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ABSTRACT. In this paper, we consider the simultancous approximation of the derivatives of the

functions by the corresponding derivatives of quasi-Hermite interpolation based on the zeros of (1 —

z%)p,(z) (where p,(z) is a Legendre polynomial) . The corresponding approximation degrees are given.
. It is shown that this matrix of nodes is almost optimal.
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1 INTRODUCTION.

Let
-1<z,<...<z21<70< 1 (1.1)

be an arbitrary nodes system on [-1,1] and let f € C![—1,1]. We consider the Ilermite interpolation
opcrator:

o) = 32 fan)h(@) + 3 F(an)ow(a), (1.2)
k=0 k=0

where
hi(z) = vi(2)lE(2),  ok(z) = (z - zi)li(2),
__ w(®)
MO = e -z
w"(zk)

wu(z)=1- o (28)

(z = 2k), w(z)=Mi_o(z - 2x)-
It satisfies the following conditions:
Hn(fsxk) =f(zk)1 k =0,1,..,n

and
Hi(f,zx) = fi(z), k=0,1,..,n

There have been many articles considering the problem of approximation to f(z) by Hn(f,z), Generally,
we consider approximation of f/(z) by the derivative of Hermite interpolation. We know that the
convergence

Jlim |VH(f2) = f'(@)ll =0,

does not hold for all f € C'[-1,1](herc ||.|] is the maximum norm). Pottinger [1] investigated this
problem when {z,}7_, are the zeros of the Tchebycheff polynomial of the first kind and obtained the
following result:
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(S, 2) = f(2)] = O(n) Ean(["), (1.3)

where E,(f) is the best approximation of f(z). (The factor O(n) is best possible, cf. Steinhaus [2].) In
[3], Szabados and Varma introduced a norm for the higher derivatives of the operator (1.2):

DN = sup{ILEO (S, 2)] = 1O @] < wt(1 = af) ™2k = 1,.,m50= 0,1}
(r,n=1,2,...) and they proved that for any system of nodes ([3, Theorem 1])

IO > e,n"lnm, (7 =1,2,..) (1.4)
where ¢, > 0 depends only on 7. Morcover, for the matrix of nodes:

o, (J — 1)7"
w(z) = Pl (2)I Ly (27 = cos?

3t(n~ 2t + 1))’ (15)

they obtain ({3, Theorem 3])
D) = O(n" Inn), (1.6)

where t = [3], & = 2t — 2L (7 > 1 integer) and P(‘:';t)_,_l(z) are the ultraspherical Jacobi polynomials
of degree n — 2t. Moreover, a takes only the values —1/2,0,1/2,1 according to r = 0,3,2, 1(mod 4).
(Sce [3, Remark, P305).) Therefore for the matrix of nodes defined by (1.5) we have

1S, ) = FO@) = 0(n aYo( 0, 2). (L7)

(see [3]) At the end of paper (3], they speculated that “it would be interesting to construct a matrix
which is optimal for all the derivatives up to order r.” This is the problem of constructing matrix
nodes so that the corresponding simultancous approximation of f(z) from the first derivative to the
r-th derivative is optimal by the corresponding Ilermite interpolation.

Remark: With respect to Lagrange interpolation, the complete solution of minimizing the corresponding
derivatives norm to (1.4) was given by Szabados [4] (also see Vértesi [5]). The main idea is that adding
nodes (near 1) to Jacobi nodes make the similar estimates of (1.4) optimal.

In this paper, we point out that for the quasi-llermite interpolation R,(f,z) based on the zeros of
(1 - 2®)pn(z) (where py(z) is the Legendre polynomial with normalization: p,(1) = 1), we have

THEOREM 1. If f € C'[-1,1], then
IRy (f,2) = f'(@)ll = O(ln n) Ean(f")- (1.8)
THEOREM 2. If f € C"[-1,1] (r > 2), then

[|RA(f,2) = f'(2)ll = O(In ) Ezn(f') = 0(13113)527.-1(!"), (1.9)
V1= 22(Ry(f,2) - f"(2))l = O(nn)Ezn_1(f"), (1.10)

and
NRO(f,2) = fO(@)l|j—0w) = O(ln ) Epn—sn (f), i=2,.,7 (1.11)

where 0 < 0 < 1.

From this we see that the zeros of (1 — z2)p,(z) are almost optimal and the corresponding simul-
taneous approximation is better than that of Hermite interpolation based on the zeros of Tchebysheff
polynomial of the first kind.

Remark: We conjucture that the factor v/1 — z? in (1.10) cannot be removed on the whole interval
[~1,1], in which case the preceding results are optimal.



APPROXIMATION OF FUNCTIONS AND THEIR DERIVATIVES 281

2 LEMMAS.

In order to prove the Theorems, we state some properties of Legendre polynomials (see Szegd [6]).

Ipn(z)] < 1, (2.1)

(1= 2 pa(a)] < (2/7n)™'2, n>2 (2:2)
(1=32%)*pr(2)] < (20)'/2, n>3 (2.3)
sinf =1—22>(k-3/2)7%, k=1,.,[n/2 (2.4)
[Ph(zi)l > c(k - 3/2)7%%2, k=1,..,[n/2] (2.5)

We note that in (2.4) and (2.5) similar estimates are hold for k = [n/2],...,n. On combining (2.4) and
(2.5), it follows that

(=22 pl(@))?>en, k=1,.n (2.6)

* where c is an absolute positive constant independent of f and n, whose value may vary from line to line
throught our paper.

Let
—l=z,41<Tp<...<2T<T0=1

be the zeros of (1 — z2)p,(z). Then its corresponding quasi-Hermite interpolation is the following

n+1 n
Ra(fyz) =Y f(zi)re(x) + ) f'(ze)e(), (2.7
k=0 k=1
where 14z .
ro(2) = —5 Pi(z), Tan1= -—2—11,2.(3),
2
h(e) = T oglhe) k=1

Te(z) = (z — zi)ri(z), k=1,...,n

_ Pa(z) - n
Ik(z) = p’—,,_—_(zk)(z—xk)’ k=1,..

It satisfies that
R.(f,zx) = f(zx), k=0,1,..,n+1.

and
R.(f,zx) = fl(zk), k=1,.,n
LEMMA 1. We have

J1-22 < V1 PN ikl | PR

2
1—z;

PROOF. One easily sees that
Vi-zi=V1-22+4/1-22-V1-2?
2_ .2 |z — 2]
=,/1_zz+_z_ﬂ__s,/1_zz+2__
V1i-z2+V1-2? V1-ai

This proves Lemma 1. O
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LEMMA 2. We have

G) Ip:= El "15 - :é"IZ(z) = O(Inn) (2.8)
(i) I:= Z |z — :ck| p llk(z:)lk(z)l = O(Inn) (2.9)

PROOF. From Lemma 1 we have

n<y ————“'f)a,f"zk( )42 Z Eooltm = s+ m (2.10)
k=

Throughout this paper we assume z, to be the zero of p,(z) which is the nearest to z and i = |k — j|.
By using (5.8) in Prasad and Varma[7] we have

V- x?' ”'12()_ (2.11)

Notice that, with z = cos§ (0< 8 < 7)

0+6
sinf < sin @ + sin 6 < 2sin -; y

so we have
Ay(z) = \/11_12 V1 —lx I::J2 1]'[2( )+§—I—f—)mzi|l,7c(z)
c 1 V1 - z2p(z)
S g, 2 =D i (enPe = o]
= 01+ B@) Y — |] = o)1+ 28 2 oan).
k#; P
Similarly,
n 2
Ao(z) = Pa(z) Pn(z) 1 _oa n),
=2 RSO Ty e ST Py e i

50 we obtain (2.8).
Notice that

! (g) = Pa@)E = 2k) = pu(2)
y (z = 2k)Pu(er)

and we have

- (1= 5l — z4llrh(=)] o Be) s Bute
L < I;Z=; |z~ zkl(l _ zlzc)(m $k)2|P’n($ )I [le(z )l + Z] rx(z) := Bi(z) + Ba(z)

One notes Prasad and Varma (7]

8 = x’;‘/4|l"(z)| <c,
so we have . y
By(z) = Z (1= 2?PMpl(2)] (1 -2?) o

= 24P (zi)| (1 — )1/

- o) (1= 22)3/4)p (z)| (1= 2¥)pa(2)ph(2)ly/1 = 2}
(L=} Mph(e)l G (1= 22 AIph(z)l2le — il

_ o + L@ (@)] 5~ sinfl

n ey |z—zk|

= O0()[1 +Inn(1 - 22)|pa(2)p;(2)]] = O(ln n).
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Obviously,
n+1
Da(z) < E re(z) = 1.
k=0
Therefore we obtain (2.9). O
LEMMA 3. We have
n+1
Iy := Z(l — z23)|ri(2)] = O(In n)(1 - 2?), (2.12)
k=0
and
=~ Inn
= —z? =0(— - z2, 2.13
li= 3 Vi-zin(@)l=0(=)V1-2 (2.13)

Proof. Since N
L= (1-2%)3 li(2),
k=1
from Nevai and Vértesi [8] we have
d 1
St = o1+ 28 4 12

k=1

——Ja(@)),
where Jy(z) is the orthonormal Legendre polynomials:

/ 11 Jn(2)Im(2) dZ = )

and notice that Natanson [9] gives

17a(2)Il = O(1)n'2.
It follows that

2_li(z) = O(lnn),
k=1
this implies (2.12). Also, we have

2(1 z )Iz zklp( )

1—:1:,c
o 2y (=) (2] -ahpi(s) 1-3}
= O )¢ '+§; =DM el

Recall that (Erdos [10]) for -1 <z <1,
k(z)| <1, k=1,..,n

therefore, similar to the estimates of I; and I3, we have

I4=0(1)1 (1—1 )pn(z)z:

n
k#;

= O(h‘Tn)\/l -z

sin |0;x|
This proves Lemma 3. O
Remark: If we need not want to obtain the factor (1 — z2), we can obtain a better estimate of I3.

LEMMA 4. Let f € C"[-1,1], then there exist polynomials g,(z) of degrce n > 4r + 5 such that
(G=0,1,.,7)

\/__

[F)(2) = ¢9) ()] = O(1)(F—")"7 By (f). (2.14)
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PROOF. I'rom Gopengauz’s Theorem [11] we know that there exist polynomials () of degree n >

4r + 5 such that

— TE

I/ (2) = ()] € o(——— )‘J (o,

Let sp(z) be the polynomial of degree n > r such lhat

(@) ~ s € Ener (S0),
then we have
1fD(2) - @ (@)} = |/O(2) = (sP(2) + 1P (2))]
\/1—.2 f——

< (S — ), l)—0(1)< Y=l — )

o) (——— ) B ().

This proves Lemma 4. O

LEMMA 5. Let s,(z) be a polynomial of degree < n, and suppose that the incquality

le,(z)l =0(1), -1<z<1.
J=1
holds. Then

/23 14 (@)] = Oy,

=1

wherem >1and 1 <i< n.

(2.15)

PROOF. Although Ramm [12, Lemma 1, p285] only proved the case of i=1, (26) can be obtained by

using a completely similar method. D

3 PROOFS OF THEOREMS.
PROOF OF THEOREM 1. Notice that

n+1 n ,
Ru(f,2) - f(z) = Z(f(u) - f(@)re(2) + kz f'@i)m(z)
k=0 =1

S [ e + Ef (z0)mi(2).
k=0
This implies
11 < (3 J2 - kg + 3 HA@DILF
k=0 k=1

One easily sees that

(1= 2l € (1~ DL 4 (1 4 2)pala)ru@)] = O

Similarly we have
(1 + 2)lrga(2)l = 0(1)-

Notice that
2 2(1—z
@) = ~p7lk@) + ———‘1 L@tyia)

and
h(z) = Ti(z) + (= zg)7k(2)-

From Lemma 2 we have

(3.1)
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n+1

D1z = zillri(z)] = O(lnn) 3.2)
k=0
and also we have
Z [7i(z)] = O(In n). (3.3)
k=1
It now follows that

2211 = Ot |1 f]]- (34)

Combining Lemma 4, (3.2) and (3.3), we obtain Theorem 1. O

PROOF OF THEOREM 2. Thcorem 1 implies (9). llere we only prove the case i = 2. The other
cases are completely similar. By using Lemma 5 (or scc Borwein and Erdelyi (13]) and from Lemma 3
we obtain the following

n+1

2 (1= 2R)Iri(z)| = O(n*Inn) (3.5)

"’

and
V1-z? i V1= zi7i(z)| = O(nlnn) (3.6)
k=1

Notice that
Ru(f,z) = ["(2) = Ro(f = @2041, %) + @anp1(2) — f'(2)

and
n+41 n
Ry(f = dant,8) = D (f(3k) = qana(20))rk(2) + D0 (S(2h) = Gnpa (26))74(2).
k=0 k=1

Combining Lemma 4 , (3.5) and (3.6), we obtain (1.10). O
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