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0. INTRODUCTION

A semiring S is defined as an algebraic system (S,+,) such that (S,+) and (S,-) are semigroups,
connected by a(b +c¢)=ab +acand (b+c)a=ba+caforalla,b,c € S. An (absorbing) zero element of
a semiring S is an element O such that 0 + x =x + 0 =x and Ox =x0 =0 forall x € S. For the rest of the
paper we assume that a semiring is additively commutative and has a zero element. If moreover a semiring
S is additively cancellative, then it is called a halfring. A semifield is a semiring in which non-zero elements
form a group under multiplication.

We know that the ring Mp(R) of n X n matrices over a ring R is (left) artinian iff R is (left) artinian.
But examples show that there are (left) artinian semirings (even semifields) S for which Mp(S) is not (left)
artinian.

In this paper we characterize the class of semirings S such that all My(S) are (left) k-artinian (cf.
Definition 1.1). Another characterization of the class of semirings S for which all Mp(S) are (left) h-artinian
is obtained.

We also obtain an analogue of the Hilbert basis theorem for semirings which generalizes a result of
H. E. Stone [1].

1.  CHAIN CONDITIONS ON MATRIX SEMIRINGS

Let S be a semiring. A subsemiring I of S is said to be a left ideal of Sifra € Iforallr e Sand

a € L Aleftk-ideal [left h-ideal] is a left ideal of S for whichx € S[x,z € S],a,be Iandx+a=b

[x+a+z=b+z]implyx € I [2].
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DEFINITION 1.1 A semuring S 1s said (o be (left) artinian |k-artinian, h-artinian| if S sauslics
the descending chain condition on leftideals [k-ideals, h-ideals] of S.

Obviously. artinian implics k-artinian and the latter implics h-artinian.

A (left) semimodule M over a semiring S 1s a commutative additive semigroup which has a zcro
clement. together with a mapping from S XM into M (sending (r,m) to rm) such that

(1) (r+s)m=rm+sm, (ii) r(m+p)=rm +rp,

(n1) r(sm) = (rs) m, (iv) Om=r0=0
forallm.pe Mandr,s € S [3]. We define k-subsemimodules and h-subsemimodules of an S-semi-
module and k-artinian and h-artinian semimodule over a semiring S in a similar fashion.

Let S be a semiring with a multiplicative identity 1 and Mp(S) be the semiring of n X n matrices over
S. Let Eyy be the matrix in Mp(S) such that its (i,j)¢h. entry is 1 and all other entries are zero. Henceforth
for any matrix A = (ajj) € Mp(S)and i=1,2,...,n, we introduce

Ai=EjA = é ayEj,

Then A can be written as Aj + A2 + ... + Ap. The ith. row matrix (ajj aj2 .. ain) of A will be denoted
by a,,1=1,2, .., n. Let I be any left ideal of M(S). We define foreachi=1,2,..,n,Ipi={Ai: A€ I}
and I, ={a;: A=(a;) € I}. Now I < I, as Iis a left ideal of Mp(S). Therefore I=101® Io2® ....® Ion,
where @ means the internal direct sum (as in the case of a ring).

Now we verify thatly=Ip=....=Ip=M(say). Leti # j and a € I;. Let A € I be any matrix
corresponding to a. Now Ejj A € I and the ith. row matrix of EjjA is a. Thus a € I,. This
imphes Ij € I, for any i # j. This completes the verification.

Straightforward calculations show : If I is a left k-ideal [ h- ideal ] of Mp(S), the same holds for
all Ip, and M is a k- subsemimodule [ h-subsemimodule ] of the S-semimodule S" ( considering

elements of S™ as row matrices ).

Conversely, let M be a subsemimodule [ k-subsemimodule, h- subsemimodule ] of the S-semi-
module S™ and I=Mpo1 + Moz + ... + Mon , where Mg; = {él1 ajj Ejj€ Mn(S) : aj = (ail, ai2, ... ,ainJe M }.
Clearly, I is closed under addition. Let Ae I, Ce Mqg(S). We have

CA=(Cr1+Co+..+Ca) (Al +A2+ .. +An)= 2 ,:1 CiA;

Now CjAj is amatrixin Mp(S) whose all rows are zero except the ith. row, which is
(cyaj1 Cijaj2 ... Cijajn) = cjjaj€ M, as M is a subsemimodule of S". Thus CiAje Moi and hence
CAE 1. Therefore 1 is a left ideal of Mp(S). Also it is trivial to show that I is a left k-ideal [ h-ideal ]
of Mp(S) if M is a k- subsemimodule [ h-subsemimodule ] of S". Thus we have proved the following
lemma.

LEMMA 1.2. Let S be a semiring with a multiplicative identity 1. Then 1 is a left ideal [ k-ideal,
h-ideal | of Mn(S) iff there exists a subsemimodule [ k-subsemimodule, h-subsemimodule | M of the

S-semimodule S™ such that 1= My1® Mp2@® ...® Mon, where My is defined as above.
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COROLLARY [ 3 Let'S he a semiring with multiplicative identity 1. Then Mn(S) 1s artinian
[k-artinian, h-arnnian | iff S" 1y an artintan | k-arfintan, h-artiman | S-semimodule.

EXAMPLE 1.4. Let S be the set of all sequences of positive rationals and the constant sequence
(0.0.0,..) with pomntwisc addition and muluplicaton. Clearly S 1s a commutative semificld and hence
artiman Now let

Mr={(x.,y)e SZ'X=(X|.X2... Ly=(ylL,y2 .. x=y,1<1i<r}

Then Mp D Mz 2 M3 5. 1s an infimite descending chain of k- subsemimodules of the S-semi-
module S°. Thus M2(S) 1s not k- artmian, which yields the same for all Mp(S), n > 2.

Now we present another characterizauon of semirings over which semirings of matrices are h-artinian. It
15 casicr o handle and 1t shows that actually the descending chain condition on h-ideals of Mp(S) (n > 1) overa
semiring S does not depend on n (cf. Corollary 1.11). We proceed through some preliminary lemmata.

LEMMA 1.5. Let S be a semiring. Then every homomorphic image of a k-artinian S-semimodule
is also k-artinian.

PROOF. Let M be an S-semimodule and ¥ : M ——— N be a homomorphism of M onto an
S-semimodule N. Itis well known that ¥ -1 (K) is a k-subsemimodule of M for each k-subsemimodule
K of N. This yields the assertion as in the corresponding proof in the case of rings m

Let H be a halfring. We recall that H can be embedded into a ning and that the smallest ring of this
kind 1s uniquely determined (upto isomorphism). Since the latter consists of all differences a-b for a,b€ H,
itis called the difference ring of H and is denoted by D(H) [4].

LEMMA 1.6. If M is an H-semimodule for a halfring H such that (M , +) is a group, then M
is also a D(H)-module under the definition (ry-rp) m=rjm-rm forall rjc H and me M. Moreover
any k-subsemimodule of M is a submodule of the D(H)-module M and conversely.

PROOF. One can easily check that (ry -rp ) m is well defined and satisfies (i) to (iv) of the definition
of semimodules. Let K be a k- subsemimodule of M and mq,m3 € K. Then (mj-mjp)+ mp=m;
implies m;j-mpe K. For me K and r=r;-rpe DH), from (rym-rym)+rpym=rm, we get
m =rym-rm € K. Thus K is a submodule of the D(H)-module M.

Conversely, let K be a submodule of the D(H)-module M. Clearly K is also a subsemimodule of
the H-semimodule M. Alsoif u+ m;=mj, forsome u € M, m;,my € K, then u=mj- me K.
Thus K is a k-subsemimodule of M, as required m

LEMMA 1.7. Let H be a halfring. If H" is a k-artinian H- semimodule (n > 1), then D(H) is
an artinian ring.

PROOF. We define a mapping ¥ : H"

D(H) by
a1 -ap+asz-..+ap, whenniseven
v (a1, a2, ..., ap)) =
a1 -ap+asz-...-ap, whennis odd.
Clearly y is a well defined (H-) semimodule homomorphism of H" into D(H). We show that

W is also surjective. Let x € D(H). Then thereare x’, x’’ € H such that x = x’ - x’’. Thus
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¥ ((x'.x".00...,0)) = x. Therefore D(H) is a k-artntan H-secmimodule by Lemma 1.5, which imphes
D(H) 1s an arunian D(H)-module by Lemma [.6. Henee D(H) is an artinian ring @

It1s well known that the left k-ideals of a halfring H arc precisely the intersection with H ol the
left ideals of D(H) |1] From this fact it is obvious that ift D(H) 1s artinian then H 1s k- arunian But the
converse 1s not true. For example. Iet us consider the semifield S described in the Example 1.4, S 15 an
artinian halfring but D(S), being the countably infinite copies of all rationals, is not artimian.

LEMMA 1.8. Let H be a halfring. If D(H) is artinian, then Mu(H) is k-artinian (n > 1).

PROOF. If D(H) 1s artinian, then so is Mp(D(H)). Moreover D(Mp(H)) = Mp(D(H)) [S]. Hence
Mn(H) 1$ k-artiman m

The following theorem follows from Corollary 1.3, Lemma 1.7 and Lemma 1.8.

THEOREM 1.9. Let H be a halfring with multiplicative identity 1. Then the following three

statements are equivalent for n > | :
(1) My(H) & « k-artinian halfring.
(i1) H" is « k-artinian H-semimodule.
(1ii) D(H) is an artinian ring.

Let S be a semiring. We know that Ag ={ (x,y)€ SX S:x+z=y+z forsome z€ S} is the
lcast additively cancellative congruence on S and hence S/Ag is a halfring. Generalizing this concept,
D(S/As ) is also called the difference ring of the semiring S and denoted by S. We denote the As-class
of any element ae S by [a]. Now straightforward calculations show that Mp(S/ A ) is isomorphic to
Mn(S)/AM (S) through a semiring - isomorphism which sends the matrix ([ ajj]) in Mn (S/Zs ) to the
element [ (ajj)]in Mg (S)/ AM a(S) - Also routine computations prove the following :

LEMMA 1.10. Let S be a semiring. Let H be a left h-ideal of S. Then H’ = { [x]e S/As: xe H )
is a left k-ideal of S/As. Conversely, if K is a left k-ideal of SIAg, then Ko={ xe S:[x]le K} isa
left h-ideal of S. Moreover, one has (H')o=H and (Ko)’ =K and hence a bijective correspondence between
the sets of all left h-ideals of S and all left k-ideals of S/'As. Inparticular S is h-artinian iff SIA is k-artinian.

COROLLARY 1.11. Let S be a semiring with multiplicative identity 1. Then the following three
statements are equivalent (n>1):

(i) Mn(S) is an h-artinian semiring.

(ii) S™ is an h-artinian S-semimodule.
(111) S is an artinian ring.

PROOF. (i) & (i) follows from Corollary 1.3.
() & (i) :
Mp(S) is h-artinian

o Mn(S)/ZMn(S) is k-artinian (by Lemma 1.10)

< Mp(S/Ag ) is k-artinian (by the above isomorphism)
< S=D(S/As ) is artinian (by Theorem 1.9) B
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2. HILBERT BASIS THEOREM

DEFINITION 2 | A semurmg S s called (left) noetherian | k- noetherian. h-noetherian | if 1t
sausfics the ascending chain condiuon on left ideals | k-ideals. h-ideals | of S.

It1s clear that every k-noctherian semiring 1s h-noctherian. But the following example shows that the
CONVErSe 1$ not truc.

EXAMPLE 2.2. Let Z; be the sct of non-negative integers. Then  ( Z'{) . max., min. ) is an
h-noctherian semiring, but not k-noctherian.

Let S be a semiring and A © S. The smallest Ieft h-ideal of S containing A 15 called the left
h-ideal of S generated by A. The following lemma 1s obvious :

LEMMA 2.3. LefA-{d,ES i=1.2,. n}and

(Ah={ xe S:x+ Z(.ld| +)'_l, ma +r }: Tiay + }: Tja 1, for some ¢, Ti,re S and n, 1, € Zn

= - - - i=1.2,..n,

Then (A is the left h-ideal of S generated by A

Onc can casily prove the following statements :

THEOREM 2.4. The following three conditions on left h-ideals of a semiring S are equivalent :

(1) S is h-noetherian.
(ii) Every non-empty set of left h-ideals of S has a maximal element.
(1i1) Every left h-ideal of S is finitely generated, i.e., for any left h-ideal 1 of S, there is a finite

set AC 1 such that 1= (A).

LEMMA 2.5. Any homomorphic image of an h-noetherian semiring is h- noetherian.

A halfring H is called unital [1] if D(H) is a ring with identity. Stone [1] has obtained the
following analogue of the Hilbert basis theorem for halfrings :

Let H be a unital halfring. Then H[x] is k-noetherian iff D(H) is noetherian.

We first show that the condition "unital” is not essential.

THEOREM 2.6. Let H be a halfring. Then H[x] is k-noetherian iff D(H) is noetherian.

PROOF. Let D(H) be noetherian. Then H[x] is k-noetherian [1].
DH) by v (p(x)=
=Py- Py +Py-Py+ - for each p(x) = Py +PX + p2x2 + p3x3 +..+ pnxn. Clearly, W is a well- defined
semiring-homomorphism. Also let ue D(H). Then u=a-b, a,be H. Now ¥ (a+bx)=u. Thus

Conversely, let H[x] be k-noetherian. We define a mapping P : H[x]

¥ is surjective and hence D(H) is noetherian m

EXAMPLE 2.7. [1] Let S be the halfring described in the Example 1.4. Then S is k-noetherian.
But D(S) is not noetherian.

To prove the main result of this section we note that there is a semiring-isomorphism ¥ on (S/A )[x]
onto (S[x])/ Agpxj defined by

¥ ([pg) + [pyJx + [ )"+ .+ [p,IX") = [Py +pyx +pyx’ + .. +pyx" ]

THEOREM 2.8. Let S be a semiring. Then S[x] is h-noetherian iff S is noetherian.

PROOF. S[x] is h-noetherian.
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& (SIx|V/Asjx| is k-noctherian (by Lemma 1.10)

= (S/Zsm )Ix] is k-noctherian (by the above said 1somorphism)

& S =D(S/Ay) is noctherian (by Thcorem 2.6) @ .
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