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ABSTRACT. In this paper we consider the oscillation of the delay difference equa-
tion with oscillating coefficients

Zuiy — T + Ep,(n):r,,_,,'(,) =0, n = 0.
=1

Some comparison and oscillation results are obtained.
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1. INTRODUCTION.
Let R=(—o0,) and Z={0,1,2,**}. Consider the delay difference equation
Lpyy — Zn + ip,(n)x,,_,"(,,, =0,n>20, a.1n
and the delay difference inequality -
Loy, — Zn + 2?,(n)x,_k1<n,<0,n>o, a1.2)

where

k(n) € Z forne Z,

p.(n) €ER forne Z,
and there exist positive k; ,kn € Z,such that

ky = ki(n) = ky(n) = o Z k,(n) =k, >0, 1.4
and the following condition(A) is satisfied for k;.

(1.3

() pr(n) € R, p,(0) + po(n) € R0, D p.(n) € R*= [0,00);
=1

(4 (i1) For any N € Z,there exists N, € Z such that p,(n) € R*
for anyn € [N,,N, + k], wherei = 1,2, ,m,
where [Nl ,N1+k1]= {Nl 9N1+1 9 9N1+k1 }
Let no—k=ireliz'{n—k1(n)}and n,==0. By a solution of (1.1)(or (1.2)) we mean
a sequence {x,}which is defined for n=>n,—k and satisfies (1. 1) (or (2. 2))for n=>n,.
With Eq. (1. 1) and with a given “initial point”n,=>0 and “initial condition”a, —k,a.,
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—k+1,+,a, ,Eq. (1. 1) has a unique solution {x,}which satisfies
x,=a, for j=n,—kmn,—kFk-+1,",n,.

A solution {x,}of Eq. (1. 1)is said to be oscillatory if the terms x, of the se-
quence are not eventually positive or eventually negative. Otherwise,the solution is
called nonoscillatory. Eq. (1. 1) is called oscillatory if every solution of the equation
oscillates.

A solution{x,}of Eq. (1. 1)through an initial point n, is said to be positive if the
terms x, of the solution {x.} are posivive for all n=>n,—k.

Recently there has been a lot of interest in the oscillations of delay difference e-
quations . See, for example,[1]—[5] and the references cited therein. Our aim in
this paper is to study the oscillation of Eq. (1. 1). Some necessary and sufficient con-
ditions and some easily verifiable sufficient conditions are established for oscillation
of Eq. (1. 1).

2. MAIN RESULTS.
Consider a sequence{A{”}=0,which is defined as
A® =0, for n =n, — ky,
and for r=1,

o 0, f()rnzno—-kl,no—kl—}-1,...',10_1’ (2'1)
Al =1 e _
E:P.(n) ” aQ— Ay for n = n,.
=1 J=n—k (n)

First,we introduce the following Lemmas.

LEMMA 1. Assume that condition (A) holds for k; and {x.}is an eventually
positive solution of (1. 1). Then, {x.} must be eventually nonincerasing. And, we
have

Zppy — T+ Zp, (n)x,_y, < 0. 2.2

=1

PROOF. By condition(A) ,there exists N;==n, such that

Znyy — Tn gxn-i-l — Za + ZP.(n)x,,_,,,(,,) =0, fOT n 6’ [NliNl + k}]v
n=1

that is, {X,}is nonincreasing on[N;,N,+k,].
We claim that {x,}is nonincreasing for n€ [N, +k,,N,+k; +k.].
In fact,for any n€ [N;+k;,N,+k,+kn],we have n—k,(n) € [N,,N,+k,].
By (1.4) and nonincreasing property of {x,} on [N,,N,4+k,] we have that
Tn—ky = Tk, (m) = = Lk ) = Ln—k, >0, (2.3)

fOl' any nE [N1+k1 ’N1+kl+km]'
So,we get that

m
Tnpy — Xy = — ZP:(")I,.—;'(,.)
=1

=—p(Wz, 4 — 2?1(”)xn—k,m
=1
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m
\ )
— p(n)x, ko T LP'(")l.ﬂ--k’(n)

m

<= (P2, + PO, sy — D PODT,

=3

<— (p(n) + p,() 4 oo+ + Pm("))l.nfk_(n)
<— (p(n) + po(n) + oo + PN, ., < 0.
Therefore, x,is nonincreasing on [N, +k,,N,+k,+k.]. Similarly ,we can show that
{x,}is nonincreasing for all n=>N,+k, and the proof is complete.
LEMMA 2. Assume that condition(A) holds for k, and (1. 1) has a positive so-
lution. Then there exists a sequence {a,},-, -, such that the following statements

are true:
M Lp.(m f[ (1—a)~',  for n=ng;
J=n—h(n)
(i1) a, <1 for n—no——k,,no—kl—{-l."'.nu—l and eventually 0<Ca,<<1
for n=N,.
PROOF. Assume that {x.}is a solution of (1.1) and x,>>0 for all n==n,—k. Set
a, =1 —-%—x, Sor n =n, — k. (2.4
Then
Tu—km  Ta—kon  Ta—k i+l L Tnma
Ln La—tm+1 Tk m+2 Ln
n—1
= ] a—e)'in=n, (2.5)
y=n—k(n)
From (1.1),we have that
R Spm T — 0, am, (2.6)
n =1
Hence,by substituting (2. 4) and (2. S)mto (2 6) ,we get
2p<n) H A—e)'  n=n, 2.7
J=n—k (n)

that is, (i) is satisfied. Clearly,un<l for n=>n,—k,. By Lemma 1,we have eventually
0<<a,<<1. The proof of Lemma 2 is completed.

LEMMA 3. Assume that condition(A)holds for k, and (1. 1) has a positive so-
lution through n,. Then the sequence(2. 1) is well defined for n=>n, and satisfies

(i) OAVALTY, for n=>n, and r==0;

(i1) llmA(')def A.<1, for n=n,.

r—>00

PROOF. Assume that {x.} is a positive solution of (1. 1) through n,. By Lemma

1,without loss of generality ,we assume {x,}nonincreasing as n=>n,—k;.

Set an———l—% for n>=n,—k;. Then from(2. 4) ,and Lemma 1,and by a simple

induction,it can be seen that
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LAV <A <o, <1, r=0. (2.8)
In fact,A®,=0,and
09 forn=710'—kxyno_k1+19"°9n()_ lc

D), Sfor n = n,
=1
So,we have A{P>=A{">0. Assume that A=A >0. Then,for n=>n,,we have

AYTY = 2p(n) H a—Am,

J=n—k(n)
n—1

AP = Ep,(,o T a-ar»),

J=n—k (n)

AL =
n

Hence,we get

r+1 ) r—1y—1 T a- Ajh”)
ASTY — A Ep,(n) H a—-ar"H [ A -1
J=n—Rk,(n) y=n—k (n) a _A/ )

. AG=D
(Ep(n)) T a - ar—>)- [ H (1 Af;(,))) 1}> 0,

J=n—k_
so,we know that 0<CA<CAS ™ Pfor all r=0.
By (2.7),we use the induction to get
AP L a, <1, for any r = 0,n =n, — ky,
which implies that (2. 8)holds. Hence it is easy to get that
limA" = A, <<1,n>=n,,

r—-00

and the proof is complete.

The next result is a generalization of Theorem 1 in [5].

THEOREM 1. Assume that (1. 3),(1.4) and condition(A)hold for k,. Then the
following statements are equivalent

(a) Eq. (1. 1)has a positive solution through the initial point n,==0;

(b) The inequality (1. 2)has an eventually positive solution;

(¢) The sequence{AS”}_,which is well defined by (2. 1)converges to a limit
A, with 0<CA,.<<1 f{or each n=n,>0.

PROOF. (a)=>(b). This is obvious.

(b)=(c). Assume that x,=>0 for n=>n,—k which is a solution of (1. 2). Set

Znty
a,=1— p m=ny — k.

n

Then,
Tk (m ot
= H (1—0:)l n == n,. 2.9
Zn J=n—k (n)

Thus from (1. 2),it follows that
Ep D) H A—e)'<a, n=n.

J=n—k (n)
By (2.1) and a simple induction which is the same as that of Lemma 3,we hvae that
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0T A AV L ;,, <1 forr=0and n=n,,
which implies that the sequence{A{”} converges to finite limit A, with 0<C{A,<<1 for
each fixed n=n,.
(c)=>(a). It is similar to that of Theorem 1 in [5].
The proof of Theorem 1 is complete.
COROLLARY 1. Assume that (1. 3), (1. 4)and condition (A) hold for k.
Then the following statements are equivalent
(a) Eq. (1.1) is oscillating;
(b) Inequality(1. 2) has no eventually positive solution.
Assume that P,€ER*,n€Z,and k€ Z. The following theorem of oscillation was
obtained in [3].
THEOREM A. Consider the delay difference equation
Ay, — A+ PoAr, =0,  n=0,1,2,. (%)
If
kk
lzmznf[ ‘Zkl’] > G E D

then all solutions of ( * )are oscillatory.

(2.10)

In[5],the following conclusion was obtained.
THEOREM B. Consider the following inequality
A,y — A, + PA,_, <. (% %)

The following conclusions are equivalent ;

(1) (=) is oscillatory;

(ii) (* %) has no eventually positive solution.

We can obtain the following theorem.

THEOREM 2. Assume that (1. 3), (1. 4)and condition(A)hold for k,,and the

equation
Tupy — 2o+ D p (W20, =0 (2.1
=1

is oscillatory,then (1. 1) must be oscillatory.

PROOF. Let{x,}be a nonoscillatory solution of (1. 1). As the opposite of a solu-
tion of (1.1) is still a solution of (1. 1), we can assume that x,>>0 for n=n,. By
Lemma 1,we have

Topy — 2. + Z}p(n)x, i <O, (2.12)

=1

that is,inequality (2. 12) has a positive solution. On the other hand,by Theorem B
we know that (2.12) has no eventually positive solution. This is a contradiction.
So, (1. 1)must be oscillatory. The proof of Theorem 2 is complete.

COROLLARY 2. Assume that (1.1), (1. 4),condition (A) hold for k,,and

bt
lzmmf Z 2?,(1)>G—+T),—+—1 . (2.13)

"'asn ko=

Then (1. 1) is oscillatory.
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PROOF. By Theorem 2 and Theorem A,we obtain the conclusion.
COROLLARY 3. Assume that (1. 3),(1.4),condition(A)hold for k,,and

Zp,(n) =P, for nsufficiently large. (2.140)
=1

Then,if ( %) is oscillatory, (1. 1) must be oscillatory.
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