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ABSTRACT. In this paper, we study initial value problems for coupled second order delay differ-
ential equations with variable coefficients. By means of the application of the method of steps and
the method of Frobenius, the exact solution of the problem is constructed. Then, in a bounded
domain, a finite analytic solution with error bounds is provided. Given an admissible error ¢, we
give the number of terms to be taken in the infinite series exact solution so that the approximation
error be smaller than ¢ in the bounded domain.
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1. INTRODUCTION.

In many fields of the contemporary science and technology systems with delaying links are often
met. and the dynamical processes in these are described by systems of delay differential equations,
Bellman & Cooke [1], Driver (3], Marchuck [I1], Okamoto & Hayashi [13]. The delay appears
in complicated systems with logical and computing devices, where certain time for information
processing is needed.

The theory of linear delay differential equations has been developed in the fundamental mono-
graphs Bellman & Cooke [1], Driver [3], Hale [10], Myshkis [12], Pinney [15]. Analytic solutions
of some linear systems of delay differential equations have been investigated by Cherepennikov [2],
Jédar & Martin [8], Jédar & Martin {9], Rodinov [16].

In this paper, we consider initial value problems for systems of second order delay differential
equations of the form

X"(t) + A()X'(t) + BO)X (1) + By(t)X'(t — w) = F(t), t > 0 }
(1.1)

X(t)=G(), t € [-w,0], w>0

where A(t) and B(t) are analytic C™" valued functions on the positive real line, B;(t}is a C'*
valued continuous function, the unknown X (t) as well as F(t) and G(t) are C" valued functions,
with F(t) continuous in ¢ > 0 and G/(¢) is a continuously differentiable function in [—w,0}.

Problem (1.1) can be transformed into the equivalent extended first order system

Z(t) = [ ;‘((tt)) ] .
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o 0o o ], i 0 -1 S| 0
/(/)+[0 I3|(t)]/(/—11)+[3(/) .*l(/)]+/'“)_[I"(I)]’I>0

Z(1) = [ (('f;((l’)) ] e [—w )

but this approach has some drawbacks. such as the increase of the computational cost and the
lack of explicitness dne to the relationship X (/) = [1,0]Z(1).

The aim of this paper is twofold. First of all we construct a series solution of problem (1.1)
bv means of a matrix method of Frobenius and the method of steps, but dealing directly with
(1.1). Secondly we truncate the series solution and provide crror hbounds for the continuous linite
approximate solution when 1 € [nw. (14 1)w] and n is a positive integer. For the constant coeflicient
case. systems of second order delay differential equations have been recently studied in Jodar &
Martin [8] and Jodar & Martin [9] avoiding the transformation of the problem into an equivalent
extended first order system.

This paper is organized as follows. In section 2 we construct a series solution of problem (1.1).
rror analysis of the finite truncated series in terms of the data, for a given interval [nw, (n + 1)uw],
is studied in section 3.

IT P is a matrix in CP*7, we denote by || P|| the 2-norm of P defined in Golub & Van Loan [5. p. 1]

2. A SERIES SOLUTION OF THE PROBLEM.
We begin this section considering the differential system
X"(t)+ AOX' (1) + B(H)yX(1) = 0. (2.1)

Let us suppose that A(t), B(t) are C"*" valued analytic functions in |t| < @ with 0 < @ < +o00
and

[
N~
-

Aty =Y A, B(t) = Y Bat", |t| < a, (2.

n>0 n>0
where A,,, B, arc matrices in C™*". From the Cauchy inequalities, there exists a positive constant.
L. such that
IAP" < L 1Bulle™ < 1, 0 < p < a, n >0, (23)

Let us look for C™" solutions of (2.1) of the form X (t) = Yn>o Cut™, where €, is a matrix in
C™" to be determined. Assuming the convergence of X (¢) and of its formal derivatives

X'(t) = 3 (n 4+ 1)Cpat™, X"(t) = D (n+2)(n +1)Cryat™

n>0 n>0
and substituting the expressions into (2.1), it follows that the coefficients C, must satisfy
Y +2)(n+1)Cusa+ [ S +1)An; Crpr + Bas,C, ) H " = 0.
n>0 =0
Equating to zero the coefficient of each power t" , one gets

(n + 2)(" + 1)Cn+2 =- Z ((.7 + I)Aﬂ—]CJ+] + B?l—IC]) » N 2 0 (2~4)

7=0

where Cp, C, are arbitrary matrices in C™". Taking norms in (2.1) and using (2.3). it follows
that
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(n42)(n + D]|Cpge|l <

) < Shco (SELLIC, all + 511G 1) <

P

(oA

< z’]‘:() (O + ])"A"“J“”('J'H” + ||Bn—,||

< o (A DICll+ 11 2+ LGl

=

We have added the last term for the sake of later convenience. Now, let us introduce the sequence
Coll, v = ||C'1]], and for n > 0, 4,42 is defined by the

of positive numbers {9, }a>0 defined by 5 =
recutrent equation

[‘ n .
(n+2)(n+ Dyug2 = = YU+ Dver %) + Lynsip, n > 0. (2.5)
=0
Hencee,
ICall < Yny m 2 0.
For n > 1, we may write (2.5) in the form
L n—1
n(n+ Dy = = DU+ Dvsr+7) 0 + Lyap (2.6)
7=0

and for n > 2,

pr(n + 1) yngr =

= 2 T2 (0 + D + 1) 2+ Lp(nye + ynct) + Lyap® =

=n(n = 1)y + Lnyap + Lyap?,

by virtue of (2.6).

Hence,
_ 2
i1 = [n(n—1)+ Lnp+ Lp h",nzz
p(n +1)n
and
|t -1)+L Lp?|vn t
2L TGl Vo 7720 7. LYW U A
noteo  aftft meo p(n+ )y, p

Thus for any pair of starting matrices Cp and C, the series X (t) = 3,50 Cxt™ with matrices C,
defined by (2.4) is absolutely convergent in [t| < a.

Let us denote by X;(t) the solution of (2.1) constructed by the above procedure with C,, defined
by (2.4) with Co = I, C; = 0, and let X,(t) be defined in the same way with Co = 0, C; = I.
Then, from Lemma. 1 of Jédar & Legua [7] and the definition given in Jédar & Legua [7], the pair
{X1(t), X2(t)} is a fundamental set of solutions of (2.1) in |t| < a, and the set of all C” solutions of
(2.1) in || < a, is given by

X(t) = X,(t)C + X,(t)D, C,D € C".

Let H(t) be a continuous C” function in |t| < a, and let us consider the non-homogeneous
problem

X"(t)+ A@)X'(t) + B(t)X(t) = H(¢), |t] < a. (2.7)
From Lemma 1 of Jédar & Legua [7], the C**?" valued function W(t) defined by
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. Xy X,()
l’ l = - ry 2.(‘
Vi) [,\;(f) Xi(1) (2:8)
is invertible in |t] < a. Let us denote by
r— 4 "' (I) ‘;IJ([) . X7
W=ty =vu=1_,' ; A 1<y <2 29
(=" ["2!(’) "22“)} HECT NSy s (29)

Let us look for a particular solution of (2.7) of the form
Z(t) = Xi(1)D(t) + X2(t)Dy(2),

where {X;(t), X3(t)} is the above fundamental set of solutions of (2.1) and D,(t). D,(1) are C’
valued functions satisfving

Il [ o ‘
W(t)[Di(“]—[”(l)].[I|<n. (2.10)
Note that (2.10) means that
Xi(0) Dy () + Xo(1)Dy(t) = 0,
XI(6)DL(t) + X5 Dy(1) = H(1).
Hence Z(1) satisfies
Z"t)+ A Z'(t) + B(HZ(1) =
= [X7() + A()X] + B(t) X1 ()] Di(1)+
+XZ(@) + AN + B(O)X2()]Da(t) + H (1) = H(2),
Z(0) = Dy(0), Z'(0) = D(0).
A solution of (2.10) for Dy(t), D,(t), satisfying D;(0) = D,(0) = 0 is given by
t t
Ds(t) = /0 Via(z)H(z)dr, Dy(t) = /0 Vao(2) H(z)dz.
Since (2.7) is linear, its general solution is given by

X(t) = X2()C1 + X5()Cy + Z(1) =

(2.11)
= Xu1(t) [C1 + f3 Vaa(2) H(2)da] + Xa(t) [C2 + f§ Vaa(z) H(z)da]
where C,, C; are arbitrary vectors in C™. Given fixed initial conditions
X(O) = Gl, X(; = Gg, (212)

the unique solution of (2.7) satisfying (2.12) is given by (2.11), where the vectors C;, C; must
satisfy G; = X(0) = C; and G, = X'(0) = C,. Thus the following result has been established.

THEOREM 1. Let us consider equation (2.7) where A(t), B(t) are analytic C"*" valued func-
tions with power expansions defined by (2.2) and let H(t) be a continuous vector function. Let
{X1(t), X2(t)} be the pair of C™" analytic solutions of (2.1) satisfying X,(0) = I, X(0) = 0,
X:(0) =0, X5(0) = I, and let W (t) and V(t) be the C**?" valued functions defined by (2.8) and
(2.9) respectively. Then, the unique solution of the initial value problem (2.7), (2.12), is given by

(2,1) where (71 = G], Cz = Gg.

Let us consider the delay differential system (1.1) written in the form
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(2.13)

XU(1) + A()X(1) + B(t)X (1) = F(t) — By()X'(1 = w), t > 0
X(t) = G(t), t € [-w,0] }

where A(t), B(t) are analytic C™" valued functions on the real line, and note that for { € [0, w],
the right-hand side of (2.13) is a known continuous function. Let {X,(¢), X3(¢)} be the fundamental
set of solutions of (2.1) on the real line provided by Theorem 1, let W(t) and V'(t) be defined by
Theorem 1 and let us introduce the matrix kernel ' : R x R — C™", by the expression

K(t,x) = Xy ()Via(z) + Xo(t)Vao(1), (2.14)

and note that from the definition of V/(t) and W (¢) one gets K (t,t) =0 for t € R.
Let H(z) be a continuous C' valued function and let K(#,r) be defined by (2.14), then we
inttoduce the operator W defined by

t
(WH)(t) = /0 K(t,z)H(z)dr, t > 0. (2.15)
It is clear that W is a linear operator, i.e.,
W(aH + 8J) = aWH + BWJ.

Ilere and below, when possible, we will drop the dependence on t for the sake of brevity.
From Theorem 1. the solution of (2.13) can be written in the form,

X=X+W(F-BX_,)=X+WF-W(BX"_,). (2.16)
where
X' (2) = X'(z —w)
and
X(t) = X1(t)G(0) + X2(8)G'(0), ¢t > 0. (2.17)

Note that (2.16) is a feedback expression that provides the solution of (1.1) in an interval of
length w, in terms of the solution in the previous intervals of length w. In order to find a closed
form expression for the solution of (1.1) in any interval [nw, (n + 1)w|. we introduce a recurrent
sequence of integral operators. If H is a continuously differentiable function in [—w, +o0[, we define
for a positive integer k,

Wi(BiH) = W(BlHl)v (2.18)

and for k£ > 1,

(Wi(B1H))(t) = W(B1(W;_1(B1H))-u)(t) =
(2.19)
= [{ K(t,z)Bi(2)(Wi_(B1H))(z — w)dc.
As above, (W;_,(B1H))_u(t) = 2(Wi_1(BiH))(t — w). Now, we prove that the solution of
(1.1) can be written in the compact form

X(#)=G(t), t € [~w,0]
and for t € [nw, (n + 1)uw]
X=X +WF+ i (-1)*W(Bi(WF)_,.\+

(2.20)
+ 22=1("1)kwk(31/¥—w) + (=)W, (BiG ).
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Indeed, if t € [0, w)], from (2.16) and (2.18) it follows that

X =X +W(F - B("

—w

) = X + WF - Wi(B,G_,,).

Thus (2.20) holds for n = 0. Let us suppose that (2.20) is true for t € [nw, (n + 1)w] and let us
take t € [(n + 1)w, (n + 2)w]. From (2.16) and the induction hypothesis, we can write

X=X+WF -BX. )=
= X+ W (F = Bi§ [Xow+ WF)ou + Ty (1) (Wi(BuWF)_y))-u+
+ Sia (S MW B ) + (1) W (BiG-w))-u)) =
= X+ WF = W(BIXL,) = WB(WF)_,) + St (1) W(B (Wi Bu(WF)-u)) ) +
+ Chaa (D WB(WL(BIX-))-w) + (= 1) W(By (Wi s (BiG-w))-u) =

X+ W+ S (1 W Bi(WF)_, )+
(2.21)
+ TR (D W(BIX_L) + (1) Woia(B1G L)
Note that (2.21) coincides with (2.20) replacing n by n + 1. Thus the following result has been
proved.

THEOREM 2. Let us consider the problem (1.1) under the hypothesis of Theorem 1. Let
{Wi}k>1 be the sequence of operators defined by (2.18) and (2.19) where B;(¢) is a C™*" valued
continuous function and let K(t,z) be defined by (2.14). If X(t) is defined by (2.17), then the exact
solution of (1.1) in the interval [nw, (n + 1)w], for n > 0, is given by (2.20).

REMARK. It is easy to show that the integral operators Wi defined by (2.18), (2.19) can be
written in terms of the data in the form

(Wi(BH))(2) =
= LR T [K (6 ) By(t) 2o K (fn = w, o) - (2.22)

- Bi(tp1) 52 K (i — 0, ) Bu(tp) H(t,)] dtpdtypy - - i,

wherep=n—k+1.

From a computational point of view, the solution provided by Theorem 2 has the drawback that
the expression of K (t,z) and X/(t) is given in terms of infinite series involving X;(t), X,(t) and the
block entries of V(t) defined by Theorem 1. In the sequel we construct finite approximate solutions
of (1.1) obtained by truncation of the quoted infinite series.

3. FINITE ANALYTIC APPROXIMATE SOLUTIONS AND ERROR BOUNDS.
Let X;(t) and X,(t) be the pair of C"*" analytic series solutions of (2.1) given by Theorem 1,
let 2 > 1 and let

+o00 400
Xi(t) =Y Cut™, Xa(t) = Y Dat™, 0 <t < 400,
n=0

n=0

‘Yll(t) = Z Cat™, ‘le(t) = Z D,t",

n=0 n=0
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Y,(t) = X0.(1)G(0) + Xu(8)G(0), (3.1)

K1) = X0 (O)VE(0) + Xa(t)Vi(2), (3.2)

where V(1) and V},(x) denote the block entries of the inverse of the i-th partial sum of W(r).
(See below (3.9)-(3.12)).
Note that from Lemma | of Jédar & Legua [7], the matrix function W(1) defined by (2.3) satisfies

W'(t) = C)W(t), W(0) = I,. C(1) = [ _[2(” _/1(1) ] .

Let S, be the positive constant

, (g4 )w .
S, = cxp /0 (IC(x)||dr]) -

From Flett [1, p.114], it follows that

WO < Spe WO = IV < Sp0 € 0 (g + Do) (3.3)

and

maa {1 X Ol 1X O IX2 O 1XO L VO Va1 < S5

(3.4)
t€{0.(g+ 1w
From the Cauchy inequalities, it follows that
Ol < Sylz(g + Dw]™, IDall € S,lz(g+ Dw]™'. n > 1. 1 € [0.(g+ 1w)
= and r be the positive constants defined by
r=z(¢g+ 1w, z>1.
Then, for 0 <t < (g + 1)w, it follows that
[1X1(8) = Xu()l = 1 Z3204 Cat™ll < E3200 ICalll™ <
. (3.5)
v n w]tt! Sq
S bq " '+1 ltl [z(q + l)w] = Sq [E(z-(:l-:l)]w]r' = z*(z=-1) = E'q'
Analogously,
S, .
”X2(t) - X2£(t)“ < = E:q- (36)

2(z—1)
1X1(t) = X1, = | Z3% nCot | < TEZ 0l Callle*! <

< TiEdlrt = F e (M) s S ()

— n=t

S, 1z 2 _ Sq(z=1)(+2z-1) _
<3 [(z =T (2-21)2:-] == =D

(g+1)wz*—!? 19y

te[0,(q+ 1w],

1X5(t) — X5.(t)]| < Dig, t € [0, (g + 1)w],

where
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Do = Hz =1 +:-1) _S'q(:—l)(,j.;.;_])
" o (([ + l)w - (q + l)uy:“'

From (2.17), (3.1), (3.4), (3.5) and (3.6), it follows that

(3.7)

1X() = XD < QGO+ NGO Ey, 1 € [0.(g + ).

XN < NGO+ I1G(0)]1) Sy, ¢ € [0,(g + 1)w).
Since {£,,} and {D,,} defined by (3.5) and (3.7) respectively. converge to zero as ¢+ — +0o, let
us choose ¢ as the first positive integer satisfying
Ey 4 Dy < (25)7, ¢ > 1. (3.8)

If we denote by W, (1) the i-th partial sum of W (), from the perturbation Lemma Ortega [14.
p-32] and the inequality

IW(t) - Wi(t)|| < 2(Eq + D) < S7' < W '(D]I7Y, (3.9)
it follows that W,(¢) is invertible and from the Banach Lemma Ortega [14. p.32]
IW=H I < Soll = 25,(Eyg + Dig)] = My, (3.10)
W) = W)l € 254(Ewg + Dig)M,. t € [0, (¢ + 1)), (3.11)
where
Vin(t)  Viu(t)
W) = . (3.12)
Va(t) Va(t)

Thus the approximate kernel K, (¢, ) given by (3.2) for i > 1, is well defined for 0 <t < (¢+1)w,
in the sense that W,(t) is invertible for 7 > i,. Then, we can define

(WHH)(2) = /0' Ki(t.z)H(z)dz, > 0, 1> 10, (3.13)

W(B1H) = W B H'),
(Wa( BiH))(t) = WH(Bi(W_y (BiH)) ) (1) =
= [y K.(t,2) Bi(z)(Wi_,,(Bi1H))(z — w)dz, k > 1.
In accordance with (2.22) we can write for k=n —p + 1
(We(BH))(t) =
= Ly Ji ™ T (Kt ) Ba(t) 2 Kt — w,8n) - (3.14)

++ Bu(tyn) 5 Kt — w,t,) By () H (1)) dtydtyir -+ .

Atpt1
Note that from (3.3), (3.9) and the triangular inequality, it follows that
W) S WOl + W () = W)l < Sg + 57

te0,(qg+ Dw], i > 1.

From (3.15) and taking into account that
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[ Xu(t) Xa(l) ]
W) =
\,{t(’) ‘\";l(t)

i1 >10.0<1<(¢g+ 1w, it follows that

maz {[|[Xn(Oll, IXLO 1X2l X501} < S + 57" (3.16)

Otherwise, note that from the definition of K (t,.r) and N, (/..r) given by (2.11) and (3.2) respece-
tively. and from (3.1) and (3.16). it follows that

CO1 < (GO + G OINES, + 571
[N (Lr) = K(o)|| < 3 = 1‘(":(1""'1 + DMy, +2E,M,,.

[N () 2.‘;',?. N80 < 2M,[S; + 5771,

(3.17)
e (ton)ll < 287 5 Rl < 23, (5, + 571,
o () = HR (0| € By = 1SHEq + D) My 4+ 2D, M,
1ef0,(¢q+ Dw], r€[0.(g+ Dw], 1 > iy.
Let us introduce the constants g, f; . b, defined by
mar{||G(8)]|, —w <t <0} =g, mar{||F(¢)], 0 <t < (¢+ 1w} = [,
mar{||Bi(t)|], 0 <t < (q+ )w} = b,
Irom Gradshtevn [6, p.620], it follows that
t—w  ptp—w tppr1—w (1 _ ‘ll))[l — (ﬂ. —p + 2)“)]n—p
dt,dt dt, = . 3.
/ ./ /o e (n—p+ 1) (3.18)
In particular. for £ = (n 4 3)w we have
(n+2)w  pln—w tpy1—w (n + 2) p + ] "—P+l
dt,dt i, = =1, 3.1¢
A / /0 p@lpt1” caly, = (l—])-"'l) [up ({Iq)
From (2.22) and (3.14) if k =n —p + 1, t = t,41 and p € N, we can write
(Wk(Bi H))(t) = (Wi BiT))(2) =
=[S T (K (8 t) = KL(8 1)) Biity)
Kt — w0, tao1) - Biltpsr) 57 Kt — w, t,) Bi(t,)T (1) } +
Sy {K (6 ) Bi(t) 2 K (= w,ty) -
(3.20)

DEE W —wty) = 2K —w,t, )] Bi(tyo) -
Bl”p+l)at 1 [‘s(tp-H - w, tp)Bl(tp)T(tp)} +
+{K(t, ) Bi(ta) K (6, = wotna) -+ Biltpsn) iy K (L — wity)

Bi(tp) [H(t,) — T(t,)]}) dtpdt g - - - dt,,.
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If we denote by ay and ay the constants

or = mar{[T()], pe <ty < (p+ 1)},

az = maz{||H(t,) = T(t,)]l, pw < t, < (p+ Lw},
from (3.18)-(3.20) it follows that
[Wi(BiH) = Wi (BiT)|| <
< 2 oy (TThsy bn) [ vemer (TTcp (S + S ) M) + (3.21)
o (MTiey SE) + o1 Ty By (e SB) (Mhop (S + STHM)]

Ifp=0and H =T = G_,. the expression (3.21) takes the form

”wn+l(B)("—w) - Wu+l.a(B|("—w)" < Pua

where

Prs =2 oo g (TThzo b4) [vemsr (TTico(Sh + S7IMu) +

+ 5o By (Mheyn D) (Mhmo(Sh + ST)M)] -

If we consider H = X_,,, T = &, from (2.17), (3.1) and (3.5) for ¢ € [pw, (p + 1)w]. it follows
that

-0 = X—ull < (IGO)I] + |G (0D Ey -
and from (3.21) we can write
”wk(BIX—w) - WkJ(B]A-;__w)” S Y’u,:
where

Yau = 2272 Ly ([ G(O)]| + [IG'(O)) (IT<p b1)
(S5 + 87" W (THop(Sh+ ST YMa) + Epes (IThe, S2) +

(S5 + 5,1 Eiep B (TThcy 1 S)) (TThcp (S + 57 )Mu)] -

Taking H = (WF)_,,, T = (W'F)_,, and using that ¢, € [pw, (p + 1)w], from (3.13) and (3.17),
it follows that

”(WF)-W - (W'F)-w“ S
< f(:_w |K(t — w,2) = Ki(t — w,z)|||| F(2)||dr <
< fot-w 7¢.p-1fp—ldx < Pw'fc,p—lfy—h
and from (3.21) and (3.17),
IW*F)-ull < 7 1K\t — w,2) ||| F(2)||dz <
(3.22)
< pw(S -1+ S,,—_}I)Ml,p—lfp—]‘

From (3.21) and (3.22) we can write

[Wa(Bi(WF)_u) = Wai(BIW'F)_,)|| < U,



COUPLED SECOND ORDER DELAY DIFFERENTIAL EQUATIONS 699

where

Uny = 2" pw oy (T, b4)
[(Smt 4 S20Mp 1Tt (T (S0 + 57 )Ma) +7m (T, S2) +

+ (S + Sp_—ll )M, PRI (n;:=]+| gfn)) (ni:,.(""h + "",:l )A’l;h)] .
If we denote by X, (/) for i > 1 the approximate solution of (1.1) defined in [, (n + Dw] by

Xi= X+ W+ T (1) Wi (BIW F) )+
(3.23)
+ ;:=1(_ 1 )kwkz( Bl (‘lfz )—w) + (_ 1 )n+l Wﬂ+l,l( Ijl(:-w)~
from (2.20), (3.23) and the previous comments of Section 3, it follows that the error X ({)—.X,(/)
of the approximation X,(t) with respect to the exact solution X(t) of (1.1), for ¢+ > 1o and 1 €
[nw, (n + 1)w] is bounded above by

1X(8) - X.(0)| <
(3.24)
SUGON+ NGO Evn + (0 + Do favim + pin + Ticy (Vs + Yia)
Thus, for a fixed interval [now, (no+ 1)w] and an admissible error ¢, to construct a finite analytic
approximate solution whose error be smaller than € in [now, (ng + 1)1w] it is sufficient to take 2 > #y
such that

HGON+IG O En + (0 + Dwfarn + pin+ D (Uka + Ya,) <« (3.25)

k=1

Hence the following result has been proved.

THEOREM 3. Let us consider the problem (1.1) under the hypotheses of Theorem 2 and let us
use the previous notation. If 4o is the first positive integer i satisfying (3.8) and X,(¢) is the function
defined by (3.23) for ¢ > 4o, then X,(t) converges to the exact solution X(t) of (1.1) as i — +o0, for
any t > 0. If ng is a positive integer, then the error of the approximate solution X,(t) with respect
to the exact solution X(t) satisfies (3.24) for ¢t € [now, (no + 1)w] and i > i5. Given an admissible
error € > 0, taking ¢ > iq satisfying (3.25), one gets an approximation whose error is bounded above
by € for t € [now, (np + 1)w].

ACKNOWLEDGEMENTS: This work has been supported by Generalidad Valenciana grant from
the LV.E.I. and D.G.I.C.Y.T. grant PS90-0140.

References

1. R. BELLMAN and K. L. COOKE, Differential-Difference Equations, Academic Press, New York,
1962.

2. V. B. CHEREPENNIKOV, Investigation of the solutions of a class of differential-functional equa-
tions, Sb. Asymptotic Methods in System Dynamics, Ed. USF Siberian Filial Acad. Sci.,
Irkutsk (1985), 38-44 (in Russian).

3. R. D. DRIVER, Ordinary and Delay Differential Equations, Applied Mathematics Sciences 20,
Springer, Berlin, 1977.

4. T. M. FLETT, Differential Analysis, Cambridge Univ. Press, 1980.




700 R. J. VILLANUEVA, A. HERVAS AND M. V. FERRER

5

14
15

16

. G.GOLUB and C'. F. VAN LOAN, Matrix Computations, Johns Hopkins Univ. Press, Baltimore,
MA., 1983.

. I.S. GRADSHTEYN and I. M. RYZHIK, Table of Integrals, Series and Products, Academic
Press, New York, 1930.

. L. JODAR and M. LEGUA, Solving second order matrix differential equations with regular
singular points avoiding the increase of the problem dimension, Appl. Math. Comput. 53
(1993), 191-206.

. L. JODAR and J. A. MARTIN, Explicit solution of systems of second order differential difference
equations, J. Comput. Appl. Maths., 43 (1992), 323-334.

. L. JODAR and J. A. MARTIN, Analytical solution of a class of coupled second order differential-
difference equations, Internat. J. Math. & Math. Sci., Vol. 16 No. 2 (1993) 385-396.

. J. K. HALE, Theory of Functional Differential Equations, Springer Verlag, 1977, New York.

. G. I. MARCHUK, Mathematical Models in Immunology, Translation Series, Optimization Soft-
ware, Springer, New York, 1983.

. A. D. MYSHKIS, Linear Differential Equations with a Retarded Argument, Ed. Gostckhizdat,
Moscow-Leningrad, 1951 (in Russian; 2nd Edit. 1972).

. M. OKAMOTO and K. HAYASHI, Frequency conversion mechanism in enzymatic feedback
systems, J. Theor. Biol. 108 (1984), 529-537.

. J. M. ORTEGA, Numerical Analysis, A second course, Academic Press, New York, 1972.

. E. PINNEY, Ordinary Difference-Differential Equations, Univ. of California Press, Berkeley, Los
Angeles, 1958.

. V. I. RODINOV, Analytic solution of a linear functional differential equation with a linear
deviation of the argument, Differential equations, 25 (1989), No. 4, 616-626 (in Russian).




