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ABSTRACT. The regularization of the distribution Z:f__’_x o(r - p"). which gives a regularized

X

value to the divergent series 37

o(p"). is obtained in several spaces of test functions. The
asviptotic expansion as ¢ — 01 of series of the type Y ~_ o(:p”) is also obtained
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1. INTRODUCTION.
Divergent scries of the type

~

Do) Y e, (1.1)

HE= - n=H

where p > 1 and where ¢ is a given function. as well as the asvinprotic development as & — 0F

of the related series
X x

Do oeat D slept). (1.2)

n=-x n=0
have been shown to be of inportance in several areas. amoug which we could mention the counting
algorithms used in database systems 3] and the use by Ramanujan of related series, with p = 2,
in his approach to the problem of the distribution of prime numbers [10. lecture 2].

The aim of the present article is to provide a regularization of the generalized function

o

gir) = Z ol — p™). (1.3)

n=-—2

where 6(r — £) is the Dirac delta function concentrated at the point €. so that the evaluation of
g(x) at the test function ¢(x). (y. @), provides a regularized value to the generally divergent series

x

Do o). (14)

n=—oC
We give regularizations in the standard spaces of distributions D or § as well as in the spaces
S{a} and S{x" Inr. 0} introduced in [6] to study distributional asymptotic expansions. The
regularization is achieved by using the Hadamard finite part ideas. employed in the regnlarization

of distributions defined by divergent integrals [5].
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Subsequently, we consider the asvinptotic developents (1.2) by using the theory of asvmp-
totic expansions of generalized functions. The close ties between generalized functions and asymp-
totic analysis have been studied by several authors {1.3.4.6.7.12.14.15]. who have shown that gen-
eralized functions provide a very suitable framework for the asviuptotic expansion of integrals
and series.

In the present study we obtain the expansion of (1.2) as ¢ — 0 for smooth functions with
power or logarithmic behavior near the origin.

The plan of the article is as follows. In the second section we briefly review some ideas
from the theory of asymptotic expansions of distributions. The third section studies related
expansions of convergent series. The regularization in 8’ {x*»} and in &'{&" lnr. 2"} is con-
sidered in the next two sections. respectively. where the asymptotic expansion is also given. The
last section gives an ilustration of these results to the construction of counterexamples to some

Hardy Littlewood type Tauberian theorerus.

2. PRELIMINARIES.
In this section we provide a list of spaces of gencralized functions needed in this paper. We
also discuss the moment asymptotic expansion. a concept that plays a key role in our analysis.
The basic spaces of distributions that we are going to need are the spaces D'(R), 8'(R) and
E'(R). The space of test functions D consists of the smooth functions with compact support.

The space of test functions S consist of those smooth functions ¢ for which
oW (x) = O(lz| ™). as x| — x. (2.1)

for each y.n > 0. The space £ consists of all smooth functions with the topology of uniform
convergence of all derivatives on compact sets. The dual spaces, D'. §'. and &' are. respectively.
the spaces of standard. tempered and compactly supported distributions. For details. see [11.13].
The momment asymptotic expansion in the space € takes the following form
THEOREM 1. Let f € £'. Then

X (—1)» (n)
fOa)~ Y %l—(ﬂ as A — oo, (2.2)
n=0 :
where
e = {f(x). 2™) (2.3)

are the moments.

The moment asymptotic expansion also hold in other spaces such as Og.. O),. K’ or P’ of
distributions of “rapid decay at infinity”. but it does not hold in & nor 7’ {6.7]. At present we
shall have use for the result in £ only.

Another class of spaces of generalized functions, very suitable for the study of asymptotic

expansions. is the following. Let {¢,(2)} be a sequence of smooth functions defined in (0. 2c)
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such that for each & = 0.1.2.. .. the sequence {d)ff)(.r)} is an asymptotic sequence as . - 0. 1f
A is any space of test functions. such as €. D. § or other. then the space A{o, (1)} consists of
those smooth functions ¢ () defined in (0. <) which show the behavior of the tvpe of the space

A as r — x while for small r admit the asvmptotic expansion for A = 0.1.2. .

A A A . .
Ry~ '114")(1 )(.r) + nybé )(.r) + n,u!):(; )(.r) e as o - 0, (2.4)
where ay.ay. ay. ... are certain constatits.

The functionals &, € A'{o,} are given as
(b (r)wir)) = a,. (2.5)

The generalized moment asymptotic expansion in the space £{w»}. where {n,} is a sequence
with Rea,, /' x. takes the form
x
X {a, ), (r “ g
flar) ~ E L(—-'-'—M as A x. (2.6)

,\ﬂ,.+l

n=1

where f € £{r*} and where p(e,) = (f(2). r*) are the mowents.
A moment expansion also holds in the space £ {o™ Ina r*+}. If we use the notation d,,(r)

and 4, () for the functionals defined as

{du(r). Y(2)) = a,. (2.7a)
(t,(x). p(x)) = ay,. (2.7b)

for a function v € E{a*" ln.r.e™ } with expansion

e
y(r) ~ E(a:, Inr+ a, ), as o — 0%, (2.8)

n=1

then the moment asymptotic expansion takes the form

0 ’ ’ ’ ’
— ' (@)b () In A+ [ (a,,)8, () + p{ ) bn(2)] )
fz) ~ Zl pY . (2.9)
as A — oc, where the y'(a,.) = (f(x). 2" Inx) are the logarithmic moments.
3. EXPANSION IN THE SPACE S.
In this section we consider the asytuptotic expansion as ¢ — 0% of series of the type
20
Z plo(sp"). (3.1)

=0
when the function ¢ belongs to the space S. Here p is a constant. p > 1.
Notice that the values of ¢(2) for negative x are irrelevant. What matters is that ¢ i~ smooth

near o = 0 and thus the one-sided Taylor expansion
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.02
olr) ~ o(0) + l()(l)"t'—() "(r) t - as o -0, (3.2)
holds.
In order to study (3.1) we introduce the three generalized functions fa). fo(0) and f ().

defined as follows:

x
flry = Z pro(e - p). (3.3a)
n= -
x
fela) = Zp"t“(.r P (3.3b)
n=u
()= Zp" "Sa—-p). (3.3¢)

Obscrve that f. fy and f_ are positive Radon measures and that
Fla) = folr) + fo(r). i3.4)

Notice also that (3.1) can be written as

S peler) = ¢ Nfata)o(en)) = (f4 (M) oto). (3.5)

n=0
where A = ¢~ 1,

Let us start with the distribution f(r). Clearly. f ¢ S’. Moreover.
flpr) = f(x). (3.6)
as follows directly from (3.3a). Thus

f(z) = F(lnx). (3.7

where F is periodic of period lup. The mean of F. its average over an interval of length Inp. is

1 a+lnp 1 dx 1 y
i;;; A F(Il.) du = mlﬁ f(l?)T H{; (3.8)
Therefore we can write
\_ H) o
f) = T2 + gla), (3.9)

where H(z) is the Heaviside function and where g is a periodic function of Inx of period Inp and

zero mean. It follows that if @ € S then

o

Ry — '(63 .
> protep *lnp/ ola)dr + L (3.10)
n=—x
where the oscillatory component e(e) = ¥i(d: €). given by
7)) = e{glr). o(sr)). (3.11)

is a periodic function of lne of period 1o p and zero wean.
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Next. let us consider the generalized function f_(r). 1t has compact support and thus f_(Ar)
admits the woment asymptotic expansion as A — x.

The moments are

~
3 -n n 1 R .
o= (fo(r).rky = Zp phs ;A—LT—]_ (312)
n=1
henee . )
. 1787 (r) . -
f_(/\.l[ Z m as A - XL (JIJ)

Combining (3.4). (3.9) and (3.13) we obtain the development of fo(Ae) as

\ o H (- Fathir oy .
fr) ~ = Ly g ,{V-:,,L'(p"“»-l)x"‘f" ax A - x. (3.14)

Evaluating, (3.14) at ¢ € S and setting A = £~! vields the expansion

('n“ ) ())r

1 e .
Zp"u( cp't) ~ '1"1 / olr)ydr + —— Zp(,,“l — (3.15)

=0 k=0

4. REGULARIZATION IN THE SPACE S'{.r“~}.
x
Notice that (3.15) does not give the asymptotic development of the series Z(,’)(;‘p"). for
n=0

¢ € S, unless ¢(0) = 0. We now attend to this problem. in the more general fratwework of the
0

spaces S{ }. Indeed. the development of Z plolep”) for ¢ € S{art 1,0, ...} would give the

n=0
x
expansion of Z d(ep™) for & € S by setting ¢(r) = r~1o(r).
n=0

[ Q¢ 3 A x > 3 H .
Even though the series 3> p"pip™) converges for o € S {r} for any sequence {n,} with
Rea,, / . the method of the previons section requires the consideration of the two generally

divergent series

(fx).o(x)) = Z P o(p"). (4.1a)
(f-(z). 0x)) = Zp (4.1b)

Therefore, we study the regularization of f(x) and f_(x) in the spaces S{re»}. Naturally the
two regularization problems are equivalent in view of (3.5).

Let ¢ € S{2~}. with expansion

5(,") ~ le.l'“' +ay P S ”:i-n"d “+ - as r — (OF, (42)
n

Suppose a,, = —1. Then the series giving the value of (f-(x).d(r) - Z a,r") converges. Thus
J=1

it is cnough to give the finite part of the sum Zp‘"(')(p' "Tifow) =o' a< -1 Ifa < -1 we

n=1
have
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) ) L m—
/ 1 1-- l'» 1+a
n=1
)~ N (1+a)
thus the partial suins consist of two parts. namely. the infinite part 1 =ar and the finite
— p— T
part
—n o 1 .,
(F ()0} = Bp 3 i) = =TT 13
n=1
When a = —1. we have
x
(fo(x)x™y=FpY 1=Fp Jim N =0 (4.4)
n=1 A
Therefore. the regularization of f._(r) is given by
m—1 n
(f-(x).p(r)) = Z p”“, — + Lp " ((.»')(p'““) - Zu,p“""'). (4.5)
n=1 J=1

if » € S{r*} has the expansion (4.2).
The regularization of f(.r) is given by the formula f = f, + f. since fi is a well-defined

element of $'{a*»}. Observe that if 0 € S{a"*» } has the development (4.2) then

(). () = Il)(fh'). ol /p))

1 - 'l p‘” n 2= - —(n o n
Ty Z oy 1 Zl’ ( ) - Z"Jl’ o+ J) }:1’ »(p™)
F 1= 1 n=1 21 n=0
m--1 a x m m
S g S o) S|+ et S
;=11 P n=1 J=1 n=0 J-1

= {f(x).o(x)).
so that f(x) is still a periodic function of Ina in the space S{z"}. Hence we can write. as before.

H(x)

flr)= np

+ y(r). (4.6)

where the oscillatory generalized function g(a) has zero mean.
Notice, however, that the formula H(Ax) = H(x) ceases to hold in the space S{a""}.
0

Indeed, if ¢ € S{z}, the integral o¢(x) dz is generally divergent and thus it is necessary
0

to consider its finite part Fp / ¢(x) dr. But if a,, = —1, then
JO

oc 1 x .
Fp/ dlex)de = - [Fp/ o(x) de — ay, lne] . 4.7
O 4]

so that

H(A\r) = H(x) + I—"A—’\,s,,,(.r). (4.8)

where 8,,(x) is the functional defined iu (2.5). so that {(b,,.¢) = a,,.

The momment asymptotic expansion of f_(Ar) in the space S{a"~} takes the form

m-1 | x Ml
fo(Ar)~ Z (_—M_AT + Z (——-——#(l—)———— as A - x. (4.9)
=1

14-v, _ 140, __ «
pe 1) S 1)
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If we now use (4.6). (4.8) and (4.9). we obtain the expansion of fi (Ar} as

m-1 ~
b.(0) In ,\ | [H ] M)
o ‘/‘.'\N- — t III Y A o :
J(Ar) §(l'l+::, 1A + Nup () + < [ i IJJ F%] (I’H'." —1)A
(4.10)
Set ¢ = A" 1. Then evaluation at o € S{a"*~} vields
m—1 ~
1,0 a,ne 1 x ol :)d: "
plolep) ~ L — - +—-—(Fp/ 4 2(c) — - (1)
"Z_;’ Z 1-ptty clap ¢ 0 Ty - %:H 1 ptt
as ¢ — 0 if o) ~ apr™ + e +ars + - as o - 0. Here v, = -1 and the oscillatory

component ¢(c) = w(od:e) is a periodic function of Ine of period lnp and zero mean.

Let us now replace o(r) by o(r)/r in formula (4.11). Since o(r)/r has the expansion

a™ Vg fagas 4 oo as e — 07, we obtain the formula
x
a e Fp [ olr)etde a,cm )
E (s E - t u + () + E ! . (4.12)
l - p“: Inp lup 1 - p
n=u 1=k+1

where ax = 0 and where ¢ () is a periodie fimetion of Ine of period Inp and zero mean.

In particular. if ¢ € S formula (4.12) takes the form

xX

—¢(0) Ins F[) ’;) (i)(l ) x (’)(")(())E" .
> dler) ~ N D Py a1
oer”) lup Inp $1() rg (L= ) (4.13)

n=0

5. REGULARIZATION IN S'{x* In.r. 2"}
The same regularization procedure can be applied to the space S'{a» In.r.r™ }. Indeed. we
use the finite part values

<

(fo(r).x ™ inr) = - lonpZ n = 0. {5.1)

n=1
—pttenp

G]—“_T:—l)-i. a < 1. (52)

x
(f-(z).a" Inrx) = -lannp""("“) =

n=1
to obtain the regularization of f_(x) and. consequently. of f(2:). The gencralized function f(x)
remains a periodic function of Inz, of period Inp.

Formula (4.7) becomes

it 1 x , (Ing)?
Fp/ dlex)dr = ~ Fp/ o(a)da — a,,Ine — a,,,( n‘:) (5.3)
0 € 0 . 2
if p(x) ~ 302, (0) Inz + a))r® . as x — 0F and a,, = -1
The asymptotic formula then takes the form
x k=L '
alme+u, ap™inp
S vier) ~ 3 | )
n=0 1=1 1 —p (1 -V ')2
Fp [ (™ tdr  aplne  aj(lne)?
+ - - = + ()
Inp Inp 2lup
X a lne +a ' I)"J l"l)
+ . L+ . as e—0F. 54
P R e R &
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where . = ().

6. AN ILLUSTRATION.

There are some Tauberian theorems, which go back to Hardy and Littlewood [9]. for the
differentiation of asymptotic approxitations which are valid under appropiate monotonicity con-
ditions [2]. For instance. if

G(x) ~ L as & — oc. (6.1)

where A # 0, and if G’ is increasing. then
G'(x) ~ . (6.2)

The corresponding Tauberian theorems for comparison with a power function also hold. namely,
if
F(x) ~ (2 —a). as r—at. (6.3)

and if F’ is increasing and a > 1 or a < 0 or F' is decreasing and 00 < a < 1, then

F'(x) ~ a(z — a)*71, as x—at. (6.4)
Therefore, it is surprising that the results for comparison with a logarithinic function are false
[2]. A simple counterexample can be constructed by using the asymptotic approximations of the

previous sections. Indeed, let p > 1 and set

flx) = f:rp D<r<l. (6.5)

n=0

The behavior of f(z) as  — 1~ can be found from (4.13) by taking > = ¢~¢, ¢ = In(1/z) an
¢(z) = e~*. The result is

Inln(1/x) )

f(z)N‘_lnp_ 'y+w(lnln(1/:z))+z mrero U r—1, (6.6)

e . T
where we have used the value v = / Tds:, Euler’s constant, and where w is a periodic
0 o

function of period Inp and zero mean.
To the first order, (6.6) takes the form

flx) ~ @, as r—1". (6.7)

Inp
But f'(x), though increasing, is not asymptotically equivalent to 1 4 ln_(_:)
’ & asympioticaly eq T (l-x)lnp  dr Inp

Actually, using (4.11) we find the approximation

fl(z) = Zp £ *‘=-Zp "

n=0 n=0

! ! +wi(Inln(1/2)) + Z (Inz)™

Inpln(1/x) “al(1- )"‘“)] as w—17 (68)



REGULARIZATION AND ASYMPTOTIC EXPANSION OF DISTRIBUTIONS 743

To the first order. then.
1 1 1
) ~—— | — -1 6.9
£ T [hil' +u (luln :)] (6.9)
so that f/(r)(1 — r)Inp does not tend to 1. but rather it oscillates abont it since wy is a periodic

function with zero mean.
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