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ABSTRACT. In this paper we consider the oscillation of the delay difference equa-

tion with oscillating coefficients

x,,+l x. + 2p,(n):z’._k.. 0, n 0.

Some comparison and oscillation results are obtained.
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1. INTRODUCTION.
Let R-- (--oo, oo) and Z 0,1,2 ,"" }. Consider the delay difference equation

x.+ x. + ,p,(n)x._,,<. O,n O, (1.1)

and the delay difference inequality

x.+ x. + -,p,(n)x._,n 0,n 0, (1.2)

where
k,(n) Z forn Z,

(1.3)
p,(n) R for n Z,

and there exist positive k,k,.Z,such that

k . kl(n) k,.(n) kin(n) km > O, (1.4)

and the following condition(A) is satisfied for kl,

(i) p(n) R+,p(n) + p2(n) R+, "’’, p,(n) R+-- [-0,oo);

(A) (ii) For any N Z,tkere exists N Z such that p,(n) ( R+

for any n [N,NI + k,],where 1,2,’",n,

where [N,N+k]= {N1,N+I,’" ,N+kl}.
Let no--k=inf{n--k(n)}and no0. By a solution of (1.1)(or (1.2)) we mean

nZ

a sequence{x}which is defined for nno--k and satisfies(1.1)(or(2.2))for nno.
With Eq. (1.1) and with a given "initial point"no0 and "initial condition"ao--k,ao
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--k+l,...,a.0,Eq. (1.1) has a unique solution {x.}which satisfies

xj aj for j n,,- k,no- k + 1,’",no.

A solution {xn}of Eq. (1.1)is said to be oscillatory if the terms xn of the se-

quence are not eventually positive or eventually negative. Otherwise,the solution is

called nonoscillatorv. Eq. (1.1) is called oscillatory if every solution of the equation

oscillates.

A solution{xn}of Eq. (1.1)through an initial point n0is said to be positive if the

terms x. of the solution {x.} are posivive or all nn0--k.
Recently there has been a lot o interest in the oscillations o delay di[ference e-

quations See,(or example, [-1-]-- [-5] and the references cited therein. Our aim in

this paper is to study the oscillation o Eq. (1.1). Some necessary and sufficient con-

ditions and some easily verifiable sufficient conditions are established for oscillation

of Eq. (1.1).

2. MAIN RESULTS.
Consider a sequence{A,r)}7=0,which is defined as

A ) O, for n no ki,

and for rl,

fO_]J’orn=no--k,no--k+l,’",no--l, (2.1)
A.(r

p,(n) -[ (1 A(r-1)) -1 for n no
=i j=n--k,(n)

First,we introduce the following Lemmas.
LEMMA 1. Assume that condition(A) holds for kl and {x.}is an eventually

positive solution of (1. 1). Then, {x. must be eventually nonincerasing. And, we

have

x,,+ x. -- -p,(n)x,,_,,, O. (2.2)

PROOF. By condition(A) ,there exists Nno such that

x.+, x. x.+, x. + f]p,(n)x._,,(., O, for n N,,N, + k-],

that is, {xo}is nonincreasing on[-Na ,N+k].
We claim that {x.}is nonincreasing for n 6 [-N +kl ,N+k+k.J.
In fact,for any nG [-N+kl,N+k+kmJ,We have n--k,(n) 6 [-N1,NI+k].

By (1.4) and noninereasing property of {x.} on [-N,N+kJ we have that

x._ x._,(. > > x._.(.) > x._. > 0, (2.3)

for any nG [N+kl ,N 4-kl +km].
So, we get that

x.+ x. -]p,(n)x._,(.)

pa (n)x._,(.) p, (n)x._,,(.)
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Therefore, x is nonincreasing on N+k ,N+k +k.,]. Similarly ,we can show that

{x.}is nonincreasing for all nN+k and the proof is complete.

LEMMA 2. Assume that condition(A) holds for k and (1.1) has a positive so-

lution. Then there exists a sequence {a"}"=.0- such that the following statements

are rue

(i) ,-- ]p,(n) (1--,) -1 for nn0;
=1 j=n-k,(n)

(ii) a.l for n=n0--kl,n0--k+l,’",no--1 and eventually O-a.l
for nN1.

PROOF. Assume that {x.}is a solution of (1.1) and x.>O for all nno--k. Set

x,,+
k (2.4)a,, 1 --, J’or n no

,2."

Then
"dT k,(n

n-1

II
j=n--k,(n)

"a’’n k, (n) "n--k,(n)+l "’n--

Xn--k,(n)+l Xn--k,(n)+2 n

(1 %)-1,n no. (2.5)

From (1.1),we have that

"Z’n--k (n)x,+
1 + ]p,(n) O, n no. (2.6)

7,, "Sg’n

Hence,by substituting (2.4) and (2.5)into (2.6) ,we get

a, p,(n) (1 %)-1, n no, (2.7)
1----1

that is, (i) is satisfied. Clearly,a<l for nn0--k. By Lemma 1 ,we have eventually

0-anl. The proof of Lemma 2 is completed.
LEMMA 3. Assume that condition(A)holds for k and (1.1) has a positive so-

lution through no. Then the sequence(2.1) is well defined for nn0 and satisfies

(i) O<A.()<A.(+) for nno and r>O;
(ii) limAr)def. A.<I, for nno.
PROOF. Assume that {x) is a positive solution of (1.1) through no. By Lemma

1 ,without loss of generality,we assume{x)nonincreasing as nn0kl.

Set a,=lX"+ for nn0k. Then from(2.4),and Lemma 1,and by a simple
Xn

induction,it can be seen that
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0 A"’ Ar+l’ a,, < 1, , O. (2.8)

In fact ,A=0,and

AI) fO- p,(n),frn=n--kl’n--kl+l’""n--forn no.

1.

So,we have AA0. Assume that AA-0. Then,for nno,we have
nl

A:+’’- p,(n) H (1--AS’) -1

A:’ 2P,(n) H (1-- A-’) -’

Hence,we get

n--1 Ig n--1 (r--l)

A:r+I’--A:r’= p,(n) H (1--ASr-1’)-1 (1--A, )-- 1

>(2p,(n) (1 Ar_,)_ [,=, (l--A, )--1
,= ,=._.. (1 A5)

so,we know that 0Ar+. for all r0.
By (2.7),we use the induction to get

a a, < 1, for any r > O,n > no k,

which implies that (2.8)holds. Hence it is easy to get that

li m A A, < l,n no,

and the proof is complete.
The next result is a generalization of Theorem 1 in 5.
THEOREM 1. Assume that (1.3), (1.4) and eondition(A)hold for k. Then the

following statements are equivalent:
(a) Eq. (1.1)has a positive solution through the initial point n00;
(b) The inequality(1.2)has an eventually positive solution;
(e) The sequence (A’))F=0whieh is well defined by (2.1)converges to a limit

A, with 0A,<I for each nn0>0.
PROOF. (a)(b). This is obvious.
(b)(c). Assume that x,>0 for nn0--k which is a solution of (1.2). Set

Then,

"Zn+l, T/0 ko

n--1a:._t,(., II (1 ,)- nno. (2.9)
n j=n--k,(n)

Thus from (1.2),it follows that
n--l

-]p,(n) ]--[ (1--%)-<a., n>no.
=1 )----n--k,(n)

By (. 1) and a simple induction which is the same as that of Lemma 3,we hvae that
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0 AS," A,+ 1, <. a,, < 1 /’or , 0 and n

which implies that the sequence{A(r} converges to finite limit A,, with 0Ao<I for
each fixed nn,,.

(c)=>(a). It is similar to that of Theorem 1 in [5].
The proof of Theorem 1 is complete.
COROLLARY 1. Assume that (1.3), (1.4)and condition(A) hold for kl.

Then the following statements are equivalent:
(a) Eq. (1.1) is oscillating
(b) Inequality(1.2) has no eventually positive solution.
Assume that Pn6R+,n6Z,and kffZ. The following theorem of oscillation was

obtained in [3].
THEOREM A. Consider the delay difference equation

A,+I A + P,A,_ 0, n 0,1,2,’". ( * )

If

li,ninf[1/4 ] P,] > (2.10)
,=,_ (k + 1)+

then all solutions of ( * )are oscillatory.
In[5],the following conclusion was obtained.
THEOREM B. Consider the following inequality

A,+ A, + P,A_ O. ( * * )

The following conclusions are equivalent:
(i) (*) is oscillatory;
(ii) ( * * ) has no eventually positive solution.
We can obtain the following theorem.
THEOREM 2. Assume that (1.3), (1.4)and eondition(A)hold for k,and the

equation

x,+ x, + p,(n)x,_ 0 (2.11)

is oscillatory,then (1.1) must be oscillatory.
PROOF. Let {x,)be a nonoseillatory solution of (1.1). As the opposite of a solu-

tion of (1.1) is still a solution of (1.1),we can assume that x,0 for nn0. By
Lemma 1,we have

x,+ x, + p,(n)x,_, O, (2.12)

that is,inequality (2.12) has a positive solution. On the other hand,by Theorem B
we know that (2.12) has no eventually positive solution. This is a contradiction.
So, (1.1)must be oscillatory. The proof of Theorem 2 is complete.

COROLLARY 2. Assume that (1.1), (1.4) ,condition (A) hold for k,and

liminf ,-.= (k, + 1) + (2.13)

Then (1.1) is oscillatory.
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PROOF. By Theorem 2 and Theorem A,we obtain the conclusion.
COROLLARY 3. Assume that (1.3), (1.4) ,condition(A)hold for k ,and

p,(n) P. for n sufficiently large. (2.14)

Then,if ) is oscillatory, (1.1) must be oscillatory.
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