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ABSTRACT. Totally real submanifolds of a complex space form are studied. In particular, totally real
submanifolds of a complex number space with parallel mean curvature vector are classified.
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0. INTRODUCTION.

Totally real submanifolds of a Kaehler manifold are very typical submanifolds of a Kaehler manifold
introduced by Chen and Ogiue [2] and Yau [9]. In particular Chen, Houh and Lue [1] pointed out that it
is interesting to study totally real submanifolds of the complex number space C™ with parallel
isoperimetric section and they classified compact totally real submanifolds with nonnegative sectional
curvature in C™. In 1987, Urbano [7] studied compact totally real submanifold with non-vanishing
parallel mean curvature vector.

In this paper, we shall study m-dimensional complete totally real submanifolds of a complex space
form M™ (c) and obtain some classification theorems.

1. PRELIMINARIES.

Let M be a Kaehler manifold of real dimension 2m with almost complex structure J and metric
tensor g. We then have J2 = — I and g(JX,JY) = g(X,Y) for any vector fields. X and Y on M,
where I denotes the identity transformation on the tangent bundle. Let <7 be the Levi-Civita connection
of M satisfying <7 J = 0. Let M be an n-dimensional Riemannian manifold isometrically immersed in
M by the immersion i: M — M. We then obtain the induced metric on M which will be represented the
same notation g. We also identify X with 1,(X) and M with :(M).

~ Let v be the induced Levi-Civita connection on M. Then the equations of Gauss and Weingarten
are respectively given by 7 xY = v xY +A(X,Y) and  x& = — A X + v %£, where h is the
second fundamental form, A, the Weingarten map associated to the normal vector field £ satisfying
g(h(X,Y),£) = g(A¢X,Y) and 7 * the connection in the normal bundle TLM of M. The mean
curvature vector H is then given by H = % Trh. An n-dimensional submanifold M in a Kaehler
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manifold M is called fotally real if J(TpM) C Tg M for each P in M, where TpM is the tangent space
of M at P and T4 M the normal space of M at P.
Since J has the maximal rank, m > n. Let Np(M) be the orthogonal complement of J(TpM) in
Tp M. Then we get the decomposition Tp M = J(TpM) @ Np(M). It follows that the space Np(M)
is invariant under the action of J.
We now consider an m-dimensional totally real submanifold M of 2m-dimensional Kaehler manifold
M. Then we may set
JX =0(X), (1.1)
JE= U, (1.2)
where X is a vector field tangent to M, 6(X) a normal vector valued 1-form, £ a normal vector field and
Ug a vector field on M satisfying g(Ug, X) = g(6(X),£). Applying J to (1.1) and (1.2), we have
X = Upxyand 8(Ug) = €. (1.3)
Differentiating (1 1) and (1.2) covariantly and making use of the equations of Gauss and
Weingarten, we get

Unx.y) = Aax)Y, (14
0(v xY) = v x6(X), (1.5
V xUe = Ugié, (1.6)
0(AeX) = h(X,Ug), (1.7

where X and Y are vector fields tangent to M and ¢ a vector field normal to M.

We now assume that the ambient manifold M is of constant holomorphic sectional curvature 4c,
which is called a complex space form and it is denoted by M(c). Then the Riemann Christoffel curvature
tensor R of M(c) has the form

IR(X,Y)Z,W) = c(9(X,W)g(Y, 2) - 9(Y,W)9(X, Z) + g(JX,W)g(JY, Z)
—g(JY,W)g(JX,Z)—29(JX,Y)g(JZ,W)).
Since the manifold M is totally real, it follows from equations(1.1)-(1.7) that the equations of Gauss,
Codazzi and Ricci for M are respectively obtained
I(R(X,Y)Z,W) = c(¢9(X,W)g(Y, Z) - g(Y,W)g(X, Z))
+9(h(X, W), h(Y, Z)) — g(h(Y, W), h(X, Z)), (1.8

9(R(X,Y)¢,n) = c(9(6(X),mg(8(Y), &) — 9(6(Y),m)g(6(X),£))
+ g([A57 Aﬂ]X) Y),

where <7 is the covariant derivative on T(M) & T (M) defined by (7 xh)(Y, Z) = v $h(Y, 2)
—h(vxY,Z)-h(Y, v xZ),R and R' are the Riemann curvature tensor of M and that in the
normal bundle respectively and [A,, A;] = AcA, — ApA;.
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2. FUNDAMENTAL LEMMAS.

In this section, we assume that M is an m-dimensional totally real submanifold of a complex space
form M (c) of real dimension 2m A normal vector field £ is said to be parallel if <7 3£ = 0 for any
vector field X on M and £ is called an isoperimetric section if Tr A¢ is non-zero constant

LEMMA 1. Let M be an m-dimensional totally real submanifold of M(c) with parallel
isoperimetric section £ If A, has no simple eigenvalues, then M (c) is flat

PROOF. Since A, is self-adjoint with respect to g, there exists an orthonormal basis
{e1,e2, - - -,en} for Tp M such that g(Ace,, e,) = A,6,;, where Ay, Xo, - -, A\, are eigenvalues of A,.
Since £ is parallel, we see that

9([Ae, Ajle,e;) = (N — A))g(Age,€;)
= c(g(6(e.), mg(6(e;), &) — 9(6(e;),mg(6(e:), £))

for any normal vector field n because of (1.10). Since A has no simple eigenvalues, for each

1€ {1,2, - - -,m} thereis j # i such that
c(g(6(e.), mg(6(e,), &) — g(6(e,), m)g(8(e.), £)) = 0.
Choosing 7 as 6(e,), we get cg(8(e,),£) =0 By (1 1), we see that {f(e,) [i = 1,2, - - -, m} forms an

orthonormal basis for T3 M. It follows that M (c) is flat. (QE.D.)

REMARK 1. Let M be an m-dimensional totally real submanifold of M(c)(c # 0). If M has an
isoperimetric section £, then A, has simple eigenvalues

Let H be the mean curvature vector field defined by H = % Trh. We now assume that H is
nonvanishing parallel in the normal bundle. We ct;oose an orthonormal frame {£,,&,, - - -,&,,} in the
normal bundle in such a way that {, = H/ || H || . It follows that TrA, = 0 for i > 2, where A, = A,
and Uy, Us, - - - Up, form an orthonormal basis for Tp M because of (1.2), where U, = U,. Then (1.3)
and (1.4) imply

AU, = Unu,v,), 2.1)
which shows that
AU, =AU,
Taking the scalar product with £, and making use of (1.3), (1.7) and (2.1), we may set
AU, = zk:P,JkUk, 22)

where P,j; = g(8(A.U,),£,). Because A, is a symmetric operator and h is a symmetric bilinear form,
P, is symmetric with respect to all indices %, j and k.
On the other hand, (2.2) implies
kU, U]) =0(AU)) = EPka51w
Since any vector field X on M can be expressed as X = Zk’_f](X , Ux)Uk, h can be written by

h(X’ Y) = E-Pleg(a(X)w gt)g(a(y)) g;)gln (23)
which implies nk
Trh = Y P&, 2.4)

where P, = 3, P. Since &, is parallel in the normalj bundle, (1 10) gives

9([A, A1) X,Y) = c(g(6(Y), £,)9(6(X),£,) — 9(6(X),&1)g(6(Y),&,) (25)

for all vector fields X and Y on M. (2.5) together with (2.3) yields
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z:PkJiPIJt - (TTA])P”k = c(m - 1)61k (26)
and hence b
S (Pip)? = (TrA)P +c(m - 1), @7
%]

where P = Pyy;.

We now prove

LEMMA 2. Let M be an m-dimensional totally real submanifold of a complex space form M (c)
with nonvanishing parallel mean curvature vector H. Then Ay is parallel.

PROOF. Let {e,e2, - - -,em, &, &, - - +,£&,) be an orthonormal frame of M (c) at a point P of
M such that e;,eq, - - -,en are tangent to M and £;,&, - - -,£, are normal to M, where
& =H/ || H| . Thenwe get

JATrA} = (&AL AD + | VAL, 238
where A is the Laplacian operator and A’ A; denotes the restricted Laplacian A’ of A, is given by

(AIAI )X = Z:[R(ei' X)’ Al]et
(see [6] for detail). Making use of (1.8) of Gauss and the fact that M is totally real, we have

A'Ay = c(m—1)A; — c(TrA)(I - Uy ®Uy) + (TrA1) Y, Pjy PaU, ® Uy
ik
- Z;Pt]klgijl Ak (29)
Ve

with the help of (2.3), (2.4) and (2.5). If we use (2.5) and (2.6), we obtain

g(A'Ay, Ay) = 0. (2.10)

On the other hand, we can put
X = Z P9V X)U; @11)
because of (2.3). We now extend &;,&,, - - -,&,, to differentiable orthonormal normal vector fields

defined on a normal neighborhood O of P by parallel translation with respect to normal connection along
geodesics in M. Then we get

(Vyd)X = §( Vv YP)g(U, X)Uj at P (2.12)
because of (1.6). Therefore, A’ A, is reduced to
ANA = g( vyP)U.®U, . (2.13)
If we use (2.9), then we have

9((A' AU, UY) = c(m — 1)P + (TrAD) Y (P ) — Z PPy P
1 1,7,
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Making use of (2.6), we obtain
9((A"A)UL,UY) = 0.

Thus (2 13) implies
AP =0. (2.14)

Since TrA} = 3,g(A\U,, A1U,) = 5, ,(Py1)* = (TrA1)P +c(m — 1), we see that
1A(TrA}) = (TrA))AP = 0.

Combining (2.8), (2.10) and the last equation, we get the result (Q.E.D )
3. MAIN THEOREMS.

Let M be an m-dimensional totally real submanifold of a complex space form M(c) with
nonvanishing parallel mean curvature vector. By lemma 2, we know that Ay is parallel. We now define
a function h,, for any integer n > 1 by h, = Tr(A};). Then h, is constant on M for any integer n since
Ay is parallel. This implies that each eigenvalue A, of Ay is constant on M. Let py,u,, - - -, p, be
mutually distinct eigenvalues of Ay and ny,ne, - - -, n, their multiplicities. So the smooth distributions
T} consisting of all eigenvectors corresponding to 4 are defined and orthogonal each other.

Since Ay is parallel, T are parallel and completely integrable. By the de Rham decomposition
theorem [4], the submanifold M is a product manifold M; x Mz x - - - x M,, where the tangent
bundle of Mz corresponds to Tg. We now assume that the ambient manifold is flat, that is, a complex
number space C™ and M is embedded in C™. Then as in [1] we can choose an orthonormal basis
ey, e, -+ -, e, for T,M as eigenvectors of Ay and J,,,J.,, - - -, Je, for J(TpM) in such a way that
h}‘i = hj = h},, where h; = g(Ay, e,€;) and h.',‘i =0fore; € [ug],e, € [u,], 8 # v, where [ug] is the
eigenspace corresponding to the eigenvalue 5.

Let mg(H) be the component of H in the subspace C"®. Then mg(H) is a parallel normal section of
Mjp in C*? and Mj is umbilical with respect to ms(H). Therefore, Mj is a minimal submanifold of a
hypersphere in C"®. Hence M is a product submanifold M; x My x - - - x M, embedded in
Crn=C"xC%x -..xC", where Mg is a totally real submanifold embedded in some C*. Thus
we have

THEOREM 1. Let M be an m-dimensional complete totally real submanifold embedded in a
complex number space C™. If M has parallel mean curvature vector H, then M is either a minimal
submanifold or a product submanifold My xMyx -+ xM, embedded in
C™ =C" x C" x - - - x C™, where M is a totally real submanifold embedded in some C** and Mj
is also a minimal submanifold of a hypersphere of C**

THEOREM 2. Let M be an m-dimensional complete totally real submanifold embedded in a
complex number space C™. If M has the nonvanishing parallel mean curvature vector and Ay has
mutually distinct eigenvalues, then M is a product submanifold of circles S* x §* x - - . x S*.

- PROOF. By a lemma of Moore [5], M = M; x My x - - - x M, is a product immersion
embedded in C™, and M, is a totally real submanifold in C™ and contained in a hypersphere in C™.
Since ny +ng + - - - +npn =m,n, must be 1. Hence M, = S!, a circle in a complex space C.

(QED)
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THEOREM 3. Let M be an m-dimensional totally real submanifold of a complex space form
M (c) with nonvanishing parallel mean curvature vector H If Ay has mutually distinct eigenvalues, then
M is flat.

PROOF. Lete;,eq, - - - e, be eigenvectors of Ay corresponding to eigenvalues Ay, Ae, - « -, Ap,

respectively. Since Ay is parallel by Lemma 2, we have
AgR(X,Y)e, = L, R(X,Y)e,

for any vector fields X and Y on M, that is R(X,Y)e, is an eigenvector of Ay corresponding to A,.
Taking the inner product with e,, we obtain

(A= ’\J)g(R(Xy Y)e,, e]) =0

because Ay is a symmetric operator. Thus M is flat if Ay has mutually distinct eigenvalues. (Q.E.D.)

REMARK. Let M be a totally real submanifold of complex space form M (c) with nonvanishing
parallel mean curvature vector H. Considering Lemma 1, we see that M(c) is flat if the sectional
curvatures defined by principal vectors of H are nonzero.
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