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ABSTRACT. In the present paper we give two criteria for the functions f(z) = = + az:2 + ... to

be univalent in |z| < 1
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Let A denote the class of functions which are analytic in the unit disk U = {z : |z] < 1}
and f'(0) —1 = 0. By B we denote the class of functions f € A which are univalent, convex and
bounded in U". In the present paper we prove the following theorems.

THEOREM 1. Let f € A, satisfy the condition
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for some g € B, where go = sup{|g(z)|;z € U}. Then f is univalent in U.
THEOREM 2. Let f € A, ¢ € B satisfy the condition
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for some g € B, where
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Then f is univalent in U.
I we put ¢(z) = z in the Th.1 we get the Ozaki and Nunokawa theorem [2].
I we put ¢(z) = 2 in the Th.2 we get the Nunokawa,Obradovic and Owa theorem |[1].
PROOF OF THEOREM 1. I q%[f’ ’
¢ = ]

then ¢ is analytic in U and
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If we put g(w) = £ we get
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From the condition ¢ ¢ I3 and the 1elation (3) we get
1 1 1 1o
= 5[ e @
) 4o Jaten)

SRS S S O
) al=

1) f(z2) a2

(4)

From Schwarz’s Lemma and condition (1) we get (z)| < 1in U'. Now from the relation (4) we

get
1 1 11 lg(=1) — a(=2)l 5
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If f(z1) = f(22) then it is obvious that ¢(z;) = ¢(22) or z; = 2.
PROOF OF THEOREM 2. If we put
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then we get
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From the relation - 1
A i U (9)
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we get
|P(2)| < Alg(2)| in U.
Now, the condition (1) of Th.1 is obvious.
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