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1. INTRODUCTION AND PRELIMINARIES.

A (normalized) moment functional £ (Ahkiezer [1], Chihara [9], Shohat and Tamarkin [17],
Stone [18]) is a complex linear map of the space C [z] of complex polynomials into the field C of
complex numbers such that £(1) = 1. A sequence {P,(z): n > 0} of polynomials in C [z] with
P,(z) of degree n and Py(z) = 1 is orthogonal with respect to L if

L(Pn(z)Pm(z)) = Apbmn, m,n >0, (1.1)
with
Xo=1; A #0, n>0. (1.2)

The functional £ is also called an orthogonality functional for {P,(z)}. It is well known (Chihara
[9], Chaps. I, II) that {P,(z)} is orthogonal with respect to £ if and only if there are numbers
A,, B,, C, such that

AnCrir £0, n >0, (1.3)

and
an(I) = AnPn+l(z) + BnPn(m) + CnPn——l(z)s n >0, (14)
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with P_y(r) = 0. Py(r) = 1. Furthermore, {P, ()} determines £ uniquely by
L(1)y=1. L(P,(r)=0.n>1, (1.5)

and the 1elationship
' ¢ ---C,
A = L(PHr)) = ——— 2,
-'ll) -'11:—]
holds.

The functional £ can be represented by means of a positive measure j supported by the real

line, i.e..

+<
L(P(x)) = / P(x)du(r), (1.7)

—0oC

if and only if A,,, B,,,C,, are real numbers and
AnC,,_H >0 n>0. (18)

This is known as Favard’s theorem (Chihara [9], Chap. II). The measure u is called an orthog-
onality or a spectral measure for {P,(z)}, and {P.(z)} is said to be orthogonal with respect to
i

For most systems of polynomials defined by a recurrence relation (1.4), such as those of La-
guerre and Jacobi, the recurrence coefficients depend on certain numerical parameters a, 3, A, .. .,
and (1.8) holds for these parameters within certain ranges (called their natural ranges), but breaks
down for most values of them. However, (1.3) usually holds for all «, 3, ), ..., except, perhaps,
for countably many.

This has motivated the search for other types of representations of £. (Krall [14] and Morton
and Krall [15]) have discussed representations of £ in terms of distributions supported by the real
line for several classical systems. Recently, Ismail, et al. [13] have given representations of £ for
some systems of polynomials in terms of measures supported by curves of the complex plane and
have used those representations to derive distributional representations of £. They prove in each

case that

L(P(z)) = %/C‘P(Z)X(z)dz . (1.9)

where C is a positively oriented closed contour of the plane contained in the domain of analiticity

of X(z), the limit function of the continued fraction

1wl sl
lz—Bo |z-Bl |Z—Bz (1.10)

of the polynomials {P,(z)}, is a representation of £.. For example, for the ultraspherical poly-
nomials {C(z)}, the special case & = # = X\ — 1/2 of the Jacobi polynomials, the recurrence
coefficients are (Rainville [16], Chap. 17)

n+1 n+2\-1
n=—0———.B,=0,Ch = ——, >0, 1.11
2t B Aty " (111

and (1.8) holds if and only if (n + A)(n + A + 1)(n + 2A) > 0, n > 0, which amounts to A #
0, A > —1/2. However, (1.3) holds as long as 2A # 0 and is not a negative integer. Under this
assumption, the continued fraction of {C}(z)} converges to

1 1A+ 12
A _ ) 2
X (Z)—zzl:lel(2/\+1

2
EE) (1.12)
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provided that |z £1| > 2. Here , F) stands for the hypergeometric series (Rainville [16]. Chap. 4)

b
oFy (C

where (a)y = 1. (a), = ala+1)...(a+n—1), n > 1 (so that ¢ in (1.13) can not be zero nor a

negative integer). On the other hand (Rainville [16]. p. 279 )

6) =y ——(")”(b)"f", ¢l < 1. (1.13)

n!(c)n

n=0

2 (2 ) k(T — 1)F
)‘ — m+k >
Cm Z Fh(m — B 172, ™20

Hence, if £y is defined by (1.9) with X(z) = X*(z) and C a positively oriented closed contour
in |z £ 1| > 2 containing %1 in its interior, a simple calculation, which takes into account that
(2N mtn = (2N m(2X + m), and (—=1)*(=m), = m!/(m — n)!, shows that

1),

and the Chu-Vandermonde sum
1) _(=bm (1.14)

-m, b
2F1( c ©m

(Rainville [16], p. 69) then implies that Lo(1) = 1, Lo(CA(z)) = 0, m > 0. Hence, L, is, in view
of (1.5), the orthogonality functional of {C2(z)}.

In section 2 we will prove that representation (1.9) responds to a general situation, implying

(2’\)m -m, 2\+m
Lo(Cp(2)) = 2B <2A+1

that a check up as above is unnecessary. Now we derive from (1.9) a distributional representation

of Ly. For |z £ 1] > 2,
2
1—-=z

is the continued fraction limit function of the system {P,.a‘ﬂ )(z)} of Jacobi polynomials (Szegé
[19], §4.61). Then (Szegd [19], (4.1.4)) X*F(—z) = —XP(2) and

X*P(z) =

gatB41 Mo+ 1I(B+1) 1 1, a+1
Tla+8+2) z-1""\a+B+2

/ P(z)(1-2)"X*F(2)dz = / P(z)X*t™8(2)dz, (1.15)
o] C

/ P(z)(1+ 2)"X*P(z)dz = / P(2)X*P*+™(2)dz

C C

for any polynomial P(z), any positively oriented contour in |z + 1| > 2 containing [-1,1] in its

interior, and any integer m > 0. Thus,
/ P(z)(1 - 22)"X*P(2)dz = / P(z)XxotmAtm(;)d, (1.16)
c c

Recalling that (a), = I'(a + n)/I'(a), and Legendre’s duplication formula (Rainville [16], p. 24),

we see that
F'(A+1)

VT T(A+1/2)
Since p(z)(1—z)*(1+z)Pdz, where ¢ is the characteristic function of [-1,1], is, provided &, 8 > —1,
the orthogonality measure of {P,Sa‘ﬂ)(z)} (Rainville [16], p. 258; Szego [19], §4.3), then

XMz) = XA12A12(5) 241 > 2. (1.17)

%;/CP(Z)Xa,ﬂ(z)dzz/ P(2)(1 — 2)*(1 + 2)° da.
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In particular.
T(A+1) ! i
=T P(r)(1 —r2p-1/2 —-1/2. 1.18
Lo(P(r)) ﬁF(A+1/2)/_] (1= P2 e A s 1) (118)

Now. for P(r) € C[r] and m > 0 an integer. we have

P(z) _ m oy ) B (=1)m  gm=y P(r) .
(1—s2)m ~ Z Z (r— &) + R(z): a, = (e — ! dem=a [(J'+f,)”'] (&)

1=0 )=1
where £y = —1. §; = 1 and R(x) is a polynomial. and (1 15), (1 17) then vield
m A+ 1/2), & (=2 (A +1/2), & [ P(a)
P =gm__ f—/m . L \

=0 ;=0

F(A+1) Am—1/22+m—1/2/ _\ 7.
T AT+ 12) /CR(Z)X (=)=

THEOREM 1. Provided 2X # 0 is not a negative integer and A > —m —1/2, where m > 0 is

an integer, we have the distributional representation £y = Ty, + Ty, where, for any test function

P
om0 R (20T (A4 1/2), & [ P(a)
Torle) =2 @A+ & ; 5! (2A+m+i),5[(z+£;)"’](f‘) (1.19)
and - .
T02(99)=715()‘;+11)/‘2—) [ onto1 = et as, (1.20)
with §g = —1, & =1 and
1 m-—1
(-1)™ & (z) 1
o) = (2 Ll Grem| O 02

The distributions To; and Ty, have compact support on the real line and can act on polynomials.

We will show in this work that representation
Lo(P(z)) = / P(z)X*(z)dz (1.22)

of Ly can be “lifted” to contour integral representations of the orthogonality functionals £,
and L£; of the sieved ultraspherical polynomials of the first and second kinds. Then, from such
representations, we will derive distributional representations of £; and £,

The monic sieved ultraspherical polynomials of the first kind, {p)(x)}, and of the second
kind, {g}(z)}, satisfy the blocks of recurrence relations

LYnk+y; = ynk+]+] + afzJ)ynk-}-]—l’ n 2 05 ] = 01 1»2v' .. ak - 17
with y_; = 0, yo = 1. The coefficients a(J) are
a®=_" (1)_M (J)_l, j=23... k-1, n>0,
4(n+ )’ 4(n+ )’ 4
for {p}(z)}, and
(0) — n (k 1) n+23+1 aW) = 1 )=1,2,... k=2 n>0,

VTP U nrrr1)™ T
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for {q)(r)}. It is assumed that & > 2 is an integer.
Sieved ultraspherical polynomials were introduced by Al-Salam et al. [2]. Generalizations and
interpretations of the sieving process are in Charris and Ismail [5 7], Charris et al [8]. while Charris
and Ismail [6]. Ismail [11 12] contain specific examples of sieved polynomial systems. Geronimo
and Van Assche [10] also present an interesting approach to sieved orthogonal polynomials.

The paper is organized as follows: In Section 2 we prove a general result about 1epresentations

(1.9). and some lemmas, related to the Chebyshev polynomials, which will bhe needed in the

sequel. Sections 3 and 4 contain contour integral representations of £, and L. and Section 5.
their distributional representations.
In closing this section we observe that since B,, = 0 for all # > 0 in (1.11), then
CM—r)=(-1)"CNz). n>0. (1.23)
It 1s convenient to assume that Ci](x) = 0. Now let
1 CMz) - CXN:=
02_1(2;1)=ﬂ£o (—"( ) = Cul=) , n>0. (1.24)
2 T —:z

Then {C(x;1)} is a system of polynomials (Chihara [9], Chap. III), called the numerator poly-

nomials of {C})z)}. Since

A Al
/ X(z) dz = X7 dz=0
c z—1 c z+1
for any closed contour of |z £+ 1| > 2 containing +1 in its interior, as follows from (1.12), then
A (o
2ACAN (£1;1) = ! / MX"(z)azz. n>0 (1.25)
2m c zF1
Relation (1.23) also implies that
CM—z;1) = (-1)"CX(z;1), n > 0. (1.26)

2. BASIC RESULTS.
Theorem 26.2, p. 112, of Wall [20] ensures that (1.10) is uniformly convergent on |z| > M’
for all M’ > M, provided that (1.3) and

|Bn| < M/3, |AnCry1| < M?/9, n=0,1,2,... (2.1)

hold.

Hence, X(z) is analytic in |z| > M. We claim that

THEOREM 2. If {P.(z)} is determined by (1.4), and (1.3), (2.1) hold, the moment
functional £ of {P,(z)} is represented by (1.9) for any positively oriented closed contour C of
|z| > M containing 0 in its interior.

PROOF. Because of the uniform convergence to X(z) of (1.10), we may assume that the
zeros of all the P,(z)’s are interior to C. From the general theory of continued fractions (Askey
and Ismail (3], Chihara [9], Wall [20]) it follows that

X(z) = P‘E ; |z] > M, (2.2)

where { P;(z)} is the system of polynomials determined by (1.4) forn > 1 and Pg(z) =0, Py(z) =
1/A,. Induction on (1.4) readily shows that

Pis(@)Pa(@) ~ P (2)Ps(2) = 2, n 20, (2.3)

n
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where ), is given by (1.6). Relation (2.3) is known as Abel’s formula (Ahkiezer [1], Chihara [9]).

Since . Ps)
i s = >
I TRt

and for m >1
Pro(z)  Prici(2)
P n+m / [ n+k nt+k—1 ]dl /Px d
/ = ) Prym( Z Puri(2)  Pagi—1(2) * (=) dz

_Z Antk-1 / Py(2) dz
Aptk-1 Pryi(2)Pryi—1(2)

then
27”/)(( )dz=1; ———/ P,(2)X(z)dz=0,n>1, (2.4)

and the assertion follows. O
For |z| > M we have the Laurent expansion (see Wall [20], pp. 192-211)

oo

X(z)= (2.5)
where
up = 1; u,,:—/ X(z)dz, n>0. (2.6)
Hence,
lim 2X(z)=1. (2.7)
Z—00
We have

THEOREM 3. Assume (1.3) and (2.1) hold, and that the moment functional £ of {P,(z)}

has the representation

L(P(z)) = 2_;; /C P(2)Y(2)dz (2.8)

where Y (z) is analytic on |z| > M,lim,_, ¥(z) = 0, and C is a positively oriented closed contour
in |z| > M containing 0 in its interior. Then Y (2z) = X(z) for all |z| > M.
PROOF. Since
/CP,.(z)(X(z) -Y¥Y(z))dz = 0, n >0,

and {P,(z)} is an algebraic basis of C [z], also
/ M(X(2) = ¥(2)dz = 0, n > 0.
c

Thus, if
+oo
X(2)-Y(2) = Z anz™, |z| > M,
n=—oo
is the Laurent expansion of X(z) — Y(z), then

1
Ap-1 = 2—15/02"(X(z) —-Y(2))dz2=0, n >0,

and X(z) — Y(2) is an entire function vanishing at co. Hence X(z) = Y(z) for |z| > M. O
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The Chebyshev polyuomnals of the first kind, {T,(r)}. and of the second kind. {U,(r)}
both satisfy the recurrence relation 2oy, = yp41 + Yu—r.10 > 1, but Ty(a) = 1. T)(r) = o while
Uy(r)y=1.0y(r) = 2r. We also assume that T_, (o) = U_(r) = 0.

For ¢ an integer. let cos, be the restriction map of cos to Q, = (t7. (2 + 1)) x R. where R
denotes the real line. If Q is the complex plane cut along (—oc. —1] and [=1. + o). cos, maps

2, conformally onto Q. We denote with ('os‘_' the analytic inverse of cos, on Q. Clearly

sin( (& + 1)(‘()55'(:))

Ti(z) = cos (kcosy ' (2)). Ur(z) = - — .z e (2.9)
sin(cos,  (2))
For:=0.1.2,... k= 1. let
1 1 .
L,(z) = cos 7 o8, (=)}, e (2.10)

Then Ty (Li(=)) = z. = € Q, so that L, is a branch in § of the multi-valued function T} 1(z). The
following results will be needed in the sequel. In all of them we assume k > 2.

LEMMA 1. For each : in  and each polynomial P(z) in C[z] of degree m > 0.
z:‘;,‘ P(L,(z)) is a polynomial in z of degree at most [m/k|, where [a] denotes the largest integer
< u.

PROOF. Partial fractions and the geometric series give for |z| large that

U1 (2) _k_l 1/k 1 n
Tk(x)—z‘§z—L- Z;{,@;L ¢ )}

For |z| large we also have

Uk-1(z) Ui 1(1‘)
Ti(z) -z Z T (z)

and long division gives

Uk—)(z) — i anj
T’,C]+1 (1:) =, I"+1

Hence

Uk-a(z) Z Pa(2)

Ti(z) - 2 znt]

n=0

where p,(z) = E["/kl @n,z?. Thus Z',O L*(z) = kpn(2), and the assertion follows. O
Now let —1 < §; < €3 < --- < £k_1 < 1 be the roots of Ug_;(z). For j =0,1,...,k—1, let

4, = ) g e (2.11)
nier=r Ve (&) neo-1 Vr-1(8)
Then
LEMMA 2. Forj=0,1,2,...,k—1,
1
AJ+B] =07 J #k"Qv Ak—2+Bk—2= 5 (212)

PROOF. Partial fractions decomposition gives for large |z| that

Ue) = U6 1 S [E U } 1
Uk_l(z)‘§v;_l(e,) T & ¥{= &) [ T
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Since the coefficient of 1/z in the long division of U,(2) by Ux_y(2)is 0 if j # & — 2 and 1/2 if
J =k — 2, the assertion follows. O
LEMMA 3. For;=0.1,2,..., k-1,

Aj_,2 = —A,. Bi_, =B, (2.13)

PROOF. This is a consequence of the trigonometric identity Uy_,_o(7) = Up_1(2)T)41(z)
=U,(z)Ti(z). O
LEMMA 4. Forz€Qand;=0,1,2,.... k-1,

k—1

(L(z)) _ A, . B,
kZUk L) z-1t771 (2.14)

PROOF. Partial fraction decomposition gives for |z| large that
k—1

U,(z) U, (&) U,(Li(z))
Uk-1(2)(Tk(z) — 2) ,X;U’ (e T(6) -z &) ZIcU,3 L(Li(2)(z — Li(2))
v H(6)Er U,(L(2))Lr(z) | 1
Z{ZUk 1(E.)(Tk(&)—z) * Z kUZ_ (L.(2)) }rnﬂ'

Since k > 2, long division on the left hand side of the above equality gives 0 for the coefficient of
1/z, and (2.14) follows at once. O
The relationships

1 ]U _](L,(Z))
L(z) = —-——, (T,(L, Tt A VT e Q, 2.15
= woaaey PR = LEey (2:19)
and the trigonometric identity
Uj—l(r) = DVI(J:)UJ(;D) - Uz—l(m)U,H—l(z)v ] >12>0, (216)
will be also needed.
Now let v be the positively oriented ellipse
22 y?
Tt w=b a?-br=1, a>1, (2.17)

so that, for some yo > 0,a = coshyp, b = sinhyy. Observe that [-1,1] is in the interior of v. For
eachi=1,2,...,k—1,let 4, = L, oy be the :**-lifting of v through T;. The ~,’s piece together

onto the ellipse ¥ determined by
2 2

x Y
Tt L= (2.18)
where A = coshyg/k, B = sinhyy/k. If |z — 1| > 2 for z on ~, then [Tx(z) — 1| > 2 for z on 7.
This follows from |Tx(L,(z)) — 1| = |z — 1|. If f is continuous on ¥ then
f(z)dz = ! L(——al ﬁf(z)dz—kz:]/ f(z)d-=. (2.19)
" k v Uk—1(Li(2))

1=0 »

For f continuous on 7 we also have

[f(Tk(z))Uk_l(z)dn / f(2) de. (2.20)
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Since

dz | d= dz
= = it = = 2m.
/;:—1 §L-chk_,(L,(:)>(L,(:>—1) L:—l ™

7 is simple and positively oriented. We call 5 the lifting of v through Ti. If C is any positively

oriented contour of |Ty(z) — 1] > 2 containing [-1,1] 1n its interior and f is analytic on this set,

[ fera: = [11az, (2:21)
Cc B
provided that |z — 1| > 2 on .

3. CONTOUR INTEGRAL REPRESENTATION OF (,.
We will write p,(z) instead of p)(z) to denote the n'* sieved ultraspherical polynomial of
the first kind. Results in Al-Salam et al. [2], Charris and Ismail [5-7] or Charris et al. [8] yield

then

Uk—l(T)pnk-h(I) (31)

!
= gm0 DU (@CU(T) + (4 20Uk, s (1O Th(2)

forn > 0,7 =1,2,...,k. In particular, pai(z) = F"E',\TC:}(T"(z))* n > 0.
For z in C such that |Tx(z) — 1| > 2, (1.12) and results in the above references, which were
established for the positive definite case, i.e., when (1.8) holds, suggest that

2
) e

is the limit of the continued fraction of {p,(z)}. That this is so follows from Theorem 3 and from

2 1
®(2) = Ur_(2)XNTr(2)) = ;JTE‘)IL_% 2By (2,\1-,%- 1 M

the next theorem.
THEOREM 4. Let )
L(P(z)) = ﬁ/;P(z)@(z) dz (3.4)

where Cis a positively oriented contour of ||Tk(z)—1|| > 2 containing [—1, 1] in its interior. Then
L is the moment functional £; of {p,(z)}.

PROOF. We may assume that C is the lifting through T} of an ellipse v in |z — 1| > 2, as
in (2.17), containing [-1,1] in its interior. That £(1) = 1 follows from

/CCP(z)dz:/(;Uk_l(z)X’\(Tk(z))dz=‘/;X)‘(z)dz

Now, from (2.15) and (2.19),

k-1
U,—1(L:(2))
U,_1(2)Cr, 1 (Te(2)) X (T, d=/ SR O (2) X N (2) d
/C 1-1(2)Cri 1 (Tk(2)) X (T (2)) dz 7; kUx-1(Ly(2)) +1(2)X7(2)dz
1 k-1 !
= ]‘/ (E TJ(L'(Z))> CQ+1(Z)X'\(Z)d2»
Y 1=0
so that, in view of Lemma 1, the integral vanishes if j = 1,2,...,k — 1. If j = k it also vanishes,

as it reduces to 21iLo(Cp,,(x)). Noting that k —j — 1 < k for j = 1,2,...,k, we also have that

/;Uk-,q(z)C,’}(Tk(z))X’\(Tk(z))dz =0,;=1,2,...,k
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and taking into account (3.1) we conclude that L(pnik4,(z))=0,n>0,) =1,2,..., k. O

4. CONTOUR INTEGRAL REPRESENTATION OF £,.

We write ¢n(7) to denote g)(r). Results established in Charris and Ismail [5-7] or Charris et al.
(8] show that

Gnk+;(7) = 9nk+]{U(I)C"\+’ (Tk(2)) + U= y—2(2) CaX{(Tu ()} (4.1)

n>0, y=0,1....,k — 1. In particular,

n!

dns)k-1(7) = mUk—l(f)C:H(Tk(I))»n > 0. (4.2)

Hence, for |z — 1| > 2,

1 2
A — Y A+1 3 i
YNz) =X (z)_2+12F,(1,/\+22/\+3 Z 1) (4.3)

is the limit of the continued fraction of {C2*!(z)} and, for |Tk(z) — 1| > 2, ¥(z), given by

L [Ukeale) | 14+2) YA(Ti(2))
“'(Z)‘Q{Uk_l(z) 4N Tra(2) }

will be that of {gn(z)}. This will follow from Theorem 5 below. Relation (4.4) is suggested by

results in the above references for the positive definite case. To simplify the notation, let

(4.4)

2"""’(/\+ Dn

Qnk4,(z) = @nk+;(2),n 20,7 =0,1,2,... k-1,

and define
L(P(z)) = / P(2)¥(z)dz, P(z) € Clz], (4.5)

where C is a positively oriented closed contour of |Ti(z) — 1| > 2 containing [-1,1] in its interior.
We claim that

THEOREM 5. If £ is given by (4.5) then £(1) = 1 and L(ga(z)) = 0 if n > 1. Hence, if
2) # 0 and is not a negative integer, £ is the orthogonality functional £, of {g.(z)}.

PROOF. Foreachn>0andj=0,1,...,k—1, let

I(n,j) = "2’35 /C U, (2)C (Te(2))¥(z) d=.

As before, we may assume that C is the lifting through Tk of an ellipse y in [z — 1| > 2 as in
(2.17). We have
L(Qnkt;(z)) =I(n,j)+I(n—1,k—j—2).

Now, for n > 1 and 0 < j < k — 2, we obtain, from (2.19) and (4.4), that

k-1
)= [ (S ORGSO e

=0
22 +1 k-1 U(L(z) )
RECES ”1/7{2 kKU2_, (L.(2)) }C't+ ()Y (2) d=.

Using (2.16) and observing that

k-1
] -1(L(2)) _
Y g(T (L) =0
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as follows from (2.15) and Lemma 1. we obtain. by means of Lemma 4, that

1 C/\-H CA+|
I(n.)) = E{-i;\ - z/ (1 )(1 + Bi_,_ ,,/ +( )(1~
. =

D) A+l
2A+1 G )(l:}

YX:)d: + B (=

2A+1 C**‘
/ 72N +1) ~+1

& 200 +1)
Cauchy's formula and (1.23), (1.25), (1.26) then imply that
I(n.3) = 2 {(Ak—y—2 + (=1)"Bi,—2)CA(1) + (4, + (1) B))(2A + 1)CAH(1;1)}

which. in view of (2.13) and the obvious relationship (2 + l)C)"“(l 1) = C}(1) — 1, reduces
to I(n,)) = —2(A, + (-1)"*1B,).
Also I(n — 1,k — j — 2) = —=2(A_;_2 + (=1)"Bi_,_2), so that, using (2.13) again, we obtain

L(Qnit,(z))=0,n>1, 7=0,1,2,..., k-2
As for the case n > 1, g =k —1,, i.e., of Q(ny1)k—1(z), we obtain, from (4.2), that
L(Qn41)k—1(2)) =

k-1 !
1 22+1
1 A+l A+1 A,
= [ veaae @ + ot (; L.(z)) O (Y A(2) dz

which, in view of Lemma 1 and the analiticity of Ux_z(z)C>+'(Tk(z)), also vanishes. Since
finally I(0,j) = 2(Ak—,—2 + Bx—,—2) = 0 if j # 0 and I(0,0) = 1, we conclude that £(1) =1 and
L(gn(z))=0ifn>0.0

REMARK 1. With

2 +1 YNTi(2))

¥(z) = T Tea(a) |Tk(z) — 1 > 2, (4.6)
we obtain the alternative representation
Uk 2(6: _1_/ =z
z:z(P(z))—zz Ty P+ o [ P dz, (4.7)

where §; < 3 < -+ < §k—; are the roots of Ux_;(z).
5. DISTRIBUTIONAL REPRESENTATIONS OF £; AND CL..

From the contour integral representations of £; and L, it is easy to derive distributional
representations of these functionals.

Let, as before, —1 < §; < &, < --- < €k—1 < 1 be the roots of Ux_1(z), and let & = —1, & =
1. Then &, &k are simple roots of TZ(z) — 1, while for ¢ = 1,2,...,k — 1, &, is a double root.
Hence, for m > 0 an integer and P(z) € C|z],

P(Z) _ k ) ) _ 1 dh—s (1_6')1_
1 -T(z)™ 2D oy T Re); W = ) et (l—T,?(:z))mP(z) (&),

withlp =l =m, l, =2m fori=1,2,...,k — 1, and R(z), a polynomial.
Since

1 TOA+1)

£(P() = 5 RO / P(2) XA A=V (Ty () U1 (2) d (5.1)
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follows from(1.17), then, provided 2) is not an integer < 0,

k-1 1 _

I)) —2; Z Y 'd:l'] [ ITZ? )))mP(‘T)] (€Z)+
=0 )=0

1 T(A+1)

. . . A+m—1/2,A+m—1/2 - -
+ 5 FoT1/2 /e R(z)Uk-1(2)X (Tk(=)) d=

where

1 Uk-1(2)(1 — T¥(2))™

2? c (Z—Ez)l'_" X’\(Tk(z))dz (52)

1y =

for:=0,1,2,...,kand ) =0,1,...,l, — 1. Observe that A,, is independent of P(z), and also of
C, as long as C is contained in |Tx(z) — 1| > 2.
Now assume C is the lifting through Ti(z) of an ellipse (2.17), 7, in |z — 1| > 2. Then
i/ R(Z)Uk-](Z)X)‘+m_l/2"\+m—l/2(Tk(Z)) dz
2w C
__ 1 ¥ Am—1/2 +m—1/2
- Z / R(L,(2))X (2)dz
l — m—
=z Z/ R(L,(2))(1 - 2)A+ 1/2 4o
-1
Z / R(a)(1 - T2 @)™V /2|Uyy(2)) da
=0

=/ R("‘:)IUk-—l(m)Iz(’\"'m)(l—12)’\+’"‘1/2 dz.
-1

Hence
THEOREM 6. If 2) # 0 is not a negative integer and A > —m — 1/2, where m > 0 is an
integer, the functional £, has the distributional representation £; = T1; + T2, where, for any

test function ¢,
E o L-1

1@ AL
) =5 A [Emdme] @ (53)
with A,; given by (5.2), ly = ly =m,l; =2mfor: =1,2,...,k — 1, and

1

Tale) = 2 [ pn@ena(@PO = sty (54
with .

O - 1 & [ (z—)"
v 777 D DO Byt bl [y k] G

Both Ti; and T;; are compactly supported on the real line and can act on polynomials.
As for £, observe that, from (4.4),

_ Uk_z(z)
U(z) =2 )

\/;rrg(/\k-:_lf/z) 1— ;-k(z) + 1+ ;‘k(z) : (1 - zz)Uk—l(Z)XA+1/2’A+1/2(T’¢(Z))’



SIEVED ULTRASPHERICAL POLYNOMIALS 241

and simple calculations with the series involved show that

U(z) = (5.6)

T+ a1z A+1/2,0-1/2 .2 .
Tog 1y XTI + X (Te(=N)] (1 = 2 )acs (2).

Hence
THEOREM 7. If 2X # 0 is not a negative integer and A\ > —m — 1/2, where m > 0 is
an integer, the functional £, can be represented in the form £, = Ty, + T3y, where, for any test
function ¢,
Kk o1,-1 1 & (z—&)
Ta(p) = 'Z; ,z% 9T e l:—TgW (z)] (&) (5.7)
with
T+
VT /mT(A+1/2)

(1= 22)mHip2mti _ -
27”/ k—1 {X)\ 1/2,)\+1/2(Tk(z))+XA+1/2,X 1/2(Tk(z))} dz

(5.8)

(2 - Et)l'_]
and [,, 1 =0,1,...,k, as in Theorem 6, and where
o 2r(A+1) ! 2(A+m) 2\A+m+1/2
Toa(p) = ATOT1/D) ) em(2)|Uk-1(2)| (1-2%) dz, (5.9)

with ¢m(z) as in (5.5). Both distributions T>; and T, have compact support on the real line
and can act on polynomials.

REMARK 2. If £k = 1 is allowed in Theorem 6, T;; and T, reduce to Tp; and T,
respectively.

REMARK 3. If A > —1/2, i.e., if we can assume m = 0 in Theorems 6 and 7, then
Ty = Ty = 0 and Ti3, Ty, reduce, respectively, to the orthogonality measures of the sieved
ultraspherical polynomials of the first and second kinds (as given in Al-Salam et al. [2]).

REMARK 4. When A < —1/2, so that m > 0,To1, T11 and T2; measure the contributions
to the orthogonality of the points in [—1,1] where (1 — 22)*~V/2,|U_;(2)|?*(1 — z2)*~/2 and
|Uk—1(2)[PX(1 — 22)**1/2 become infinite.

It seems rather difficult to obtain distributional representations of £, and £, by the proce-
dures in Krall [14], Morton and Krall [15].
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