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ABSTRACT. Research on Wiener type spaces was initiated by N.Wiener in
[15]. A number of authors worked on these spaces or some special cases
of these spaces. A kind of generalization of the Wiener's definition
was given by H.Feichtinger in [2] as a Banach spaces of functions (or
measures, distributions) on locally compact groups that are defined by
means of the global behaviour of certain local properties of their ele-
ments. In the present paper we discussed Wiener type spaces using the
' spaces Aszg(G) and F&:E(G) (c.f.[8]) as a local component, and Lz(G) as
a global component, where w and v are Beurling weights on G and w is a
Beurling weight on &(c.f.[l3]).
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NOTATIONS. Troughout this paper G denotes a locally compact abelian group
(non-compact, non-discrete) with the dual group &. Certain well known
terms and their definitions may be found, e.g., in [2], [3], [7],[13],
[14], [9], [8]. In the present paper we have used two kinds of Fourier
Transforms: The classical Fourier transform{")(c.f. e.g[13])and a gene-
ralized Fourier transform F (c.f.[4]) discussed below.

Let Q be a fixed open and relatively compact subset of G. We define

S, (G)—{f] f=ZLYnfn,yn€G,fneAQ,n3_1 and Z||f || p<=)}. (1)

where

AQ:{heA(G)lsupp(h)c:Q}

and L denotes the translation operator. Any Representation of f 1in
the form (1) is called an admissible representation. Endowed with the

norm

I€lg_~inellle 5 £=2L, £, admissible),
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SO(G) is the smallest strongly character invariant Segal algebra on G.
It is well-known that the Fourier trensforms induce isomorphisms bet-
ween the spaces SO(G) and SO(&). The generalized Fourier transform then
is defined by

<o, f><0,f> for feso(&), oes’ (G) .

It is easy to see that above mentioned generalized Fourier trans-
form coincides with the Fourier transform in the sense of tempered
distributions for the special case of G=R".

Throughout this work, we also will use Beurling weights, i.e.real~
valued, measurable and locally bounded functions w on a locally com-
pact abelian group G which satisfy 1<w(x), wix+y)<w(x)w(y) for x,yeG.
For 1<p<«~, we set

LP(e)=(f|f.weLP(0) ).

Under the norm "f"p w="f'w"p' this is a Banach space. When p=1, Li(G)
4
becomes an algebra under convolution, called Beurling algebra,c.f.Dﬂ.
In this paper another two important tools are the spaces AS'g(G)
P,q ; P9 . i T
and FW,m(G) with the norms || "w,w and | ”Frespectlvely [8]. These

spaces and the norms are defined as fcllows:

Prd qy— <] fe19 (o
A, (G {flfeLw(G) and feL: (G)},

P,q_ £
B aiel, el

and
P/9gy= (aP’9 £l = p.,q
Faw(@= v 0@, el el 3

where F is the generalized Fourier transform, w and w are Beurling
weights on G and & respectively.

The main parts of this work deal with certain Wiener-type spaces
in the sense [2]: the definition is the following: Let B be a Banach
space, Assume that there exists a homogeneous Banach space (A,| «||,),
continuously embedded into (Cb(G),"'"m), which is a Banach algebra
under pointwise multiplication and is stable under complex conjugati-
on, such that (B,H-HB) is continuously embedded into Al (G)=(A(GINC_(G))'
and also is a Banach module under pointwise multiplication. Here CC(G)
is the space of continuous functions with compact support, AC(G)-A(G)
nCc(G) is given the (locally convex) inductive limit topology of its
subspaces (AK(G),"-"A), K=G compact, and A (G) is the topological dual
of AC(G). Let now Bloo be the space of all feAé(G) such that hfeB for
heAc(G); this is a locally convex vector space whose topology is de-
fined by the seminorms f»"hf"B,heAc(G). Fix an open, relatively com-
pact set QcG and define, for feB and xeG, the "restriction nonﬂf“Bb“o)
of f over x+Q" to be
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inf{"q"nlch, hf: hg for hch'Q(G)}.

For feB oc’ Set Ff(x)="f” If now C is a solid, translation in~

1 B(x+Q)"°
variant BF~space on G, one defines the Wiener-type space W(B,C) by

W(B,C)={f€Bloc|Ff6C] and ||f||w(B’C)--i|Ff||F]

Lastly recall that a Banach convolution triple (BCT) is a triple
(B ,Bz,B3) of BF-spaces such that convolution, given by

flez(x)= ffl(x-y)fz(y)dy
G

for fieBlnCc(G) (i=1,2), extends to a continuous bilinear mapIQXBz+B3

(of norm 1).

1. THE WIENER-TYPE SPACES W(Ag'g(G) ,LF)
’

The construction of the Wiener-type spaces mentioned in the sec-
tion title requires some preliminary considerations, notably Theorem
1.5 below. First of all we introduce the Banach spaces.

AY(G)=F (Li(f;))

where u is an arbitrary weight function on G with the norm ||all --||gI|1 a
and F is the classical Fourier transform. We set A (G)=A" (C)ﬂC (G) and
equip it with the inductive limit topology L of the subspaces A (G)=
=Au(G)nC (G), K=G compact, equipped with their "'Hu—norms. Since it is
obvious that T then is finer than the norm—topology of A, (G), it 1is
Hausdorff and hence the dual space A (G)'—(A (G),t)"* separates the po-
ints of A (G) . Note also that the subspaces A“(G) are closed in AY(G):
Indeed, 1f (h )cA (G) converges to heA"(G) with respect to || “ the
sequence also converges uniformly to h and so supp(h)=K. The same re-
asoning shows that for KL, A;(G) is |||l ,-closed in AE(G). Consequently,
if G is o-compact, then (Ag(G),tu) also is complete since then it is a
strict inductive limit of Banach spaces.

LEMMA 1.1. If wy<wy and w ; satisfies Beurling Domar condition

logw (£ N w ) w
(shortly (BD) i.e I ——2 <=, teG), then Acz(G)CAc] (G) and A_%(G)

n>1 Wln
is everywhere dense in A, (G) .

PROOF . Since w,<w, then the inclusion C (Gk:LwZ(G)CLWI(G) is sa-

WS
tisfied and A 2((‘) is everywhere dense in A 1 with respect to the
norm ||'||w . Also since w, satisfies (BD) then there is an approximate

1

1

identity (e )aeICAK (G) , where A —{flfeL (G), supp% compact}. Take

w
any geAcl(G) and e>0 There exists a funct%on feA 2((‘) such that

" f-g"w1<§ '
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w

~ A 2 ~ A
and f.e €A G) for all a€l. i i : . -
«E8 (w) It is easily seen that (f ea)aeI conver

ges to 6 in ACI(G). This proves our lemma.

COROLLARY 1.2. Let Wy and Wy be satisfied the hypothesis in lem-
ma 1.1. We endow the space A (G) with the induced inductive limit to-
pology by A (C) 2((‘)15 also everywhere dense in Ab (G) with resnect
to induced 1nduct1vo llmltvtopoloqv because it is strictlv finer than

W)
the oriqginal topology on AL (C) which is induced topology by A (C)

COROLLARY 1.3. Again let WiW, be satisfied the hypothesis in lem-

w2
ma 1.1. Using the inclusion A (Gk:A (G) and the Corollary 1.2. one
I
obtains that A (G) 1s contlnuously embedded into Al 2(G) . Specially

if Wy -W, then (G)) “(A (G))

PROPOSITION 1.4. If 1<p<~ and the weight function w on G satis -
fies (BD) condition then Ap’q(G) is continuously embedded into o(A (G),
A (G)).

PROOF. It is known that Ap'q(G) is continuously embedded into
o (AL(G),A_(G)) [8]. If one uses "the above embedding and the Corollary
1.3., ea511y proves the Proposition.

In order to obtain all the properties of Au(G), etc., required
for the construction of Wiener-type spaces in the sense e.g. of Feich-
tinger, cf.[Z], we assume henceforth that tho weight function u on é
satisfies (BD) and symmetric andw<u, where w is the second weight func-
tion in Ap'q(G) (For example one can take u=w(x)+w(-x)).

First of all, AY(G) now satisfies the requirements of [2]: It is
clear that aY (G) is continuously embedded into C (G); in fact, the em-
bedding map has norm<l. Moreover, since u satisfles (BD), aY (G) |is
known to be a Wiener space, cf.[13], hence is reqular. It is a Banach
algebra under pointwise multiplication and also is translation-invari-
ant: L (G) is character-invariant and that the maps M are isometries;
moreover, for geLl(G) X+ Mg is continuous [8]. By taking Fourier
transforms, we now conclude that AY(G) is translation-invariant, trans-
lation maps are isometries and that x -+ Lxh is continuous from G into
aY(G) for each heAY(G). In other words: AY(G) is homogeneous Banach
space. Lastly, the symmetry of u implies that AY(G) is closed under
complex conjugation.

Secondly Ap'q (G) is a pointwise Banach module over A”(G), [8]. Since w<u
then Ap'q(G) is also a Banach module over A"(G). Consequently one shows
that Ap'q(G) is continuously embedded into (A (G) ',0) by the Proposi-
tion 1. 4

With this, Feichtinger's general hypotheses are satisfied and the
construction of the Wiener-type spaces W(AS:ﬂ(G),C), C a solid BF-space
proceeds in the standard manner.

Using the argiiments in Theorem 1. in [2] and doing some small
modification, the proof of the following theorem is completed.
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THEOREM 1.5. (i) The Wiener type space W(AS'E(G),Lﬁ(G)) is a Ba-
’
nach space under the norm

fll-)|F
Hel-tel,
P,q r
where feW(A;’ (G),L| (G)) and
F(2)=Fg(2)~ (| £ 5/ 312+0), zeG ana
QG is any open subset of G with compact closure. It is also continu-
5 P.qd
ously embedded into (Aw,m(G))loc
(ii) The set
== | ] < i
Ay {feAw,w(G)lsuppf is compact}
is continuously embedded into W(As'g(c),Lz(G)).
’

(iii) w(As’q(G),Lr(G)) is left(right) invariant, and
l

ey <z 029 .
where || - |||,||| |||5'g and |- ||| are operator norms on W(As:g(c),I;(G)),

p'q(G) and L (G) respectively.

(iv) The translation is strongly continuous in the Wiener type spaces
W(AS:E(G),Li(G)).

(v) W(AS’g(G),L:(G)) is a Banach module over W(A(G),L”(G)) with
’
respect to the pointwise multiplication.

PROPOSITION 1. 6 Let p>l. Then W(Ap’q(G) LE(G)) is a Banach modu-
le over W(A 'q(G) L (G)) with respect to "convolution.

PROOF. It is easy to show that every locally compact Abelian group
is a IN~group (i.e. a group having a compact neighbourhood of identity
is invariant under inner automorphisms) It is known that Ap q(G is a
left (right) convolution module over A 'q(C) |8]. Hence 51ncc

g P.q P.q P P
(Aw,m(c)'Aw,w(G)'Aw,m(G)) and (Lw(G).Lw(G),Lw(G))
are a Banach convolution triples on G. Then
1,q 1 P.q9 p P.q P
(W(Aw,w(G),Lw(G)),w(Aw’w(G),Lw(G)),w(Aw'w(G),Lw(G)))
is a Banach convolution triples on G and the inequality

p.qd P
"fxng(Aw'w(G),Lw(G))"j

<depwiagy 3@, L@l lalwa 3@, @l

is satisfied by the Theorem 3. in [2] for all feW(A 'z)(r) Ls(G)) and
qew(AP'q(G), L;(G)). One can easily show the algebraic conditions which

are needed to be a module.
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PROPOSITION 1.7. W(AS'S(G),LS(G)) is a BF-space on G.
’

PROOF. By the Theorem 1.5. (i), W(Ap'q(G) /LU (G)) is continuously
embedded into (A['q(Gnloc. That means given any hea_ (thus a seminorm
Py (£)=||h. f"w,w on (AP q)]oc) there exists a constant number D, >0 such
that

Inely d<p, I £ {w af d(6) L] GN] . (1)

for all f W(AS'g(G),Ls(G)). Hence one can write
’
Ih. gl <o, £ 1WAy (6 , iG] . (2)

Also AY(G) is a reqular Banach algebra with respect to pointwise mul-
tiplication, then one may choice a function heAz(G)vAm(G)ﬂCc(G) satis-
fying 0<h<l and h(x)=1 for all xeK. We let supph K. Then xK(x)ﬁh(xL
hence XK(x)|f(x)|{h(x)|f(x)| for all xeG. Since LP< Ll , then there

loc
exists DK >0 such that
o

W Ih(x) £(x) |dx<p, Jnofl . (3)
o o P
Also one has
f|f(x)|dx{:xfIf(x)h(x)ldx. (4)
K o
The proof is completed combining the formiilas (2), (3) and (4).

PROPOSITION 1.8. The Wiener type space W(AS'g(G),Ls(G)) is a Ba-
’
nach convolution module (left and right because G is an Abelian group

over some Beurling algebra Li (G).
o

PROOF. We proved in Proposition 1.7 that w(Ap'q(F) L (G)) is a
BF-space, thus W(Ap"(G) LY (G)) = Lioc( ). By the Theorem 1.5., this
space is left invariant and translation operator in w(Ap’q(G) L (G) is
continuous. Now a simple apnlication of vector valued 1nteqra1 shows

that W(AS'S(G),Lz(G)) is a Banach module over Li (G), where
’
o

P.q r
wo(x)=max(1,IHLXIW(Aw’w(G),Lv(G))|")-

COROLLARY 1.9. W(Ap'q(G) L (G)) is a left(right) Banach module
over L (G) if v(x) is a welght satisfying v(x)>w (x) for all x6G,where
wo(x) is defined as in Proposition 1.8.

REMARK. By the Theorem 1.5 (iii), one writes

e < le 1273 eI, . )
where ||l-{lIl +1Il* |H3'g and || -|ll. are operator norms on W(APJ”G)I,(G»
Ap'q(G) and Lﬁ(G) respectively. It is also known that [||L, |" <v(x)

and I"L |"p'q<w(x) [8]. Then we have
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Mo [ <w) «vix),

for all x€G. Since W,v are weight functions, then the functionw.y
is 1locally bounded. Using the inequality(2) it is easily seen that

ML, Il is also locally bounded.

Given a weighted space Lp(G) the associated weighted sequence space
is denoted by lp and defined

((a)

P ier® | (aWii) et

where the discrete weight W given by W(i)- W(x ) for i€I. 1t is
known that 2 is a Banach space with respect to the norm

Il 2l [ | :
z =( I [a,w(i)]|")T
FW jer 1 '

where z= (al)1eI

LEMMA 1.10. For any zeli, z7#0 the function z -+ ||Lpz||r w 1s equi-
’
valent to the weight function w, i.e there is a constant c>0 such that

one has

-1
c W(p)i"Lpz"r'wic.w(p).

PROOF. Result can be obtained by a slight modifications of the
proof of Lemma 2.2. in [7].
It is alsQ easy toO prove the following lemma using the closed graph theorem,
r r

LEMMA 1.11. If lwl‘:lwz then there is some constant c>0 such that
1 2

Il =l <c.flzll
r W2 Wl

r1

w1
If we use the Lemma 1.10 and Lemma 1.11 easily prove the follow-

for all z=(a, )181

ing lemma:

r
1 2

LEMMA 1.12. ¢ if and only if Wo<W, .

THEOREM 1.13. Let U1 and 02 be the weight functions in construc-
tion of Wiener type spaces W(ASiqw (G), L (G)) and W(As’qw (G) ,L 2(G))
respectively Also assume that wl,wz,vl,v weights on G; wl,wz weights

on G and 1<p,q, rl,r2<w. 1f Ul~U2 tz itl s U l< u2 and

v.q P.q
A (G)cA (G)

W, 0, wiwy
then

r r
p.q 2 N P,q 1 .
wm"z""z () ,va ()N W(Awl'ml(G) ,L\,1 (G)) (1
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€

(G)C:Ap'qw (G) then there exists c>0 such that
22 Y%

P.q
ol

PROOF. Since Au

<c.hegbra (2)
"1 Warty

for all feaP’'? (G) and w,<w., w.<w, [8]. Also since U,-U, then
W, W 1 72 1 2 1772
uy up 202wy ay

A (G)~A_"(G) and (A_"(G)) =(A_“(G)) by the Lemma 1.1. Hence a simple
calculation shows that

(APIQ
Wt

pP.q
2(8))100 G*(Awl’ml(c))noc. (3
Now using the definition of Wiener-type space, (2) and (3) we have
r r
2 2
w(aP: 9 () ,L %)) =wmaPd (), %@).
Wty v2 Wy ' v2

Also because the Proposition 3.7. in [6] we write

r r
P.a 2 pP.q 1
W(A G),L G < W(A G),L G
( wl'wl( ), Vz( )) ( wl'ml( ), vl( )) (4)
if and only if
r, 5
(L, (G))dC:(Lv (G))d, (5)
2 1
T2 1 r2
where (L_,“(G)), and (L  (G)), are the discretes of the spaces L,“(G)
. v, d vy da v,
1
and LUl(G) respectively. Since r,<r, and U< v, then
2 . h1
L et - This completes the proof.
Uy vy

pP.q P,q
It is known that Aw;,mz(G)C:Awl,ml(G) if and only if Wy <w, and

w <w, [8]. If one uses Theorem 1.13 and Lemma 1.12 easily proves the

following corollary.

COROLLARY 1.14. Let U~y wl<w2 and w1<m2. Then

r

r
p.q P.q
W(sz'wz(c)'va(G)) < W(Awllwl(G),Lvl(G))

if and only if Vi<V, -
COROLLARY 1.15. If WisWo, WiaWy, V-V, U, and r,=r, then

r r
p'q 3 2 G - P,q ]. G
WG, (6) By~ (G)) WAL, (G, (G))
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2. THE WIENER-TYPE SPACES W (r[’J(c) ,L\f(?:))
’

Let u be a weight funcLion on G Proceedinq as we did in Section
1, we set A, (G)-A(G)IC (C), A (F) Al (G)HP (G) equipped with thclr na-
tural induclee limit Lopoloqles, thus the topoloqy c.q of A (G) is the
inductive limit Ta of subspaces A (G)=a" (P)nK (G), K=G compact, and

their H~HA—topologles. Recall that T, is (strlctly) finer than the to-

A N
pology Te induced by the usual inductive limit topology of CC(G)
We assume that the weight function u satisfies(BD) and symmetric

and the first weight w in AS'g(G) satisfies the condition w<u.
’

s s s Prd ny a0,
Since W is symmetric then Fw:w(G) Am:w(G)' (see [8]).

Now all conditions are satlsfled required for the construction of
Wiener-type space W( Fp'q(G) LV(G) W(Aq’p(C) L (G)) If one uses the
properties of the space Aq'[(G) obtalns all propert1es of the Wiener-
type space W( Fp’q(G) Lz(G)) like to that of w(Ap q(G) L (G)) in Sec-
tion 1.
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