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ABSTRACT In this paper totally disconnectedness is generahized to maximal disconnectedness, which is investigated,
and additional properties of totally disconnectedness and 0-dimensional are given.
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1. INTRODUCTION

Totally disconnected spaces were considered as early as 1921 by Knaster and Kuratowski [1] and by Sierpinski
[2]. A space (X,T) is totally disconnected iff the components of (X,T) are the points. Questions about possible
gencrahzations of totally disconnected spaces led to the following discovery.

THEOREM 1. Let (X, T) be a totally disconnected space. Then (X, T) is T3.

PROOT: Since components are closed, then the singleton sets are closed, which implies (X, T) is T3.

Thus for Tj spaces, totally disconnectedness is maximal disconnectedness in the sense that the components are
the smallest possible sets, which motivated the introduction and investigation of maximal disconnected spaces in this
paper.

2. MAXIMAL DISCONNECTEDNESS.

DEFINITION 1. Let (X, T) be a space and let C be a component of (X, T). Then C is a minimal component of
(X, T) iff C does not contain a nonempty proper closed connected subset. The space (X, T) is maximal disconnected
iff the components of (X, T) are minimal components.

Note that for a space (X,T), Cl({z}) is connected for each z € X and that a component C of (X,T) is a
minimal component of (X, T) iff C = Cl({z}) for each z € X.

In 1961 A. Davis (3] was interested in properties R,_; weaker than 7;, which together with T,_;, would be
equivalent to T;,7 = 1,2. In the 1961 investigation Ry and R; spaces were defined. A space (X,T) is Ry iff one of the
following equivalent conditions is satisfied: (a) if O € T and z € O, then Cl({z}) C O, and (b) {Cl({z}) |z € X} is
a decomposition of X. A space (X, T) is Ry iff for z,y € X such that Cl({z}) # Ci({y}), there exist disjoint open
sets U and V such that Cl({z}) C U and Cl({y}) C V. The 1961 paper [3] was a continuation of work done by N.
Shanin in 1943 [4], in which R, spaces were called weak regular spaces. Combining this information with the note
above in a straightforward proof, which is omitted, gives the following result.

THEOREM 2. Let (X, T) be a space. Then (X, T) is maximal disconnected iff (X, T) is Ro and the components
of (X, T) are closures of singleton sets.

The results above can be combined to obtain the following result.

COROLLARY 3. Let (X, T) be a space. Then the following are equivalent: (a) (X, T) is totally disconnccted,



486 C. DORSETT

(b) (X, T)1s Ty maximal disconnected, and (c) (.X, 7) is Th maximal disconnected

THEOREM 4. Let (X, T) be aspace Then (X, 7) 1s maximal disconnected 1ff every homecomorphic image of
(Y. 7) 1s maximal disconnected.

The straightforward proof i1s omitted

Combinmg Theorem 4 with Corollary 3 and the fact that T 1s a topological property gives the following result

COROLLARY 5 Totally disconnectedness 1s a topological property.

In 1977 [5] To — wdcnti fication spaces were used to further investigate and better understand Ry spaces  Let
(X.T) be a space and let R be the equivalence relation on X defined by xRyt Cl({x}) = CIl({y}) Then the
To — 1denta frcation space of (X, T) s (X(TO),Q(T0)), where X(TO) 1s the set. of equivalence classes of R and
Q(T0) 15 the decomposition topology on X(T0Q) [6] The space (X,T) is Ry iff (X(TO),Q(TO)) is Ty [6]. Let
P(TO) (X, T) = (X(T0),Q(TO)) be the natural map. Below, Ty — identification spaces are used to further
investigate maximal disconnected spaces

THEOREM 6. Let (X,T) be a space. Then (X, 7T) is maximal disconnected iff (X (T0), Q(TO)) is totally
disconnected

PROOF Suppose (X,T) is maximal disconnected. Let € be a component of (X(70), Q(TO)). Since (X,T)
15 Ro, then X(TO) = {Cl({z}) | = € X} [5]. Let Cl({z}) € C. Then P(TO)~'(C) is a closed and connected
[7] subsct of (X, T) containing z, which implhes P(TO)~'(C) = Cl({z}) and C = {CI({z})}. Thus components of
(:X(TO),Q(T0)) are singleton sets, which implies (X (T'0), Q(TO)) is totally disconnected.

Converscly, suppose (X(70),Q(TO)) is totally disconnected. Let C be a component of (X, 7). Let r €
C. Since (X(T0),Q(TO)) 1s totally disconnected, then (X(T0),Q(TO)) is Ty, which implies (X,T) is Ry and
X(TO) = {Cl({z}) | * € X}. Since P(TO) is continuous and closed [7], then P(T'O)(C) is closed connected, with
Cl({z}) € P(TO)(C), which implies P(TO)(C) = {Cl({z})} and thus C = Cl({z}). Hence (X,T) is maximal
disconnected.

Combining the results above with the fact that for a space (X, T), (X(TO),Q(TO)) is Ty gives the following
result.

COROLLARY 7. Let (X, T) be a space. Then (X, T) is maximal disconnected iff (X (7°0), Q(T0)) is maximal
disconnected.

THEOREM 8. Let (X,T) be a space, let Y C X, and let Ty be the relative T topology on Y. Then
(Y(Ty O), Q(Ty O)) 1s homeomorphic to (P(TO)(Y), Q(TO)p(ro)y))-

PROOF- For each y € YV let K, € Y(TyO) containing y and let Cy € P(TO)(Y) containing y. Let f =
{(Ky,Cy) | y € Y}. If Ky = K, then Clp, ({y}) = Clr,({z}), which implies Cly({y}) = Clr({z}) and Cy = C:.
Thus f is a function. Clearly f is onto. If Cy = C,, where y,z € Y, then Clr({y}) = Clr({z}), which implies
Clr, ({y}) = Clr,({#}) and Ky = K.. Thus f is one-to-one. Let O € Q(TO)p(ro)y). Let U € Q(TO) such that
O =UN P(TO)(Y). Then f~1(0) = P(TyO)(P(TO)~'(U)NY) and since P(TO)"YU)NY € Ty and P(TyO) is
open [7],
then f~!(0) € Q(TyO). Thus f is continuous. If V € Q(Ty0), then P(TyO)~'(V) = WNY, where W € T,
and f(V) = P(TO)(W)n P(TO)(Y) € Q(TO)p(ro)y)- Thus f is open and hence f is a homeomorphism from
(¥ (Ty 0),Q(T¥ 0)) onto (P(TO)(Y), Q(TO)proyy)).

THEOREM 9. Let (X,T) be a space. Then (X,T) is maximal disconnected iff every subspace of (X,T) is
maximal disconnected.

PROOF: Suppose (X, T) is maximal disconnected. Let Y C X. Then (X(T0),Q(TO0)) is totally disconnected,
which implies (P(TO)(Y), Q(TO)p(ro)(v)) is totally disconnected [6]. Since (P(TO)(Y), Q(TO)p(ro)(v)) is home-
omorphic to (Y (Ty 0), Q(Ty 0O)), then (Y (Ty 0), Q(Ty O)) is totally disconnected, which implies (Y, Ty) is maximal
disconnected

Clearly, the converse is true.
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THEOREM 10 Let {(Xa.Ta) | @ € A} be a nonempty collection of nonempty spaces. Then (Xa, Th) is
maximal disconnected for cach a € AT (Hael‘ Xa. W) s maximal disconnected, where 17 s the product topology
on [T, Xa

PROOT" Suppose (Xa, Ty) 18 maximal disconnected for cach o € A Then (Xa(TA0), Q(T.0)) is totally
disconnected for cach a € A and ([],e 4 Xa(T20), W), where Wois the product topology on [, ¢4 ¥a(T20).

X )(W0).Q(V0)) [8]. then

15 totally disconnected [6]  Simce ([T 4 Xa(Ta0), V) 15 homeomorphic to (([T,¢ 4 -

((Hn“ Xo)(WO0), Q(3W0)) 1s totally disconnected, which implies (Hne « Ya . 1) 1s maximal disconnected.

Conversely, suppose ([] X,, W) 1s maximal disconnected Lot 3 € A, Let (g be a component of (X3, Tp).

aEA "
Let r; € Cy Torcach a € A, a # 3, let (4 be a component of (Xq,Ta) and let xo € Ca. Then [T, ¢ 4 Ca is a closed
connected subset of [T, 4 Xa contaming z = [, 4{xa}, which implies [T, 4 Ca = Cl({2}) = [Taea Cl{7a}) and
(3 = Cl({rz}) Thus (X3, T;) is maximal disconnected

Combming the results above with the fact that the product space of a nonempty collection of nonempty spaces
1s Ty 1T cach factor space 1s Ty gives the next result.

COROLLARY 11 Let {(X4,Ta) | @ € A} be a nonempty collection of nonempty spaces. Then (X,.T,) is
totally disconnccted for each a € A ifT (HQEA Xao, W) is totally disconnected.

In S. Willard’s 1970 book [6] relationships between totally disconnected and 0-dimensional were examined. A
space (.Y, T) 1s O-dimensional iff each poimnt of X has a neighborhood base consisting of closed open sets. Below,
results in Willard’s book are used not only to further investigate maximal disconnectedness, but also, to further
investigate totally disconnectedness.

Since every 0-dimensional space 1s completely regular, then every 0-dimensional space is regular, and thus R,
[9] and Rq [3].

THEOREM 12. Let (X, T) be a space. Then (X,T) is 0-dimensional iff (X(T0), Q(T0)) is 0-dimensional.

PROOT: Suppose (X,T) is 0-dimensional. Let C € X(TO). Let z € C. Let O be a neighborhood base of x
consisting of closed open sets. Since P(TO) is closcd, open, and continuous [7], then P(T0O)(0Q) is a ncighborhood
base of C consisting of closed open sets. Thus (X(7T0),Q(TO)) is 0-dimensional.

Conversely, suppose (X(T0),Q(TO)) is 0-dimensional. Let z € X. Let C € X(TO) such that z € C. Let O be
a neighborhood base of C' consisting of closed open sets. Since
P(TO)~'(P(T0)(0)) = O for each O € T [7], P(TO)~}(0O) is a neighborhood base of z consisting of closed open
sets. Thus (X, T) is O-dimensional.

THEOREM 13. Let (X, T) be a 0-dimensional space. Then (X, T) is maximal disconnected.

PROOF" Since (X, T) is 0-dimensional, then (X,T) is Ro and (X(70),Q(T0)) is 0-dimensional Ty, which
implies (X (T'0), Q(TO)) is totally disconnected [6] and (X, T) is maximal disconnected.

COROLLARY 14. Every 0-dimensional Ty space is totally disconnected.

DEFINITION 2. A space is rim-compact iff each of its points has a base of neighborhoods with compact frontier
[6].

THEOREM 15. Let (X, T) be a space. Then (X, T) is rim-compact iff (X(T0),Q(TO)) is rim-compact.

PROOF: Suppose (X, T) is rim-compact. Let C € X(TO). Let z € C. Let O be a neighborhood base of z con-
sisting of neighborhoods with compact frontiers. Let O € O. Then Fr(Int(0O)) is a closed subset of the compact set
Fr(0), which implies Fr(Int(0)) is compact. Then P(TO)(Int(0)) € Q(TO) and P(TO)~*(Fr(P(TO)(Int(0))))
= Fr(P(TO)~Y(P(TO)(Int(0))))[7] = Fr(Int(O)) is compact, which implies Fr(P(TO)(Int(0))) is compact [7].
Thus { P(TO)(Int(0)) | O € O} is a neighborhood base of C consisting of neighborhoods with compact frontiers.

Conversely, suppose (X (T0), Q(T0O)) is rim-compact. Let £ € X. Let C € X(TO) such that z € C. Let O be
a neighborhood base of C consisting of neighborhoods with compact frontiers. Then {Int(i/) | U € O} is a neighbor-
hood base of C' consisting of neighborhoods with compact frontiers and since for cach i € O, Fr(P(TO)~(Int(U))) =
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P(TO)~"(Fr(Int(U))), which 1s compact [7], then {P(T'O)~'(Inl(i4)) |4 € O} 1s a ncighborhood basc of r consist-
ing of neighborhoods with compact fronticrs.

THLOREM 16. Let (X, T) be nm-compact Then (X, T) 1s 0-dimenstonal iff (X, T') 1s maximal disconnected.

PROOT" Suppose (.X,7T) 1s 0-dimensional. Then (X(7'0),Q(T0)) 1s rim-compact 0-dimensional Ty, which
implies (X(T0), Q(TO)) 1s totally disconnected (6] and thus (X, T) 1s maximal disconnected

Converscly, suppose (X, T) 1s maximal disconnected  Then (X(70), Q(T0)) 1s nim-compact totally disconnected
Ty, which imphies (X(T0), Q(T0)) 1s 0-dimensional [6] and thus (X, T) 1s 0-dimensional.

COROLLARY 17. Let (X, T) be im-compact. Then (X, T) is O-dimensional Ty iff (X, T') 1s totally disconnected.

The last result in this section follows immediately from the fact that for Ty spaces, metnzability and pscu-
dometrizability are equivalent

COROLLARY 18. Let (X, T) be totally disconnected. Then (X, T) is metrizable iff (X, T) is pscudometrizable.

Thus in results known for totally disconnected metric spaces, metric can be replaced by pscudometric.
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