Applications to the study of one parameter semigroups
of copulas are also addressed.
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1. INTRODUCTION.
A copula is a function C [0,1] 2 [0, 1] satisfying the boundary conditions C(x,O)

C(O,y) O, C(x, 1) x and C(1,y) y, for all x, y E [0, 1], and the monotonicity condition

c(,) c(=,) c(=, u) + c(,) > 0

whenever xl i x2 and yl _< y2. These conditions imply that C is a continuous function. Copulas
are of interest because they link joint distributions to marginal distributions: for any real valued

random variables X and X2 with joint distribution F12 there is a copula C such that

F12(Xl,X2) C(FI(xl), F2(x2))

where Ft and F2 denote the cumulative distribution functions of X and X2, respectively. For
a proof, see Sklar[6, 7]. Knowledge of basic properties of copulas will be assumed in this paper,

though references will often be given when they are used. For a discussion of these properties,

see Darsow et al. [2]; Sklar [6, 7].
We denote by C the set of all copulas. C is closed under convex combinations and under a

product operation A B defined by

A * B (x, y) A,2(x, t)B,z (t, y)

Here and in the sequel the subscripts and 2 denote partial derivatives:

aB(,B,(,) -x ’(’) 7
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The copulas P(x,y) xy and M(x,y) min{x,y} are null and unit elements with respect to

the product operation" that is,

A.P-P.A-P A.M-M.A-A

for all copulas A, as is readily verified using the definition of the product. A copula E is idempotent

if E E E; both P and M are idempotent, and there are many other idempotents. A copula
A is left invertible if there is a copula B such that B A M and right invertible if there is a

copula B such that A B M. If A is left invertible, its left inverse is the copula AT defined

by AT(x,y) A(y,x); similarly, if A is right invertible, its right inverse is A T, Darsow et al. [2].
There exist copulas which possess one-sided but not two-sided inverses.

The set C is also closed under uniform limits" if A, E C for all n and An A uniformly, then

necessarily A E C. In fact, the set C is a compact subset of C([0, 1] 2) under the uniform norm.

This is a useful property. However, the product does not behave well under the uniform norm.

If A, A uniformly and B is any copula, then A, B A B and B A, B A, Darsow et

al. [2], so that the product is continuous in each place. But the product is not jointly continuous.

It can be shown that (two-sided) invertible copulas are dense in C in the topology of uniform

convergence. If A, is a sequence of invertible copulas converging to a noninvertible copula, say

P, then AT . A, M for all n but pT, p p M It follows that the product is not jointly

continuous. This is an inconvenient fact, and a part of the motivation for the research reported
here was to find a natural topology on the set of copulas under which the product operation
was not only continuous in each place but also jointly continuous. The joint continuity issue is

discussed at various points in the paper.

One parameter semigroups of copulas arise naturally in the study of Markov processes, Dar-
sow et al. [2]. Let C be any copula, let E be an idempotent copula satisfying C E E C C,
and let a be a positive number. Then At defined for >_ 0 by

At e-t (E + (at)C)k’
k--1

is a semigroup of copulas: A+, A. At. In the definition, C denotes the k-fold product of C

with itself; the series converges uniformly for all a and t, as is easy to verify. The classical theory
of one parameter semigroups is developed in the context of Banach algebras. To investigate the

applicability of the classical theory to semigroups of copulas, it is natural, first, to work in the

span of C, which we will denote span (C), rather than C itself, and, second, to seek a norm under

which span (C) is in fact a Banach algebra. This was a second part of the motivation for the

research reported here. The application of this research to one parameter semigroups of copulas
is discussed in Section 6 of this paper.

The paper is organized as follows: In Section 2, Preliminaries, we discuss span (C) and define

the norms to be treated in subsequent sections. In Sections 3, 4 and 5, we discuss the Minkowski

norm, Sobolev norms, and the Jordan norm on span (C), respectively. Section 6 is devoted to

semigroups of copulas and Section 7, to discussion and conclusions; in particular, we shall make

some comments about compactness in Section 7.

2. PRELIMINARIES.
By span (C) we mean the linear span of the copulas the set of all finite real linear combi-

nations of elements of C. Any element A span (C) can be written in the form

A-sB-tC (2.1)

where s and are nonnegative and B and C are copulas. To see this, observe that if

A akAk
k--1
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where Ak E C and ak is a real number, then we can write

A s Ak Ak sB tC
8

a >0 a <0

where the last equality defines B and C and

s- a and t-- a.
>0 a <0

(In both of the foregoing equations, the sum is taken to be zero if the set summed over is empty.)
Observe that B and C are copulas, since C is closed under convex combinations. We will make

repeated use of the observation (2.1), usually without comment.

We now define the norms we will investigate.

Minkowski norm. The symbol B -co(-C U C) denotes the convex hull of the set -C

that is, the set of all convex combinations of members of C and -C. It is easy to see that

span (C) UtRoB. For any A span (C) define

IAM inf{ > 0 A e B}. (2.2)

IIM is sometimes referred to as a Minkowski functional; it is easy to verify that it is a norm

on span (C), e.g. Rudin [5]. There is a more convenient definition of the Minkowski functional:

AM inf{s + t s, 0 and A sB C for some B, C e C}.

It is easy to veN that (2.2) and (2.a) are equivalent definitions; we omit the proof.
We will show in Section a that span (C) is a Banach algebra under the norm 1" I- The

problem with the Minkowski functional is that it is diNcult to compute and thus is cumbersome to

work with. We include some results in Section a which facilitate the calculation of the MinkowsN

norm for certain special classes of elements of span (C).
Sobolev norms. Since the product is defined using first partial derivatives, it seems natural

to work with norms which take derivatives into account. It is readily veNfied that

c ,(0,

for m 0, and all p e [1, ]. Wm’() denotes the Sobolev space

{lI e L(a) and DI e L(a) for all multi-indices for which I1 m

Here, C R, a multi-index is a d-tuple of nonnegative integers, ] denotes the sum of the

components of , and D denotes a distributional partial derivative. In our ce, d 2 and

m -0 or 1, so that (0,0), (1, 0) or (0, 1), and D(’)I I, D(’)I I,t and D(’)
It is well known, e.g. Adams [1], that each of the Sobolev spaces so defined is a Banaeh spree

(i.e., is complete) under the norm defined by

(2.4)

We will show in Section 4 that C is a complete metric space under the Sobolev norms ]l" I[:,p
and that on C the product is jointly continuous with respect to IIx, for [1, ); it is an

open issue whether the product is continuous (jointly or separately) with respect to the norm

11:,- We will also show that, on span (C) each of the Sobolev norms is dominated by, but is

not equivalent to, the Minkowski functional IIM and that span (C) is not a closed subspaee of
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any of the I4....P spaces. The issue of continuity of the product on span (C), as opposed to C

itself, is an open one.

Jordan norm. We have occasionally found it convenient to work with one other norm.

It is well known, of. Darsow et al. [2], that a copula induces a unique doubly stochastic

probability measure ttc on [0, 1] via the assignment

as the measure of a rectangle. Conversely, for any doubly stochastic measure #, there is a unique

copula C, defined via

c.(,) (10,l I0,l).

Thus, doubly stochastic measures on I0, 1] 2 and copulas are in one to one correspondence. An
element C E span (C) induces a finite signed measure on [0, 112 via the definition (2.5). All linear

combinations of doubly stochastic measures are obtained in this manner.

It is also well known, cf. Italmos [3], that for any finite signed measure # there exist mea-

surable sets E+ and E- such that E+ N E- , E+ t_l E- [0, 1] 2 and, for all measurable sets

F, #(E+ C) F) _> 0 and #(E- N F) _< 0. It follows that #+ and #- defined by

.+(r)- .(E+ r) #-(F)--#(E-NF)

are measures. Furthermore, #+ and /z- are unique, though the sets E+ and E- need not be.

The decomposition # #+ it- of a finite signed measure as the difference of two measures

is called the Jordan decomposition. The set of finite signed measures is closed under real linear

combinations, and it is an easy exercise to show that

defines a norm on the set under which the set is a Banach space, Halmos [3, p. 123, Ex. (4)].
For A E span (C) we define the "Jordan" (or total variation) norm

We will show in Section 5 that the Jordan norm dominates, but is not equivalent to, the

uniform norm and is dominated by, but is not equivalent to, the Minkowski functional. We will

also show that span (C) is not complete with respect to the Jordan norm. The continuity (or lack

thereof) of the product in the topology of the Jordan norm is an open issue.

3. MINKOWSKI NORM.
We will show that span (C) is a Banach algebra under the Minkowski norm. The proof will

be by way of two preliminary lemmas and two theorems. Then we will state and prove some

miscellaneous facts which are useful in computing the Minkowski norm of an element of span
in some special cases.

LEMMA 3.1. The Minkowski norm dominates the uniform (W,) norm on span (C).
PROOF. Observe that if A sB tC, where s, >_ 0 and B, C C, then

IlAIIo,o < [IBIIo,o + tllCIIo, +

since the uniform norm of any copula is 1. Thus, IIAII0,o is a lower bound of the set whose

greatest lower bound is the Minkowski norm. The desired conclusion follows. |

The infimum in the definition (2.2) of the Minkowski norm is actually achieved:

LEMMA 3.2. For any element A span (C), there exist numbers s, > 0 and B, C C such

that A sB tC and IIAIIM s + t.
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PROOF. By the property of the infimum, there exist numbers s,, tn _> 0 and copulas Bn, Cn
such that A s,B,- t,C, and s, + t, IIAIM. But B,(1,1) C,(1, 1) for all n, so

s. tn A(1, 1) is a constant (and thus convergent) sequence. It follows that the sequences

and t both converge; call their limits s and t. Furthermore, since C is compact in the uniform

topology, there is an increasing sequence of indices nk such that B, and C. both converge

uniformly; call their uniform limits B and C. Clearly A sB tC.

THEOREM 3.1. Span(C)is complete under [[- JIM.
PROOF. This is a classical proof, adapted to the case of copulas. Suppose that An is Cauchy

with respect to [[-JIM. Passing to a subsequence, if need be, assume that [[A,+i-A[[M 2-(+)

for all n. Using Lemma 3.2, we can find nonnegative numbers sn and t and copulas B and Cn
such that

An snBn tnCn and sn + tn ]]AnM.

Observe that (by the triangle inequality) the sequence of numbers ]]An]]M sn + tn is Cauchy,
and obsee also that s- t A(1, 1) is Cauchy, since by Lemma 3.1 the Minkowski norm

dominates the uniform norm. It follows upon tang sums and differences that both s and t
are Cauchy; call their limits s and t. Since C is compact, we can find an increasing sequence

nk of indices such that Bn and C both converge uniformly; call their limits B and C. Set
A- sB- tC and observe that A span (C). Clearly An A uniformly, and A A uniformly

follows easily. To complete the proof, obsee that we can write

A-AI+(A+I-A).
k=l

This is true pointwise, by the argument above. But also

IIA A.IIM --II (A+t- A)IIM

2-(+1.

hus, I1 IIM 0, and span (C) is complete under IIM. I
The following theorem completes the proof that span (C), together with the product, is

Banach algebra. It is not obvious, but defines an associative binary operation on C, Darsow et

al. [2], and assoeiativity for the extension of to all of span (C) follows, so we need not address

this issue.

THEOREM 3.2. For all A1, A2 e span (C), IIA * A2IIM [[AtIIMIIA2IIM.
PROOF. Wte Ak skBk- tkCk where sk, tk 0, Bk, Ck C and sk

k-- 1,2. Then

tt2 C2)sis2
B1 * B2 C1 *A A2 (ss2 + tt2)(ss2 tlt2 8182 + tit2

st2tls2 C B2 + B(ts2 + st2)(tls lt2 tls2 + sit2

(ss2 + tlt2)B’- (ts2 + st2)C’.

The last expression defines B and C; clearly both are copulas, since C is closed under the

product and under convex combinations. It follows that

IIA1 * A211M < sis2 + tlt2 + tls2 + sit2 (s + t)(s2 + t2) IIAIIMIIA211M.

This is the desired result. |
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This completes the proof of the main result concerning the Minkowski norm. Observe that

continuity of the product in each place, and also joint continuity, follow immediately from

Theorem 3.2. We turn to the computation of IIM in special cases.

THEOREM 3.3. If B and C are any two distinct left (or right) invertible copulas, and s and

are any nonnegative real numbers, then IIsB tell M s / t.

PROOF. Suppose that B and C are left invertible and B # C, and s, > 0. Clearly

limb ClIM < + .
Since B and C are left invertible, B,1 and C,1 are 0 or almost everywhere, Darsow et al.

[2]. It is easy to see that the measure of the set where the first partial derivative B,1 is is 1/2,
and similarly for the measure of the set where C,1 1. Since B # C, it follows that the sets

F (x, y) lB,(x, y) and C,1 (x, y) 0}

F2 {(x, y) B,i(x, y) 0 and C,(x,y) 1}

have (equal) nonzero measure. Now suppose that s, > 0 and D, E E C are such that

sB tC sD tE.

Take partial derivatives with respect to x and evaluate at points (x, y) E F1 where the derivatives

of all four copulas B, C, D and E exist (this is almost all points of F1, [2]) to obtain

s sB,l(x,y)- tC, l(x,y) s’D,l(x,y)- t’E,l(x,y)) < s’

using the fact that the first partial derivatives of any copula lie in [0, 1], wherever they exist, [2].
It follows that s < s’. By similar argument, evaluating on F2, < t’. Thus s + <
This completes the proof for left invertible copulas. The corresponding result for right invertible

copulas follows by taking transposes. |

It follows from the foregoing result that if B and C are any two distinct left (or right)
invertible copulas, then lib -CIIM 2. The topology of the Minkowski norm, restricted to the

group of invertible copulas, is accordingly the discrete topology.
The next result concerns the Minkowski norm of differences of copulas which are ordinal

sums. The ordinal sum construction is as follows: Let {(a,, bn)}neZ be a partition of [0, 1], that

is, a finite or countable set of disjoint open intervals the closure of whose union is the whole

interval. To each n e 2", assign a copula A,. Define a function A [0, 1] 2 [0, 1] via- - - - (,) [., .12
A(x,y)

a, + (b. a,)A,(b, an’ bn a,

M (x, y), otherwise.

Then A is a copula, Darsow et al. [2]. A is called the ordinal sum of the copulas An with respect
to the given partition. We will write A @,ezAr, for the ordinal sum.

THEOREM 3.4. Let A ,e2"A, and B ,ezB,, be copulas which are ordinal sums

with respect to the same partition of [0, 1]. Then

IIA sllM max [IA, BnllM.

PrtOO. w ,m pro t rut wn Z- {,} n (,) (0, a) nd (, ) (,)
for some , (E (0, 1). The general result then follows via an inductive argument.

Thus, suppose that A1, A, B1 and Bg are copulas and write

c(-,_ -), o < , <

c(,) c c(,) + ( )c(
x

1_), 1_)) ,X<x,y<l (3.1)

M (x, y), otherwise
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where C A or B. Suppose A1- BI sD1-tD2 where s, > 0, D, D2 e C and [[A1- Bt[[M
s+t" evaluate at (1, 1) and conclude that necessarily s t. Similarly, suppose A2-B2 uEl-vE2
where u, v 0, El, E2 E C and JJA2 B2JJM u -t- v" evaluate at (1, 1) and conclude that

necessarily u v. Suppose that s > u (the proof is similar if s u) and set

U 3 I1

F -E + 5I, k 1,2.
8

Then A2 B2 sF1 sF2. It follows that

A- B sDi O Fi sD2 F2

so that IIA BIIM _< 2s- maxk=,2 IlAk- BalIM.
The opposite inequality utilizes a construction we have occasionally found useful in trying to

work with the Minkowski norm. Suppose that A B sD rE, where s, _> 0, D, E E C and

IIA BIIM s + t; evaluate at (1, 1) and conclude that s t; evaluate at (x,A) and (A,y) and

conclude (using the fact that, by (3.1), A and B agree at (x,A) and (A, y))

D(x, ) E(x, ) for all x (3.2)

D(, y) E(, y) for all y. (3.3)

We want to show that IIAk- BkllM <_ 2S, k 1,2. We will show that the result holds for

k 1; the proof for k 2 is similar.

Observe first that

O (D(x 1y))- D,(1x 1y) <
Oz
o D( //- D,=( / <0--;(

It follows that if for any > 0 we set

(x)- ((l+e)x- (,x,A))/ +e--D(A,A)

the functions 4) and are strictly increasing on [0, 1]. (Observe that necessarily D(A, A) _< ,k; this

is a basic property of copulas, Darsow et al. [2].) To complete the construction, define for all

(,) [0,

1--D(Ax, Ay)b(, ) ()() +

E(,)k(, )= ()()+

It is readily verified that D1 bl/(1 +e) and E1 /1/(1 +e) are copulas; monotonocity follows
from the fact that D and E are copulas and the fact that and are increasing; the boundary
conditions for D1 are verified by direct calculation, and those for E follow from (3.2) and (3.3).

The desired result now follows easily. For all x, y E [0, 1] we have by construction

1
BA(x,y)- B(x,y) 1--A(Ax Ay)- (.kx, Ay) (using (3.1))

s_E-DS (Ax, Ay) , (Ax, Ay)

(1 + e)sD(x,y)- (1 + e)sE(x,y).
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Thus, for any > O, IIA, BI[IM <_ (1 + e)2s (1 + t)[IA BI[M. The theorem follows. I
Since span (C) is a Banach algebra under I[" I[M, the Minkowski norm is a natural one, and

the issue of how to compute it becomes important. We will return to the issue of how to compute

the Minkowski norm again in Theorem 5.2.

4. SOBOLEV NORMS.
We will work with the Sobolev seminorm ]A ]t,p given by

[A[,p- ([A,t(z,y)[+[A,2(x,y)[’)dxdy pe [1,o) (4.1)
ess sup[A,i(x,y)[,ess sup[A,2(x,y)[}, p

THEOREM 4.1. For all p {1, ol, I" Ii,p is a norm on span (C) equivalent to I1" IIx,-
PROOF. This follows from the fact that an element A span (C) necessarily vanishes on

the lower and left boundaries of [0, 1] 2. The details of the proof can be found in Adams [1].
One of our principal results is that the product restricted to C is continuous in each place

and jointly continuous in the topology of 11,, for p [1, oc). Whether or not the corresponding
result holds for p o is an open issue, and what can be said about continuity of the product
on all of span (C) is also an open issue. Another principal result is that C is a closed subset of
W i’’ for all p [1, o], so that C is a complete metric space with respect to each of the Sobolev
norms considered. Putting the principal results together, we have that C is a complete metric

space under It,p, for p [1, o) and that the product behaves well with respect to the metric.

The utility of the Sobolev norms on span (C) is much less clear, both because the behavior

of the product is not known, as noted above, and because, as we shall show, span (C) is not

complete with respect to any of the Sobolev norms. This latter result will be proved by way

of a result of independent interest the Sobolev norms on span (C) are dominated by, but not
equivalent to, the Minkowski norm.

LEMMA 4.1. The topologies induced on C by the norms [1, coincide for all p E [1, o).
PROOF. We will show that for any p > 1, the topology induced by Ii,p coincides with

the topology induced by ll,1. Since the first partial derivatives of a copula lie between 0 and
almost surely, Darsow et al. [2] we have IB- Cll,v < IB- CI 1/’ for any copulas B and C Also,I,I
by by Hhlder’s inequality, IB -C]t, _< [B -Cll,. It follows that a ball in C in the topology of

11,1 necessarily contains a ball in the topology of ll, and vice versa. |

The topology of ]l,o restricted to C is different from the topology of I,l. To see this,
let Bn denote the ordinal sum

nxy, 0 <_ x,y <_ l/n
Bn(x,y)

min{x,y}, otherwise
(4.2)

Then by direct calculation

2
lB. Mll, 3- 0 whereas

[B.-Mll,oo= for alln.

Roughly, the topology of[ [1,, for p [1, o), is the topology of pointwise convergence of
derivatives, since pointwise convergence of derivatives implies convergence in the sense of ll,,
for p E [1, o), by the dominated convergence theorem, and convergence in the sense of ll,
implies the existence of a subsequence whose first partial derivatives converge pointwise a.e. The

topology of I,o, on the other hand, is the topology of uniform convergence of derivatives.
For B E C and f E LI([0, 1]) define

B,f(x) B,2(x,t)f(t)dt.
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It is easy to verify that for f e L, B;f is Lipschitz continuous with Lipschitz constant

and thus is absolutely continuous.
d
B’fl <

d
LEMMA 4.2. For all B C and f LI([0, 1]), I-z --dyB;lfl a.e.

PROOF. Since z B,9(z, t) is almost surely nondecreasing, Darsow et al. [2], z B;f is

nondecreasing whenever f is nonnegative. The desired result follows immediately from the fact

that for any f L1, Ill- f and Ill + f are both nonnegative. |

THEOREM 4.2. The product on C is continuous in each place and also jointly continuous

in the topology of i,p for all p [1, o).
PROOF. By Lemma 4.1, it suffices to consider the case p 1. Let B,, B and C be copulas,

and suppose IB- Bnll,1 0. We show first that IC.B-C.Bnl,l 0 and IB .C- Bn *CI1,1 0.

This will prove that is continuous in each place.

We will show that II(B C),1 -(S, C),1110,1 0 and II(C B),I (C B,,),1]10,1 0. The

proof for partial derivatives with respect to the second argument is similar.

Given > 0, let C([0, 1] 2) be such that IIC,1 [10,1 < e/3. C([0, 1] 2) is the space of

C functions on the unit square which vanish on the boundary. We can find such a since C
is dense in L 1, e.g. Adams [1]. Then

[[(B C),1 (B, C),1110,1 [xx (B B,),2(x, s)C,1 (s, t) ds[ dt dx

< Ixx (B B,),2(x, s)dp(s, t) ds[ dt dx

+ l ,(,)( c,)(, )l e e

+ Bn,2(x’s)(-C,’)(s,t)dsldtdx

+ S,(z,s)l(--C,)(s,t)ldsdtdz

+ B,,2(z, s)J( c,)(s, t)J ds dt d.

Here, we integrated by parts in the st term in the second expression on the right, and we used

Lemma 4.2 to estimate the last two terms in the expression. Since 6 C, we can perform the

integration with respect to z in the last two terms to obtain the estimate

+ 2 I( c,)(, t)l

II,tll0,lB Blt,t + /3,

Choose N so large that n > N implies

Then for all such n,

II(B * C), (B. * c),llo, <

so that II(B * C),- (B. c),ll0, 0.
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To complete the proof, observe that

II(C B),-(c Bn),ll0,- [zz C,2(x,s)(B- Bn),t(s,t)dsldtdx

< C,2(x, s)l(B B,,), (s, t)] ds dt dx

NIB- B,,l,.

Here, we used Lemma 4.2 and performed the integration with respect to x. It follows that

II(c * B), (c B),ll0, 0.

Thus, is continuous in each place with respect to the topology of[ [,p for p

Observe that the argument just given shows that for any three copulas B, C and D,

II(c * B),- (C D),llo, < Is Dl.,. (4.3)

We will make use of this observation to show joint continuity. To that end, let B,, B, C, and

C be copulas, and suppose that IB B,,l,l 0 and IC C, ll, 0. We want to show that

IB ,C B,, * Crl, 0. Write B ,C Bn ,C,- Bn * (C -C,,) + (B B,) ,C. Then

II(B * C), (B. C.),llo, _< II[B. * (C C.)l,llo, + II[(B B.) C],llo,

<_ IC- C.l, + I1[(- B.). Cl,llo,.

We have used (4.3) here. he firs erm on he rih oes o zero by hypothesis and he second

term goes to zero by the onesided continuity of the operation proved above. Thus, II(U .C),l-
(Bn Cn),ll0,1 0. By an analogous argument, II(S C),2 (B, Cn),2[10, 0. Thus,

IB * C B,, C,,I, 0, and joint continuity is established. |

We turn now to completeness issues.

THEOREM 4.3. For all p [1, oo] the topology of[ I,p restricted to C is stronger than the

topology of uniform convergence.

PROOF. For p > 2, I1" II,p, and thus I" I,p, dominates the uniform norm II0,oo, by the

Sobolev embedding theorem, Adams [1]. Thus, for each p > 2, there is a constant Cp such that

IIAII0,oo _< CIAI, (4.)

for all A span (C). This implies the desired result, for p > 2. Since by Lemma 4.1 the

topologies of [, restricted to C coincide for p [1, oe), the conclusion of the theorem holds

also for p E [1, 2], though an inequality of the form (4.4) need not hold for p E [1, 2]. |

Observe that the topologies of I,p are strictly stronger than that of II0,o, since if the

topologies coincided, the product would be jointly continuous in the latter topology. This is

not the case, however.

There is a sharper statement which implies Theorem 4.3 and which we will make use of later:

THEOREM 4.4. For all p (1, oe) the weak topology of W, restricted to C coincides with

the topology of uniform convergence.

PROOF. A sequence of copulas is weakly Cauchy in the sense of W ’p if and only if it is

uniformly Cauchy, and the weak and uniform limits are the same. This follows easily from the

fact that C is a compact subset of L and from the fact that the unit ball in L

(which contains both first partial derivatives of any copula) is weakly sequentially compact. |

THEOREM 4.5. For all p [1, oe], C is a complete metric space under the metric

d(B, C) IB Cl,:
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PROOF. This is a corollary of Theorem 4.3. Suppose B is in the close,re of (7 in W 1.p, and let

U, 6 C be such that IB- B,ll,p 0. We want to show B C. By Theorem 4.3 lIB- Bn[[0, 0

and the uniform limit of a sequence of copulas is a copula, so B G . [
We turn now to consideration of the Sobolev norms on all of span

THEOREM 4.6. For p [1, 1, the Minkowski norm dominates the norm [. [,p on span (C).
PROOF. Since for p G [1, ), A, 2/]A,, it suces to establish the result for p

Since the first partial derivatives of a copula lie in [0, 1] a.s., the result for p follows via an

argument similar to that of Lemma 3.1.

To investigate the issue of whether span (6) is complete under any of the Sobolev norms, we

use the following easy consequence of the open mapping theorem (Rudin [5]):
LEMMA 4.3. Let B be a Banach space under each of two norms. If one of the norms

dominates the other, the two norms are equivalent.

It follows from Theorem 4.6 and Lemma 4.3 that span () is complete under one of the

Sobolev norms if and only if that norm is equivalent to JIM. A counterexample given in

Example .1 below shows that the norms are not equivalent. By Theorem 4.6 and Lemma 4.3,
therefore, span () is not complete under any of the Sobolev norms. We can always work with

the closure of span (C) in W ,, if we wish, but the subspace span () itself is not closed.

Before leaving the Sobolev norms, we comment on the diculty of extending Theorem 4.2,
concerning continuity of the product, to all of span (). Since as noted above the norms JIM
and , are not equivalent, there exist sequences An sB, t,C, which are Cauchy with

respect to , for which s + t is an unbounded sequence. This cannot be accomodated

within the framework of the proof we have given of Theorem 4.2. If, therefore, the product is

continuous on all of span () in the topolo of[ [,, it will have to be shown by some modified

or completely different line of proof.

5. JORDAN NORM
We can say less about the Jordan norm than about the norms considered above. The question

of how the product behaves with respect to the topology of the Jordan norm is open. The

principal interest of the norm is that it sheds light on the behavior of the other norms.

THEOREM 5.1. The Jordan norm dominates the uniform norm on span () and is dominated

by the Minkowski norm.

PROOF. Let A span (). Write A for the finite sied measure induced by A on [0, 1],
write A for its Jordan decomposition, where (F) A(F E), and write

IAI- + ]. Then

]]m]]j ]#A[([0,112).

Observe that for any (x, y) 6 [0, 1] 2 we have

IA(x,y)l- IA([0, x] x [0,])1 < IAl([0, x] X [0,1) < [IallJ.

Take the supremum over (x,y) e [0, 11 and conclude that IIAII0,oo < IIAIId.
Next, observe that if A sB tC, where s, _> 0, B, C e C and [IAIIM s -}- t, we have

la([0, 1] 2) #A(E+) SlaB(E+) --tlac(E+) <_ SlaB(E+) <_ s

la([0, 1] 2) ----laA(E-)---SlaB(E-) + tlac(E-) <_ tlaB(E-) <_

using the fact that lab and lac are probability measures and that #A SlaB tlaC. Sum the

foregoing inequalities and conclude that I[A[Ij <_ s +t-[JAIl M. |

We have a representation of the Minkowski norm which makes use of the Jordan decompo-
sition:
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THEOREM 5.2. Let A E span (C), let #A #- # be the Jordan decomposition of

the finite signed measure induced by A, as above, and set A+(x,y) ([0, x] [0, y]), and

A-(x,y) #([0, x] [0, y]). Then

IIAIIM-- max{llA+ +,1(’, 1)11, IIA,2(1, ")11} + max{liAr(’, 1)]], ]IA(1,.)I]}.

PROOF. A + and A- are continuous monotonic functions satisfying

A+(x,O) A+(O,y) A-(x,O) A-(O,y) O.

These facts are easy to verify. They differ from copulas in that they satisfy different boundary

conditions on the upper and right boundaries of the unit square.

If A sB tC where B, C E C and s, _> 0, and IIAI]M s + t, then for xl < x2

using the Lipschitz condition satisfied by the copula B. Since sections of A+ are nondecreasing,

first partial derivatives exist almost everywhere, and the foregoing inequalities imply

0 < A+(x,y) < 8 a.e. (5.2a)

By similar reasoning,

0 <_ A+,2(x,y) <_ s a.e. (5.2b)

0_<A(x,y)_<t a.e. (5.3a)

0_<A(x,y)_<t a.e. (5.3b)

We use the notation "a.e." in the statements above as shorthand for the more precise statements

that, for all y, (5.2a) and (5.3a) hold for almost all x and that, for all x, (5.25) and (5.3b) hold

for almost all y. It follows from (5.2) and (5.3) that IIAIIM s + dominates the right hand side

of (5.1), which in particular must be finite.

To obtain the converse inequality, we make use again of the construction utilized in the proof
of Theorem 3.4. Observe that, since A- A+- A and A is linear on the upper and right

boundaries of [0, 1] 2, we can write

1
(A-(x2, 1) A-(xl, 1)) (A+(x2, 1) A+(xl, 1)) A(1, 1)
x2 x x2 x

1
(A-(1,W) A-(1,Vl)) (A+(1,W) A+(1,Vl)) A(1, 1)
Y2 Yl Y2 Yl

so that also

max{ess sup {A 5 (x, 1)}, ess sup {A(1, y)}}

max{ess sup {A,+(x, 1)}, ess sup {A,(1, y)}} A(1, 1).

The right hand side of this expression is necessarily nonnegative. Let

max{esssup{A+l(X, 1)},esssup(A+(1 y)}},2
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For any > 0, set

Then and p are strictly increasing functions, and, by reasoning similar to that used in the proof
of Theorem 3.4, both B and C are copulas. Since by construction

A ( + e)B ( +e A(1, 1))C

it follows that

IIAIIM _< 2 + 2e- A(1, 1).

Since > 0 is arbitrarily small, we obtain finally

IIAIIM < 2- A(1, 1)

<max{llA+ + max{ #(" 1)11 IIA )11 },1 (’, 1)11oo, IIm,2(1, ")11oo} + A (1,

using (5.4) and the definition of . Thus, the right hand side of (5.1) dominates IIAIIM. |

We now give two examples. In the first, we construct a sequence of elements of span (C) on

which the norms I1" I1’ and I1" IIM are the same, and both diverge to +oo, whereas the norm

I1, is bounded. In the second, we construct a sequence of elements of span (C) for which the

norms IIJ and I1" II0,oo are essentially the same, and both converge to zero, whereas the norms

I" 11,oo and I1" IIM diverge to +oo. We shall then comment on the examples.
EXAMPLE 5.1. Let n be an even integer. Partition [0, 1] 2 into n2 disjoint squares of side

l/n: let xk Yk k/n, k 0,..., n and write

l<_j,k<n

j=n, l<_k<n

k--n,l<_j<n

j--k--n

Define a finite signed measure #r on [0, 1] 2 via the conditions that #,.,(Rjk) (-1):+k/n and

that the mass of #, be spread uniformly on each Rjk. That is, define tt, via

#n(F n Rj,)
(-1)J+}A(F n R3k) n(_l)+kA(F N Rjk),(R)

for any measurable set F, where A denotes Lebesgue measure on [0, 1] 2.
The Jordan decomposition of tt, is as follows" Set

E+ Uj+kevenRjk

E- U3+koddR3k.

Then #+(F) #,(F V E+) and #-(F) -tt,(F n E-).
Observe that

nx, ([0, x] x [0, 11)- -- (5.6)

nyt+(l0’ 11 [0, y])- -
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so that B+ defined by

B+(, )
2 + 10, 1)-. (10, l
n

is a copula. Equations (5.6) and (5.7) are satisfied with # in place of +#n, so that

B(x,y)- -2([O, xl [0, yl)
n

is a copula. If we define A, via

A,(x,y) -/n([0,] [0, y])

we have
n + n

An B -B- e span (C).

It is easy to see that I/Znl- hA, so that IIA,IIj n. Using formula (5.1), together with (5.5)
and (5.6) and the analogous formulae for/, we obtain also IIAnlIM n.

We wish to compute IA,ll,o. For (x, y) R3k we calculate, using (5.5)- (-1)e+’ + (x a:_l) (-1)+’
=1 rn=l rn=l

3--1

+ (y yk_) (-1)t+3 + n(x xj_)(y yk_:t)(-1)a+k
=1

It follows that for (x, y) in the interior of Rk we have

k--1

[A,l(x,y)[--[ -(-1)j+m + n(y- yk_l)(-1)+[ < 2

since [y yk_l[ < 1/n and
k--1

(-1)J+’n=-1, 0 or 1.
rn--1

Similarly, [An,2(, y)[ _< 2 for all (x, y) interior to one of the Rjk’s. It follows that IAI, < 2.

Thus, as n varies over the even positive integers, we obtain a sequence of elements in span (C)
whose Minkowski and Jordan norms are equal, and diverge to +x, but whose W 1,o norms are

uniformly bounded above by 2.

EXAMPLE 5.2. Let Bn be the ordinal sum of (4.2) above, and define An snM tnBn
where Sn tn na, for some positive number a. Thus,

x >_ lln or y >_ lln
O<_x<_y<_l/n

Observe that An span (C) for all n. We calculate IIAllo, IAl,oo, IIAIIJ and IIAIIM-
An easy calculation shows that

It is easy to verify that the maximum value of [A(x,y)l occurs at (x,y) (1/2n, 1/2n), so that

IlAllo, -/4. (5.10)

The other norms are also not too difficult to calculate. Write A for Lebesgue measure on the line

segment L {(x,x)I0 <_ x <_ 1}, normalized so that A(L) - 1; write Ln for the line segment
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L, {(x,x)10 < x < l/n}; and write A2 for Lebesgue measure on [0, 1] 2 Then it is easy to

verify that the Jordan decomposition of , #A,. is given by

+(F)-nAI(FML,)
#(F) na+lA2 (F n [0, l/hi2).

It follows that

It follows also that

IIA,IIJ- I#,l(I0, 112) 2n’:’-’. (5.11)

n+([0, x] x [0, 1])= { n-l,nax’ otherwiseXe I0, /n]

eI0,/n]n+([0,1] x [0, y])= na_ otheise

Identical formulae are obtained for $. It follows, using (5.1), that

IIAnIIM 2na. (5.12)

Now fix a e (0, 1). Observe that by (5.10) and (5.11), IIAll0, and IIAnlIJ, which differ by a

constant factor of 8, both converge to 0, whereas by (5.9) and (5.12), IAnlt, and IIAnIIM, which

differ by a constant factor of 2, both diverge to +.
We turn to the interpretation of these two examples. Since the Minkowski norm dominates

the Jordan norm, by Theorem 5.1, and the two norms cannot be equivalent, by Example 5.2, we

obtain, by way of Lemma 4.3:

THEOREM 5.3. Span (C) is not complete under the Jordan norm.

Obsee that Example 5.1 completes the argument of Section 4 to similar effect: span () is

not a closed subspace of W, for any p [1, ].
Finally, obsee that in view of Example 5.2 it cannot be true that II" Ila dminates I" I,

and that in view of Example 5.1 it cannot be true that I" It, dominates IIg.
6. ONE PARAMETER SEMIGROUPS OF COPULAS

We say Ct, O, is a one parameter semigroup if Cn+t Cs Ct for all s, t.

Obsee that Ct * Co Co * Ct Ct; setting 0 we observe that C0 is necessarily

idempotent. Thus, if Ct is a semigroup, C0 is an idempotent which commutes with Ct for all t.

If for some norm limt0 IIct c011 0 and the product is continuous in each place in the

topolo of the norm, then

lim IICt Co lim IICt-to Cto Cto IIC0 Co co 0.
o

That is, continuity at 0 implies fight continuity eye,where.
In fact, the existence of a right limit at 0 implies right continuity everywhere on (0, ),

for reasonable norms:

THEOREM 6.1. Suppose is a norm on a space containing span (C), and suppose that

the product on g is continuous in each place in the topolo of the norm and also that norm

convergence implies pointwise convergence. Let C be a semigroup of copulas, and suppose

there is a function E such that lim0 IIc Ell 0. Then E is idempotent, E C C E C
for all > 0 and lim IIc coll 0 for ll 0 > 0,

PROOF. The proof is an adaptation of a classical proof to the case of copulas.
Obsee first that since norm convergence implies pointwise convergence and g is compact

in the uniform topolo, norm convergence implies uniform convergence. Since the uniform limit

of copulas is a copula, necessarily E g.
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Since for > to > O, Ct Cto * Ct-to Ct-to Cto, onesided continuity of implies

lim IIC, c,0 ’11 0
tl, to

lira ]]Ct- E Ct0][ O.

Thus, right limits exist everywhere, and also limtl.to Ct Cto * E E Cto for all to > O.

It remains to show that Cto Cto * E E,Cto. It suffices to show that Ct is right continuous

at a sequence of points tn converging to O, since if Ct,., Ct,, * E E Ct,, and > tn then

Ct Ct-t,, * Ct,, Ct-t,, * Ct, * E Ct * E.

Fix (x, y) E [0, 1] 2, and define f: [0, cz) [0, 1] via f(t) C,(x, y). Observe that since norm

convergence implies pointwise convergence, right limits limttt0 .f(t) exist everywhere. It follows
by a classical argument (an outline of the argument is given by Hille and Phillips [4,p. 282])
that the set 7)(x, y) of discontinuities of f is countable. Now let (x,y) vary over the rational

pairs (p, q) E [0, 1} 2, and set 7) UT)(p, q). Then 7) is countable. Since copulas are all Lipsehitz
continuous with Lipsehitz constant 1, Darsow et al. [2], hence equieontinuous, it follows that

lim Ct Cto
tto

pointwise for all to t 7). Since (0, cz) \ 7) includes a sequence converging to 0, we have right
continuity everywhere.

That E is idempotent now follows easily from the facts that E Ct Ct * E Ct for all

> 0, that limtt0 Ct E and that the product is continuous in each place. |

Note that Theorem 6.1 requires only that the product be continuous in each place and that

it is the product restricted to C, rather than on all of span (C), for which continuity is required.
Accordingly, we can take any of I1" I[0,oo, I" It,v, P e [1, cx) or ]]. ]]M for the norm in Theorem 6.1,
since the product is continuous in each place with respect to each of these norms, and since for
each norm convergence implies pointwise convergence. The theorem then states that a semigroup

Ct for which a right norm limit exists at 0 is necessarily right continuous everywhere in the

sense of the norm topology. We do not know whether we can take Ila or {. 11,oo for the norm

in Theorem 6.1, since we do not know whether the product, restricted to C is continuous in

each place in the topology of these norms.

Note also that, if we are willing to assume that limt/0 Ct exists, there is no loss of generality
in making the stronger assumption that Ct is right continuous at 0, since by Theorem 6.1,
we can always redefine Co to be the limit E limq0 Ct and still have a semigroup.

We address next the issue of whether measurability implies continuity for a one parameter
semigroup of copulas. There is a classical argument that this is the ease for one parameter
semigroups in a Banaeh algebra, Hille et al. [4, p. 280].

In the following discussion, measurability of a function R B where /3 is a Banaeh
space means "strong" measurability, that is, f is measurable if for any compact subset K C R,

flK is the limit pointwise almost everywhere of a sequence of measurable functions with finite
range. A function with finite range is measurable if the inverse image of each point in the range
is measurable. We will make use below of the following facts:

1. Strong measurability implies "weak" measurability; a function f R /3 is weakly
measurable if u(f(t)) is a measurable scalar valued function for each u /3*.

2. Strong and weak measurability are equivalent when the Banach space/3 is separable, Hille
et al. [4, p.73]. In this connection, recall that the spaces W",v are separable for p e [1, ),
Adams [1, Theorem 3.5].
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3. (Approximation by continuous functions:) Let P(i) denote the space of integrable B-

valued functions with domain f C R; the set of continuous Banach space valued functions is

dense in P() for all p 6 [1, cx), Hille et al. [4, p. 86].
Observe that if f R B is right continuous, then it is measurable. To see this, let

/):a--t0 < tl < < tn--b

denote a partition of a closed bounded interval [a, b] and define f’P via

t=b

where I[tk_,,t) denotes the characteristic function of the interval [tk-1, tk). Then for any sequence

of partitions for which the maximum subinterval width [P[ goes to zero, liml,l_.,0 lift f[[ 0

for all t. Accordingly, if we make the assumption that a semigroup Ct is right continuous at

0 in the sense of some norm, then by Theorem 6.1 and the preceding observation, Ct is

measurable in the sense of that same norm.

The classical argument that measurability implies continuity uses the Banach algebra in-

equality. The proof of the following theorem follows the classical proof but replaces the Banach

algebra inequality by a more restrictive condition.

THEOREM 6.2. Suppose Ct is a one parameter semigroup of copulas. Suppose also

that Ct is measurable in the sense of a norm satisfying the following conditions:

(1) There is a number M1 such that [[Ct[[ < M1 for all t, and

(2) There is a number M2 such that for any s, t, and u

llc * cu ct c,,ll _< M21lCs ctll. (6.1)

Then Ct is continuous on (0, x).
PROOF. Let > 0; we want to show that [ICt+,-Ctl] 0 as /--, 0. Let 0 < a < b < and

let I1 < t-b. Then for all s 6 [a, b] we have

c+, c (c+,_, c._,) c, c, (c+,_, c._,).

The last term in this expression is constant, hence bounded and integrable, and we have

(6.3)

Condition (1) guarantees that the integrand of the last integral above is bounded. By a result

mentioned above, together with some standard arguments, we can find a sequence of uniformly

bounded continuous functions g converging pointwise to the bounded measurable function

C almost everywhere on the compact interval [0, t], that is, for almost all s, lies g[I 0 as

n cx. With C replaced by g’ the integral in the last term in (6.3) goes to zero as r/ 0. It

follows, via the triangle inequality and the dominated convergence theorem, that

as /---. 0. This yields the desired result. |
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We will show below that the Sobolev norm [. [1, satisfies conditions (1) and (2) of Theorem

6.2, and that as a result measurability of a semigroup Ct of copulas in the sense of W 1,P, for

p E [1, x)), implies continuity of the semigroup in the sense of W 1,p, p E [1, o). We are unable to

show that condition (2) is satisfied by the uniform norm [[. [[0,. It is an open question whether

a semigroup which is measurable in the sense of the uniform norm is necessarily continuous.

We establish the inequality (6.1) for p l, with M2 2. Observe first that

by (4.3). It follows that

I(C. c) Cl,,, II((C c) c.),llo, / II((c. c)

This yields (6.1) in the case of ],. Observe that since [0, ]2 is compact, for p > 1, the

W 1,P([0, 1] 2) norm dominates the W ’([0, 1] 2) norm, so measurability in the sense of W 1,p implies

measurability in the sense of W t,t. Accordingly, if Ct is measurable in the sense of W’,
it is measurable also in the sense of W ,1, whence, by Theorem 6.2, it is continuous in the sense

of W’. Since the topologies of W l’p restricted to C coincide for p [1, x), Lemma 4.1, we

conclude that C is continuous in the sense of W 1, for all p [1, x).
Thus, a one parameter semigroup of copulas which is measurable in the sense of[ [, is

necessarily continuous in the sense of ],p, for p [1, x).
COROLLARY 6.1. A semigroup Ct of copulas which is right continuous at 0 in the

uniform norm is continuous for all (0, x) in the norm I" It,p for all p E [1,
PROOF. Let C satisfy limt/0 IIc- c0110,o 0, Then by Theorem 6.1, Ct is fight

continuous everywhere in the sense of the uniform norm. If is a continuous linear functional

on W’([0,112), p 5 (1, x), (Ct)is a right continuous real valued function, by Theorem

4.4, hence measurable, by an observation above. Thus, Ct is weakly measurable in the

sense of W ’’. But weak and strong measurability are equivalent for the separable spaces W ’P,
1 _< p < oo, so, by Theorem 6.2, Ct is continuous in the sense of] I, for all > 0. |

One might reasonably expect that fight continuity in the sense of the uniform norm

would imply measurability in the sense even of the Minkowski norm IIM, since on heuristic

grounds one expects reasonable functions to be measurable. Then right continuity at 0 in the

uniform norm would imply continuity for all > 0 in the sense of IIM, directly by the classical

Banach algebra argument, without worrying about how to obtain (6.1) in the case of Sobolev

norms. It is an open issue whether this is the case. Hille and Phillips raise the same issue in the

related context of transition matrices of Markov processes with discrete (but not finite) range,

[4, p. 635]. We point out that measurability of a Banach space valued function depends on the

norm used, so that the copula valued functions Ct here of interest may be measurable or not,

depending on what Banach space we take C to be a subset of.

We now turn to the issue of analyticity of a semigroup Ct.
THEOREM 6.3. Let C be a semigroup in C, and suppose that limit0 [IC E[[M 0, where

E Co. Then there is an A E span (C), satisfying A E E A A, such that

C eAt

for all > 0, where eAt is defined by its series representation, with the convention A E.

This is a classical result for Banach algebras; for a proof, see Hille et al. [4].
It is an open question whether the generator A of the semigroup Ct in Theorem 6.3 is required

to have the form A C E, where C and E are copulas, E is idempotent, and EC CE C.
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It follows from Theorem 6.3 and some other elementary arguments that a semigroup Ct of

copulas possesses an exponential representation Ct eAt for some A E span (C) if and only if

limt0 IICt- EIIM O, where E Co. This says roughly that the Minkowski norm is a natural

one for one parameter semigroups with generators in span (C).
It is by no means true that all one parameter semigroups of copulas possess exponential

representations. We next exhibit a one parameter semigroup C which is right continuous at 0

in the sense of II,p for p E [1, cx)) but not in the sense of II,o and hence, by Theorem 4.6,

also not in the sense of IIM. By Corollary 6.2, therefore, the semigroup does not possess an

exponential representation.

EXAMPLE 6.1. It was shown in Darsow et al. [2] that the copulas of a Wiener process have

the form

where s < and

v s

Since the Wiener process is a Markov process, we have, for s < u < t,

C,; C;t C,;t. (6.5)

Equation (6.4) implies the following scaling property: if r > 0 and s < then

C,Ir;tlr Cs;t- (6.6)

It follows from (6.5) and (6.6) that the family of copulas Bt defined by

(6.7)

where Cs;t is given by (6.4), has the semigroup property for > 0, as is readily verified. (We
remark that it is also possible to go backwards: if B is any one parameter semigroup of copulas

and we define C’; Bin t for s < t, then the family C; satisfies the Markov condition (6.5)
and also the scaling property (6.6) of a Wiener process.)

We will show that limt0 list MI],p 0 for p (5 [1, cx)) but not for p

From the definition, we have

Bt(x y) C
eU2G-i(y) C-(u). du.

x/et_l

It follows, after making a substitution in the integral, that

Since

we have

/_ et/2y u _ua/2B,(C(x), C(y)) G( v/e 1
)e du.

et/2y- u f vf, y > u
lim C()
tO y/et- O, y < u

Jim Bt(G(x) G(y)) X(_oo,u](u)e-’/2 du
LO

/min{x,y} e -u2/2 du

C(min{x, y})

min{C(x),.C(y)}).
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||ence, lim0 Bt M pointwise, and since C is compact in the uniform topology, also uniformly.

By similar arguments, limtl0 Bt,l M,1 pointwise a.e. and limt0 Bt,2 M,2 pointwise a.e.

From the foregoing results and the dominated convergence theorem, we obtain

lim 11Bt M [[1,p 0
t0

for p E [1, x). The result does not hold for p oc, however; the partial derivatives Bt, and Bt,2
are continuous for all > 0, but M,1 and M,2 are not continuous functions, hence not the uniform

limit of continuous functions.

That Bt possesses no exponential representation now follows from an observation made above

(see discussion following Theorem 6.3). Observe that if Bt possessed an exponential representation

Bt e At then it would be true that limt.odBt/dt A. It can be verified directly that the

semigroup B of this example does not possess an exponential representation, since the latter

limit is 0 except when x y, when it is infinite.

7. DISCUSSION.
We conclude with some remarks about compactness. Recall that C is a compact subset

of W’ and also that the product fails to be jointly continuous in the topology of uniform

convergence. The question is whether C itself or any useful subset is compact under any of the

other norms addressed. It is easy to verify that if is any norm which dominates the uniform

norm, and is compact under the topology of II, then necessarily the product on C is not

jointly continuous in the topology of I[. This implies that C is not a compact subset of W I’p

for p E [1, oo), since the product is jointly continuous on C with respect to the norms of these

Sobolev spaces, Theorem 4.2. More generally, this seems to imply that we cannot obtain both

compactness of C and joint continuity of the product in a single topology. We thought at one

time that it might be possible to find a topology under which the group G C C of invertible

copulas was a compact group. But this seems unlikely, for the following reasons: 7 is dense in C

in the uniform topology, Darsow etah [2], and thus is dense in the topology of any norm which

is dominated by the uniform norm. Compactness fails because 7 is not closed. On the other

hand, if dominates the uniform norm, and C, is a sequence of invertible copulas converging

uniformly to a noninvertible copula, say P, then if $ were compact in the topology of II, there
would be a subsequence converging to an element of 7, contradiction, since then the subsequence

would necessarily also converge uniformly to the element of G. A norm with respect to which G
was compact could accordingly neither dominate nor be dominated by the uniform norm.

We consider it unlikely that any norms in which the product behaves well will be found to

possess any useful compactness properties.
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