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1. INTRODUCTION AND PRELIMINARIES.
A (normalized) moment functional L; (Ahkiezer [1], Chihara [91, Shohat and Tamarkin [171,

Stone [18]) is a complex linear map of the space C [z] of complex polynomials into the field (2 of

complex numbers such that/2(1) 1. A sequence {Pn(x) n k 0} of polynomials in C[x] with

Pn(x) of degree n and Po(x) 1 is orthogonal with respect to if

(I.I)

with

Ao 1; An =/=0, n >0. (1.2)

The functional 1; is also called an orthogonality functional for {Pn(X)}. It is well known (Chihara
[9], Chaps. I, II) that {Pn(X)} is orthogonal with respect to if and only if there are numbers

An, Bn, C, such that

A,.,Cn+ =/= 0, n 2 0, (1.3)

and

xP,(z) AnPn+(x) + BnPn(x) + CnPn-l(x), n > O, (1.4)
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with P_ (.,’) (). P,(.r) 1. Flu’th(,rm,,rc. {P,,(.r) (h’tcrmines lmiqwly t,y

(1)-- 1" (P,,(.r))={}. ,_> 1, (1.5)

an(l the Ielati(mship

holds.

The functional can be represented by means of a 1))sitivc measu’c/ Sllrt,l 1)v the real
line, i.e.,

(P(z)) P(z)d#(x), (1.7)

if and only if A, B, C are real numbers and

A,C,+I > 0, n _> 0. (1.8)

This is known as Favard’s theorem (Chihara [9], Chap. II). The measure p, is called an orthog-
onality or a spectral measure for {P,(x)}, and {P(x)} is said to be orthogonal with respect, to

For most systems of polynomials defined by a recurrence relation (1.4), such those of La-
guerre and Jacobi, the recurrence coefficients depend on certain numerical parameters a, , A,...,
and (1.8) holds for these parameters within certain ranges (called their naturM ranges), but breaks

down for most values of them. However, (1.3) usually holds for a.ll a, , A,..., except, perhaps,
for countably many.

This has motivated the search for other types of representations of . (Krall [14] and Morton
and KrM1 [15]) have discussed representations of in terms of distributions supported by the real

line for several classical systems. Recently, Ismail, et al. [13] have given representations of for

some systems of polynomials in terms of measures supported by curves of the complex plane d
have used those representations to derive distributional representations of . They prove in each

case that

C(P(x)) P(z)X(z)dz, (1.9)

where C is a positively oriented closed contour of the plane contMned in the domain of anafticity
of X(z), the lit function of the continued fraction

1 AoC,[ A1C2[
z--B0 z-B, z-B2 (1.10)

of the polynomiMs {P(x)}, is a representation of .. For exple, for the ultrpherical poly-
noals {C(x)}, the speciM case a A- 1/2 of the Jacobi polynomials, the recurrence

coefficients are (Rainville [16], Chap. 17)

n+l n+2A-1A= 2(n+)’
B=0, C=

2(+) 0’ (1.1)

and (1.8) holds if and only if (n + A)(n + A + 1)(n + 2A) > 0, n 0, which amounts to A #
0, A > -1/2. However, (1.3) holds as long as 2A # 0 and is not a negative integer. Under this

assumption, the continued fraction of {C(x)} converges to

’ + (1.2)XX(z)
z

2F 2 + 1 z
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lr,,vide,l that [- + 11 > 2. H’re F, stands fir the hyl,’rge(metric series (Rainvillc [16], Chap. 4)

F, (a,bc )==o(’’[’’’’’(c)’’ ’<" (1.13)

where (a), 1. (a),, a(a + 1)... (a + n 1). k (so that c in (1.13) can not be zero nor a

negatiw" integer). On the other hand (Rainville [16], p. 279

(),,+(x 1)
k=0

Hence, if 0 is defined by (1.9) with X(z) X’(z) and C a positively oriented closed contour

in Iz -1- 11 > 2 containing -t-1 in its interior, a simple calculation, which takes into account that

(2,)m+, (2A)m(2A + m), and (-1)’(-m), m!/(m n)!, shows that

Z;o(C(,)) (:’x) ( -’, +m )m! F 2A+l
1

and the Chu-Vandermonde sum

c (c),
(1.14)

(Rainville [16], p. 69) then implies that l;0(1) 1, E.o(C(x)) 0, rn > 0. Hence, 0 is, in view

of (1.5), the orthogonality functional of {C(x)}.
In section 2 we will prove that representation (1.9) responds to a general situation, implying

that a check up as above is unnecessary. Now we derive from (1.9) a distributional representation

of 0. For z + 11 > 2,

X,(z)=2++ r(c+l)I’(+l)1 ( 1, c+l 2 )r(a+Z+2) z- F a++2 1-z

is the continued fraction 5mit function of the system {P’)(x)} of Jacobi polynomials (Szeg5

[19], 4.61). Then (Szeg5 [19], (4.1.4)) X’(-z)= -X’(z) and

_
P(z)(1 z)X’(z) dz . P(z)X+’(z) dz, (1.15)

for y polynomial P(z), any positively oriented contour in Iz I > 2 containing [-1,11 in its

interior, and any integer m 0. Thus,

P(z)(1- z)X’B(z)dz P(z)X+’+(z)dz (1.16)

Recalling that {a), F{a + n)/F{a), and Legendre’s duplication formula {inville [161, p. 24),
we see that

F{A+I} X-’/’-/{z), [z l[ > 2. (1.17)

Since ta){ 1 -a}{ 1+a)da, where is the characteristic function of [-1,1l, is, provided a, > 1,

the orhogonality measure of {Pa’)ta}} tinville [16], p. 258; Szeg6 [19], 4.3}, then

1 P(z)X’Z(z)dz P(x)(1 x)(1 + x) dx.
2z
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F(A + 1) /o(P(x))-
F(3‘ / 1/2) --1

P(x)(1-xe)-l/dx, 3‘ >-1/2. (1.18)

N,,w. fl,r P(.r) E C [z] and r,, > 0 an integer, we ha,x"

where , -1. 41 and R(.r) is a polynomial, and (1 15). (1 17) then yieht

d
dxJ

P(x)
(x + ,)"’

THEOREM 1. Provided 23, # 0 is not a negative integer and A > -m- 1/2, where m _> 0 is

an integer, we have the distributional representation 0 T0 + T02 where, for any test function

(2 + 1)m
,=0 =0 J!

(3‘ + 1/2) d

(2A + m + 1) dx
P(x)

(x + ,)m
(’) (1.19)

and

T0.()

with 0 =-1, ( and

r(a + i) pm(X)(1 ,2)A-l-m--I/2 dz,
x/ F($ + 1/2)

(1.20)

()
(1 x2) - (-i) d,

3! dxJ
t=O 7=0

P(x) I
(x + ,)m (’)(x ,)m-,

(1.21)

The distributions T0 and T02 have compact support on the real line and can act on polynomials.
We will show in this work that representation

/c ,x( )dz (1.22)o(P(x)) P(z)X z

of 0 can be "lifted" to contour integral representations of the orthogonMity functionals

and 2 of the sieved ultraspherical polynomials of the first and second kinds. Then, from such

representations, we will derive distributional representations of and 2
The monic sieved ultraspherical polynomials of the first kind, {p(x)}, and of the second

kind, {q(x)}, satisfy the blocks of recurrence relations

xy,,k+j=y,,k+++a)ynk+_, n>_O, j=O, 1,2,...,k-1,

with y_ 0, y0 1. The coefficients a are

a) n a()= n+25, ,a 1

4(n + A)’ 4(n + A) 4’
j-2,3,...,k-1, n>O,

for {p(x) }, and

a) n a(k_a)_ n+2k+l ,a)_4(n+A)’ 4(n+3‘+1) 4’ 3 1, 9 k-2 n>O
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fi,r {q,(.,’)}. It is assmw,1 thnt k> 2 is an integer.

Si,’v,’,l tltrnslh,’rical l,lvn, mfinls wcr’ intr,dwcd lv A1-Salam ’t al. [2]. G’m’rnlizatims and

int,’rl,I’ctati,,ns ,,f th,’ sieving tn’,,c,’ss arc in Charris and Ismail [5 7], Charris ,.t al [8]. while (’harris

anal Ismail [6]. Ismail [11 12] cmtain Sl,ecific cxamtflcs f sieved plynCmfial systems.

nnl Van Ass,’hc [10] als ll’,’s’nt an interesting alqr,ach t si’v,l ,rth,gmnl 1,lvnmfials.
The’ lap’r i2,rg,nizcl as fi,ll,ws" In SectiCm 2 w" pr,w’ a general r,.sflt nlt Cln’’s’ntntims

(1.9). and sCmic lcmmas, related to the Chebyshcv llynmfials, wlfich will

st’qml. Sections 3 and 4 contain contour integral representations of anl ’2, anl

th,ir distrilmtional representations.

In closing this section we observe that since B,, 0 flr all n 0 in (1.11), then

C(-x) (-1)"C2(z). ,t 0. (1.23)

It is c,mvenicnt to assume that C(x) 0. Now let

Cz n 0. (1.24)_,(z 1)= o C C,,(z)

Then {C,(x’I)} is a system of polynomials (Chihara [9], Chap. III), called the numerator poly-
nt,mials of C,, (x)}. Since

fC X(z) dz
-1 /c X(] dz

+
for any closed contour of ]z 1 > 2 containg 1 in its interior, as follows from (1.12), then

C+(z) X(z)d, n > 0 (1.2g)ac2(-

Relation (1.2a) also implies that

c(z.) n o. (.

2. BASIC RESULTS.
Theorem 26.2, p. 112, of WM1 [20] ensures that (1.10) is iformly convergent on

for all M’ > M, provided that (1.) and

hold.

Hence, X(z)is anMyic in I1 > M. We dimh
THEOREM 2. If {P()} i atd by (1.4), and (1.a), (2.1) hold. the moment

functional of {P(x)} is represented by (1.9) for y positively oriented closed contour C of

zl > M contning 0 in igs interior.

PROOf. Because of the unifo convergence to X(z) of (1.10), we may assume that the

zeros of a the P(x)’s e interior to C. From the general theory of continued fractions (Askey
and IsmN1 [a], Chihara [9], Wall [20])it follows that

X(z) lim
P(z)

zl > M, (2.2)
()’

where {P2(z) is the system of polynomials determined by (1.4) for n 1 and P(z) O, P(z)
1/Ao. Induction on (1.4) readily shows that
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where A, is given by (1.6). Relati,,n (2.3)is kn(,wn as Abel’s formula (Ahkiezer [11, Chihara [91).
Since

2rzl /c P,PT’ z

)zvdz 1, n>_ 1,

and for m >

then

f P,,(z)X(z)dz O, , > ,X(z) dz 1;

and the assertion follows. V1

For ]z] > M we have the Laurent expansion (see Wall [20], pp. 192-211)

(2.4)

X(z) z,,+
’--0

(2.5)

where

Hence,

We have

THEOREM 3.

1 /cZ’*X(z)dz’ n>0 (2 6)u0=l; un=

,liInoo zX(z) 1. (2.7)

Assume (1.3) and (2.1) hold, and that the moment functional of {P,(x)}
has the representation

1 /c P(z)Y(z)dz (2.8). (P(x))

where Y(z) is analytic on Izl > M, limz- Y(z) O, and C is a positively oriented closed contour

in Izl > M containing 0 in its interior. Then Y(z) X(z) for all Izl > M.
PROOF. Since

cP,(z)(X(z)- Y(z))dz O, n > O,

and {P,(z)} is an algebraic basis of C Ix], also

zn(X(z) Y(z))dz O, n >_ O.

Thus, if

X(z)- Y(z)- a.z", Izl > M,

is the Laurent expansion of X(z)- r(z), then

1 Iv z"(X(z) Y(z))dz O, n > O,a-n-1 i

and X(x)- Y(z)is an entire function vanishing at o. Hence X(z) Y(z) for
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satisfy the’ romu’r.nc, n,latim 2.rg,, g,,+ + g,,_. 1. lnt (.r} 1. T(.r)= .r whih"

(.r) 1.’(.r) 2r. W,’ al,, assume that _(x) _(.r) 0.

For an int.g’r, lot cos, ]w the r,strictim map f cs t , (t.( + 1)) x R. where R
,l,,n,,t,,s th,’ r,’al line. If is the c,,ml,h’x pla,’ ct al,,ng (-. -1] an,l [-1. + ). ,.,,s, nml,S

,’mfi)rmally mt . Vo h’n)te with cos the’ analytic inv,’rs,’ ,f c,s, m t. (’h.arly

sin( k + ,’,,s,7
sin (,’,,.N7

Fn" {}. 1.2 /,’- 1. let

cos_ ),(_-)=,, () -.
Then T,(L,(-)) -, f, so that L, is a branch in of the multi-valued fl,nction T"(z). The

following results will be needed in the sequel. In all of them we assume k _> 2.

LEMMA 1. For each in f and each polynomial P(z) in C[z] ,,f degree m _> O.
L-I_..=. P(L.(z))is a polynomial in z of degree at most [m/k], where [a] denotes the largest integer

PROOF Partial fractions and the geometric series give for Ixl large that

T:(x)- z x L,(z)
L, (z) x

-’-0 --0

For I[ large we also have

and long division gives

Hence

Uk-l(X) Wk-i (x)
T:(x)- z z._, T,+i

,=0 ()

Uk-(x) a,,j

T+I (z) k
xn+I"

k

Vk-l(X) pn(z)
T, o: z

where p,,(z)= /o’] a,sz Thus Ek-l’=O L(z) kp,,,(z), and the assertion follows. [-]

Now let -1 < < 2 < < - < 1 be the roots of U_(x). For j 0,1,...,k- 1, let

U(,) (2.11)B,A,= U,_
Tt ((,)=1 T,((,)=-I

Then

LEMMA 2. For j 0,1,2,...,k- 1,

1
A + B O, 3 # k 2; Ak-2 + B,-2 -. (2.12)

PROOF. Partial fractions decomposition gives for large Ix[ that

V3(x k-1 U(,) 1 { U((,)
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Since the coetficient of 1/z in the long division of Uj(.r) by Uk-l(x) is 0 if j :/: k- 2 and 1/2 if

j k_ -,9 the assertion follows. [-1

LEMMA3. For3 =0,1,2 ,k-l,

Ak-j-2 -Aj, Bk-j-2 Bj. (2.13)

PROOF. This is a consequence of the trigonometric identity Uk 2(x) Uk_(x)Tj+(x)
-U,(x)T(x). [5

LEMMA4. For z fand)-0,1,2,...,k-1,

1 U(L,(z)) Aj B- Uk_-(-L-,-(-zi z-1 z + l
--0

(2.14)

PROOF. Partial fraction decomposition gives for Ixl large that

Since k > 2, long division on the left hand side of the above equality gives 0 for the coefficient of

1/x, and (2.14) follows at once.

The relationships

1 jU._(L(z))Li(z)
kUk_l(L,(z))

(Tj(L,(z)))’= kUk_l(L,(z))’
z fl (2.15)

and the trigonometric identity

Uj-t(x) Ut(x)Uj(x Ut_l(x)Uj+l(X), j

_
O, (2.16)

will be also needed.

Now let 7 be the positively oriented ellipse

x 92
a-- + -ff =1, a2-b=l, a> 1, (2.17)

so that, for some y0 > 0, a cosh y0, b sinh Y0. Observe that [-1,1] is in the interior of 7. For
each 1,2,..., k 1, let 7, L, o 7 be the i*h-lifting of 7 through Tk. The ")’,’s piece together
onto the ellipse determined by

x y2
(2.18)A B

where A cosh Yolk, B sinh Yolk. If Iz- 11 > 2 for z on 7, then ITk(z)-- 11 > 9. for z on .
This fonow fom IT(L,()) 11 I" 11. If f i otin,ous on thex

1 f(L,(z))f(z) z (2.19)

For f continuous on 7 we also have

f T,(z))U._ (z) dz f(z) dz. (2.20)
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Sinc

is simple ad positively oriented. call he lifting of through . If is any positively
oriented contmr of [T(-)- 1] > 2 containing [-1,1] n its interior and f is analytic O11 this set,

hen

provided that [z- 1[ > 2 on 3’.

3. CONTOUR INTEGRAL REPRESENTATION OF
We will write p,(x) instead of p(z) to denote the n th sieved ultraspherical polynoal of

the first kind. Results in A1-Salam et al. [2], Charris d IsmM1 [5-7] or Charris et M. [8] yield

n!
{( + )U_()C+(T(z)) + (, + )U__()C(T(x))}2nk+J()n+l

(3.1)

’ (T(x))for n :> 0,) 1,2 ,k. In particular, p,.,:(x) i,,(,x),,Cn > O.

For z in C such that ITv,(z)- 11 > 2, (1.12) and results in the above references, which were

established for the positive definite case, i.e., when (1.8) holds, suggest that

u_,(z),(z) U_,(z)X(T(z)) T(7-
1, A+2F1 2+1 (3.3)

is the limit of the continued fraction of {p,,(x)}. That this is so follows from Theorem 3 and from

the next theorem.

THEOREM 4. Let

.(P(x)) P(z)e(z)dz (3.4)

where Cis a positively oriented contour of IIT.(z)- ill > 2 containing [--1, 1] in its interior. Then

/2 is the moment functional/21 of {p,,(x) }.
PROOF. We may assume that C is the lifting through Tk of an ellipse O’ in Iz 11 > 2, as

in (2.17), containing [-1,1] in its interior. That/2(1) 1 follows from

(z)dz U-l(z)X’X(T(z))dz fX’(z) dz

Now, from (2.15) and (2.19),

9[c v,_(z f, v,_(r,(z)) c )x)C’+l(Tk(z))X’X(Tk(z))dz k-U--;--,(;) ’+l(z (z)dz
--’0

so that, in view of Lemma 1, the integral vanishes if j 1, 2,..., k 1. If j k it also vanishes,

as it reduces to 2riL;0( ,xC,+I(z)). Noting that k- j 1 < k for j 1,2,... ,k, we also have that

0, j 1,2,... ,k,
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and taking into account (3.1) we conclude that :(P,k+j(x)) 0, n

4. CONTOUR INTEGRAL REPRESENTATION OF
We write qn(a’) to denote q(x). Results established in Charris and Ismail [5---7] or Charris et al.

[8] show that

1 +1q,,k+j(.r) 2,k+ {U(z)C,, (T(x)) + U_j_(z).,,_l(Tk(.r))}, (4.1)

n _> 0, 3 0, k 1. In particular,

n!
q(,+),_(z) 2(,,+)_(A + 1),U,_(z)C2+(T,(x)),n >_ O. (4.2)

Hence, for [z- 1[ > 2,

Y’X(z) X+(z) I ( 2A + 3
2 )z+l

F 1, A+ z+l
(4.3)

is the limit of the continued fraction of {C+(x)} and, for [T(z) 1[ > 2, (z), given by

( 1+2A Y(T,(z))}(z) 2
U,_:(z) + (4.4)

+
will be that of {q(z)}. This will follow from Theorem 5 below. Relation (4.4) is suggested by

results in the above references for the positive definite case. To simplify the notation, let

2"k+($ + 1),Q,,+(z) n! q,,,+(x), n >_ O,j 0,1,2,...,k- 1,

and define
1 Iv P(z)(z) dz, P(x) . C Ix], (4.5)(P(x))

where C is a positively oriented closed contour of IT,(z)- 11 > 2 containing [-1,1] in its interior.

We claim that

THEOREM 5. If is given by (4.5) then (1) 1 and .(q,.,(x)) 0 if n _> 1. Hence, if

2A = 0 and is not a negative integer, : is the orthogonality functional 2 of {q,,(z)}.
PROOF. For each n _> 0 and j 0, 1,..., k- 1, let

I(n,j) U.(z)C+(Tk(z))(z)dz.

As before, we may assume that C is the lifting through T, of an ellipse -), in Iz- 11 > 2 as in

(2.17). We have

(Q,,k+a(x)) I(n,j) + I(n 1, k j 2).

Now, for n >_ 1 and 0 <: j _< k 2, we obtain, from (2.19) and (4.4), that

,-o

(z) z

+ 2(A + 1) r- ,=o kU_(L,(z))

Using (2.16) and observing that

k-1 k-1

J" E U,_(L,(z)) E(T(L,(z))), 0
=0 =0
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as follows from (2.15) and Lemm 1. we obtain, by means :f Lemma 4, that

2A+1 C#+’( )}"(-)d: + B,
2(A+I) :+ A2( A + :)

Cauchy’s formula and (1.23), (1.25), (1.26) then imply that

A+ll(n,y)=2{(Ak__+( 1)"Bk__)C(1)+(A+( I)"+’B)(2A+1),_,(I;I)}
+: C#+which, in view of (2.13) and the obvious relationship (2A + 1)C,_ (1; 1) (1)- I, reduces

to I(n,y)=-2(A + (-I)"+:B).
Alo I( I,: j 2) -2(A__ + (-:)"B__), so that, using (2.13) again, we obtain

#(O,+(x)) 0, :, y 0,:,2 ,-2.

As for the case n : I, y - I,, i.e., of Q(,+:_(z), we obtain, from (4.2), that

(O(,+:>_:(x))

U_,(z)C#+’(T(z))dz +-- L,(z)
m 2(A + I) x,=o

hih, in vie o: Le : nd the :litiity o: U_,(z)C#+’(T(z)), :so ,nishs. Sine

nlly (0,y)= 2(A_,_, + m_,_)= 0 ify # 0 nd I(0, 0)= :, onlud that (:) 1 d

(,()) 0 if > 0. m
REMARK I. With

(z) 2A + 1 Y(T(z))
]Tk(z)- 1] > 2, (4.6)A + 1 Uk-:(z)

we obtain the alternative representation

v-(’(,l + ((a, (.7

where ( < ( < < (_ e the roots of g_().. DISTBUTIONAL REPRESENTATIONS O AND .
rom the contour integral representations of and it is ey to derive distributionM

representagions of these funcionals.

Let, before, -1 < ( < (e < < (_ < 1 be the roots of U_(x), and let (0 -1, (
1. Then (0, ( e simple roots of T(z)- 1, wNle for 1, 2, k- 1, (, is a double root.

Hence, for m 0 an integer and P(z) e C [],

’ R(x);
(1 T#()) (z ,) + ’ (, j)’. d.- (1 T_,(z)) P(x) (,),

with lo lk m, l, 2m for 1,2,...,k- 1, and R(x), a polynomial.

Since

1 F(A + 1) fc P(z)XX-/2’-/2(Tk(z))Vk-(z)dz (5.1)c’(P())
2.i r( + 1/2)
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fi,llows from(1.17), then, provided 2A is not an integer < O,

where

Au Uk_,(z)(1 T(z))OXX(T.(z))dz (5.2)

for 0, 1, 2,..., k and j 0, 1,..., l, 1. Observe that Au is independent of P(x), and also of
C, as long as C is contained in IT,(z)- 11 > 2.

Now assume C is the hfting through T,.(x) of an elhpse (2.17), 7, in Iz- 11 > 2. Then

Hence
THEOREM 6. If 2 0 is not a negative integer and A > -m 1/2, where m _> 0 is an

integer, the functional 1 has the distributional representation I T11 + T2, where, for any
test function ,

I t,-
1 d (x-,)t’

Tll(O) E E A’.Fx (1 T(x))" p(x)j (,) (5.3)
t=0 $=0

with A, given by (5.2), 10 l m, li 2m for 1, 2,..., k- 1, and

r(+ ) o,.,.,(x)lU:_l(x)12(’+"")(1 x2)a+"-1/2 dxTI2() r( + 1/2) (5.4)

with

qo(x) * ,-1
1 d.i (x ,)"m(x) (1 T(x))" EE j!(x ,)/i--1 dx.1 (1 T(x)) T(x) ({,)

t=0 j=0

Both Tll and T2 are compactly supported on the real line and can act on polynomials.

As for 2, observe that, from (4.4),

v_(z)+q(z) =2u_l(z
F(A + 1)+ V@F(A + 1/2) 1-- Tk(z)

1
(1 z2)Uk-l (z)XX+l/2’X+l/2(Tk(z))

1 + T(z)
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and simple calculations with the series involved show that

(5.6)

Hence
THEOREM 7. If 2A 7 0 is not a negative integer and A > -m- 1/2, where m >_ 0 is

an integer, the functional Z; can be represented in the form 2 Tzl + T2, where, for any test

function ,
k t,-1 dJ (x-,)’T2,(,)- E E B’J--x (1- T(x)) (x)j (G) (5.7)
=0 1=0

with

F(A + 1)B, =/-F(A + 1/2)

1 [ (1- z2) m+l’l’2ra+l_, (z)
2ri Jc (z-G),-

(5.s)

{XA-1/2’A-l-1/2(Tk(z)) + X’k+l/2’"-l/2(Tk(z))} dz

and 1, 0, 1,..., k, as in Theorem 6, and where

2r(, + 1) [1 ,(z)luk_,(z)l(A+’)(1 X2)q-mq-1/2 dx,T2(9)- v/F( + 1/2) J_l (5.9)

with ,,(x) as in (5.5). Both distributions T2 and T22 have compact support on the real line

and can act on polynomials.

REMARK 2. If k is allowed in Theorem 6, T and T reduce to T01 and T02,
respectively.

REMARK 3. If A > -1/2, i.e., if we can assume m 0 in Theorems 6 and 7, then

TI T2 0 and T,T22 reduce, respectively, to the orthogonality measures of the sieved

ultraspherical polynomials of the first and second kinds (as given in A1-Salarn et al. [2]).
REMARK 4. When , _< -1/2, so that m > 0, T0,Tll and T measure the contributions

to the orthogonality of the points in [-1, 1] where (1 X2) "k-l/2, Ig_(x)lX(1 Z2)"k-l/2 and

IUk_(x)12x(1 x2) "x+l/2 become infinite.

It seems rather difficult to obtain distributional representations of ;1 and 2 by the proce-

dures in Krall [14], Morton and Krall [15].
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