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ABSTRACT. Consider any set X A finitely subadditive outer measure on P(X) is defined to be

a function u from 7(X) to R such that u()) 0 and u is increasing and finitely subadditive A finitely
superadditive inner measure on 7:’(X) is defined to be a function p from (X) to R such that p(0) 0

and p is increasing and finitely superadditive (for disjoint unions) (It is to be noted that every finitely
superadditive inner measure on 7(X) is countably superadditive

This paper contributes to the study of finitely subadditive outer measures on P(X) and finitely
superadditive inner measures on 7:’(X) and their measurable sets
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0. INTROI)UCTION

Consider any set X and any lattice on X, The algebra on X generated by is denoted by
.A() A measure on .A(/2) is defined to be a function/.t from Jl.() to R such that/.t is finitely additive
and bounded. The set of all measures on .A() is denoted by M() and the set of all/-regular measures

on Jr(/2) by M/(/2) A finitely subadditive outer measure on 7)(X) is defined to be a function u from

’(X) to R such that u(0) 0 and u is increasing and finitely subadditive A finitely superadditive inner

measure on P(X) is defined to be a function p from P(X) to R such that p() 0 and p is increasing
and finitely superadditive (for disjoint unions). (It is to be noted that every finitely superadditive inner

measure on ’(X) is countably superadditive.) Associated with a measure # on .A(), we introduce a

variety of finitely subadditive outer measures on 7(X) and finitely superadditive inner measures on

P(X), and, in the case of being normal, we utilize these set functions to give a short proof of the

following fact For every measure/.t on .A(/2) with/.t > 0, there exists an E-regular measure

with u > 0, such that/.t _< u on and/.t(X) u(X) and u is unique (See Theorem 2 7 and the remark

following it.)
These considerations lead us to a general analysis of finitely subadditive outer measures on P(X)

and finitely superadditive inner measures on 7(X) [For a finite outer measure (countably subadditive)
on ’(X), it is wellknown that the class of u-measurable sets denoted by $ is a or-algebra, that

v[s is a measure (countably additive), and that for every set E, E E ,_% iffu(E) uo(E) where u and

vo are the outer measure and inner measure induced by vls, also, ,S0 ,S So The situation is

vastly different in general for finitely subadditive outer measures, as we shall show.
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In general measure theory, it s shown that

(1) Every regular outer measure v on P(X) has the following property For every sequence of

sets (E./. if (E,,) s increasing, then lim,, v(E,, v(lim, E,,
(2) Every finite regular outer measure v on 7(X) has the following property For every set E,

E 6 ,."; ifv(E) + u(E’) v(X) (,)
We investigate these properties for finitely subadditive outer measures on T’(X) The first property

is false in general The second property remains true even though there are now two possibilities for

defining regularity of v In the course of our investigations, we also construct families of finitely
subadditive outer measures on 7(X) which are not necessarily regular but which still have Property (,)
These are among the ones considered in the first part of the paper

Our terminology and notation are consistent with [1,2,4,5] We review some terminology and

notation and some basic facts for the reader’s convenience Further matters can be found in [3,4,8,9]
1. TERMINOLOGY AND NOTATION AND SOME BASIC FACTS

(a) Consider any set X and any lattice on X, L We shall assume that , X , without loss of

generality for our purposes

Now, consider any topological space X and denote the class of open sets by H Note H is a lattice

of the prescribed type Recall H is referred to as the topology on X and the topological space is defined
’to be IX, H) Thus (X, E/is a generalization of a topological space For this reason, we refer to IX, :)
as a lattice space

is said to be normal iff for every two elements of E, A, B, if A f’l B , then there exist two

elements orE, C,D, such that ACC’ and BcD’ and C’FD’=q) is said to be countably
compact iff for every sequence in E, L/, if L , then there exists a value of k, n, such that

(b) The algebra on X generated by is denoted by A() Consider any algebra on X, A
measure on .A is defined to be a function from .,4 to R such that is finitely additive and bounded

(See [1], p 567.) The set whose general element is a measure on A() is denoted by M(L) An
element of M(), #, is said to be -regular iff for every element of A(), E, for every positive number
e, there exists an element of , L, such that L c E and [#(E) #(L)[ < e The set whose general
element is an element ofM() which is -regular is denoted by MR(L) An element ofM(), #, is said

to be -(a-smooth) iff for every sequence in A(L), (A,.,), if (A) is decreasing and lim, A,, , then

lim,#(A,,) 0. The set whose general element is an element of M(L) which is /:-(a-smooth) is

denoted by M"(). The set whose general element is an element of M() which is -(a-smooth)just
for (A,) in is denoted by Mo(..).

NOTE. Since every element of M() is expressible as the difference of nonnegative elements of
M(), we shall work with nonnegative elements ofM(), without loss of generality

The set whose general element is an element of M(.), #, such that (A()) is (0,1}, that is, the

set whose general element is a (0-1)-valued measure on A() is denoted by I()
(c) The following characterization of normality is known.

is normal ifffor every element of/(/:), #, for every two elements ofla(), v, v, if _< Vl, v
on , then Vl v.

Also, the following characterization of countable compactness is known.
is countably compact ifflR() C I().

2. VARIOUS FINITELY SUBADDITIVE OUTER MEASURES AND
FINITELY SUPERADDITIVE INNER MEASURES
In this section, we deal with the following concepts submodular function, modular function, and

supermodular function; finitely subadditive outer measure and finitely superadditive inner measure We

give several examples. We study various properties of the outer and inner measures considered in our
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examples and we determine the relationship between them The concepts introduced in this section are

also used in Section 3

Consider any set X Now, consider any function u from (X) to R
DEFINITION 2.1. u is submodular, modular, supermodular, iff for every two elements of P(X),

El, E., v,(E UE2)+u(E1 E2) _, (=), _> ), u(E1)+ u(E2), respectively

Observation Ifu is modular, then u is submodular and supermodular
DEFINITION 2.2. (a) u is a finitely (countably) subadditive outer measure (on "P(X)) iffu(0) 0

and u is increasing and finitely (countably) subadditive

(b) u is a finitely superadditive inner measure (on T’(X)) iff u(0)= 0 and u is increasing and

finitely superadditive (for disjoint unions)
Observation If u is a finitely superadditive inner measure, then u is a countably superadditive inner

measure

EXAMPLES. Consider any lattice space (X,) Now, consider any element of M(), # (Note
# is modular

A. Consider the function #’ on P(X) determined by/.t’(E) inf {#(U)IL’ E ’ and L’ D E}
PROPOSITION 2.3. #’ is submodular

(Proof omitted
Observation /.t’ is a finitely subadditive outer measure (This outer measure has been studied

extensively in [9]
B. Consider the function #" on P(X) determined by #"(E) inf’]k=lt.t(Lk)l(ffk) is in ’ and

kLtk E}
Note, #" is a countably subadditive outer measure (This outer measure has been studied

extensively in [9].)
C. Consider the function # on T’(X) determined by #(E) sup {#(L)IL E and L C E}
PROPOSITION 2.4. (1) # is finite. (2) #, # on . (3) #, is increasing (4) # is super-

modular (5) #, is a countably superadditive inner measure (on P(X)). (6) If is normal, then # is

finitely additive on ’.
PROOF. (4) Use the relevant definition. Consider any two elements of P(X), E, F-a. Now,

consider any positive number e. Denote any element of {1,2} by j Note for every j, since

#,(E) sup {#(L)IL and L C E} by the definition of #, and #(E) < + oo, there exists an

element of E, Lj, such that L C E and #,(L)> #i(E)-, consider any such L. Then

#(E1 U E2) _> #(L1 U L2) and #(E1 FIE2) _> #(L1 fqL2), by the definition of #,. Consequently

#,(El I..J E) + #,(El f’l E) _>
-) (E) + u,(E) -,u(L1 OL2)"+’it(L1 L2) u(L1)+ #(L2) > (ui(E1)- )+ (u,(E2)- U,

Hence #(El E2 + #(E E2 _> #, (El) + #, (E2). Thus # is supermodular.

(5) Assume is normal. Consider any two elements ofY, L, L, such that L L. O
(a) Note since Li L , ,(/ L) > U,(/i) + #,(L), by ()
(f) Show #,(L L)_<#,(L)+#,(L) Consider any element of , A, such that

A c L U L Then since is normal by assumption, there exist two elements of , B1, B2 such that

A B1 B2 and B1 c L and B2 C L. Consider any such B, B2 Then

#(A) =/-t(Bi U B2) _< #(BI) + #(B2)
_< #,(L]) + #,(L),

by the definition of#,. Hence/.t,(L U L) < #,(L) + #,(L), by the definition of#,
(7) Consequently #,(L U L) #,(L) + #,(L). Thus #, is finitely additive on/2’

I). Consider the function on P(X) determined by g(E) inf(#,(U)lU E E’ and L E}
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PROPOSITION 2.5. (1) is finite (2) g /.t, on /’ (3) #, <_ on / (4) is

increasing

(Proof omitted
PROPOSITION 2.6. (1) For every element olin(X), E,/.t(E) #(X) #’(E’) (2) # _<

(3) #, :#’ on /2 iff/.tMn() (4) <#’ (5) :#’ iff/.tMn(f..) (6) If/S is normal, then

#’ on

PROOF. (5) Note for every element of 7:’(X), E, (E) inf{#,(L’)]L’ 6 ’ and L’ D E} by
the definition of, and #’(E) inf{#(L’)lL’ 6/2’ and L’ D E} by the definition of #’ Further, note

#, on ’ and ’ # on ’ Consequently #’ iff #, # on ’ iff# 6

(6) Assume is normal To show #’ on/2, assume the contrary Then since <_ #’, there

exists an element of , A, such that (A) < #’(A) Consider any such A Then since (A) inf

{#(L’)IL’ ’ and L’ D A} by the definition of , and (A) < + oo, there exists an element of

B’, such that B’D A and #,(B’)< #’(A) Consider any such B’ Then since is normal by

assumption, there exist two elements of ;, (7, D, such that A C C’ c D C B’ Consider any such

D Then #(C’) < #(D) #,(D) < #,(B’) </.t’(A) Thus C’ ’ and C’ D A and/.t(C’) < #’(A)
Hence since #’(A) inf(#(L’)lL’ ’ and L A}, this statement is false Therefore the assumption
is wrong Consequently g #’ on

THEOREM 2.7. IfZ is normal, then

(1) g is a finitely subadditive outer measure (on 7:’(X)).
Now, consider (the class of g-measurable sets) Note is an algebra.

(2) ,9a, {E e 7;’(X)I for every element of’, A’, (A’) _> (A’ C E) + (A’ E’)}
(3) (i) ’ c ,gg (ii) .,4() C

Now, consider ]st(r.) Note lt(:) 6 M() Denote it by v

(4) (i) v 6 Ma(); # _< v on and #(X) v(X). (ii) v is unique.
PROOF. Assume is normal

(1) Use the relevant definition. Note to show is a finitely subadditive outer measure (on/:’(X)),
since g is finite and (0)= 0 and is increasing, it suffices to show g is finitely subadditive

Accordingly, consider any two elements of P(X), El, E,,2. Now, consider any positive number
Denote any element of {1,2} by j. Note for every j, since (E) inf{u,(L’)lL’ 6 ’ and L’ D E}
by the definition of , and (E) < + oo, there exists an element of ’, L, such that L E and

g,(L’3) < (E) + [, consider any such L’. Then, #,(L]) + #,(L[) < (E,) + (E2) + Further,

note since is normal by assumption, #,(L] toll)< #, (L] + #, (L[ ), by (Prop. 2.4, (6)(/3))
Consequently #,(L] tO L[) < (E1) + (E2) + . Then (E1 tO E2) < (E1) + (E2) + , by the

definition of . Hence (E1 t_J E2) < (E1) + (E2). Thus is finitely subadditive Consequently
is a finitely subadditive outer measure (on T’(X)).

(2) Consider any element ofP(X), E.
(c0 Assume E S-a. Then by the definition of -measurable set, for every element of ’, A’,

g(A’) _> g(A’ N E) + g(a’ f3 E’).
(/3) Assume for every element of E,’, A’, -fi(A’) >_ -fi(A’ f3 E) + -fi(A’ 71E’). To show E

use the definition of g-measurable set, namely, consider any element of P(X), G, and show

g(G) _> (G f3 E) + (G 71E’). Note (G) inf{#,(A’)]A’ /2’ and A’ D G}, by the definition of

Accordingly, consider any element of L;’, A’, such that A’ D G Then

/.t,(A’) (A’), since #, on

>_ -fi(A’ f3 E) + -fi(A’ f’l E’), by the assumption,
>_ (G f’l E) + (G N E’), since is increasing

Consequently (G) > (G fq E) + (G f’l E’). Thus E
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(7) Consequently S. {E E T’(X)] for every element of E’, A’, (A’) _> (A’ fq E) +
fi(A’ N E’)}

(3) (i) Consider any element of Z:’, L’ Note to show L’ E S, according to (2), it suffices to

show for every element of Z:’, A’, fi(A’) _> fi(A’ fq L’) + (A’ fq L) Accordingly, consider any element

of Z:’, A’ Then

-fi(A’ N L’) #(A’ fq L’), since

sup {#()l, L and c A’ f’l L’}, by the definition of#,

Now, consider any element of Z2 L. such that L c A’ gO L’ Further, note (A’ fq /,(A’ fq

sup ((L)IL and L C A’ VI ’} Now, consider any element of/2, L. such that L c A’ VI Then

(A’)- #(A’)
> #(, t2 L), by the definition of ,,
#(,) + #(L), since

Z’Consequently -fi(A’) > #(L) +-fi(A’ f"l Then -fi(A’) > #(L) +-fi(A’f3 L), since L Con-
sequently -fi(A’) >_ -fi(A’ fq L’) + -fi(A’ fq L) Thus L’

(4) (i) Note for every element of , A, (A) (A) inf{#,(L’)lL’ Z:’ and L’ A}
inf {(L’)IL’ Z:’ and L’ A} inf{,(L’)lL’ ’ and L’ A} Hence , is Z:-regular
Consequently , MR() Further, note for every element of Z:, L, #(L) #,(L) < (L) ,(L)
Hence # < , on/: Also, note #(X) #, (X) (X) ,(X)

(ii) Consider any two elements of MR(), , ’2, such that # < 1, ’2 on/:. Then since/: is

normal by assumption, ’ p, , on/:. (See [10] Further, note since , 2 MR(), ’ and

,2 , Consequently 1 t,2 Thus , is unique.
REMARK. We note that if : is not normal, then need not be a finitely subadditive outer

measure However, it has been shown that for every element of M(), #, there exists an element of

MR(E), ’, such that # < on Z: and #(X) ,(X), although in general is not unique Different type
proofs of this fact have been given in 11,7,6]. Some of these proofs use tools from functional analysis,
others use Zom’s Lemma Our proof is measure theoretical and "constructive" and it also settles the

question ofuniqueness.

COROLLARY 2.8. If Z: is nomml, then is submodular

PROOF. Assume Z: is normal. Now, use the relevant definition Consider any two elements of

79(X), El, E2. Now, consider any positive number e Denote any element of {1, 2} by j. Then for
every j, since (E)= inf{#,(L’)lL’ ’ and L’D E} by the definition of , and (E) < + oo,

such that 3 E and #,(L’) < (E)+ consider any such Lthere exists an element of Z;’, L, L
Then (E1 t E2) < #,(L U L) and (E r)E) < #,(L f3 L), by the definition of. Consequently

-fi(ELJE2)+-fi(Elf’IE2)<_#,(LILJL2)+#,(LIqL2)=-fi(LILJL2)+-fi(LIF’IL2). Now, recall
since/: is normal by assumption, is a finitely subadditive outer measure and .A(/:) c (See Thm.

2.7 Then since 1.4(c) is a measure, (L t2 L) +(L fq L) (L) + (L.) Consequently

(E1UE2) + (Ea nE) < (L uL) + (L nL) (L)
< ((E1) h- ) -t- ((E2) -i- ) (E1) -t- (E2) -t- e Hence (E U E2) -I- (EI E2) <_ (EI) -t-

(E2) Thus is submodular

PROPOSITION 2.9. If for every element ofI(), #, is submodular, then Z: is normal.

PROOF. To show : is normal, assume the contrary. Then according to the theory (see
INTRODUCTION, (c)), there exist an element of I(/), #, and two elements of IR(Z:), ’1, ’2, such that

# _< Pl, 2 on /:and , :fi ’2. Consider any such #,1, 2 Then since q, ’2 IR(,E_.), there exist two

elements of I:.,A,A2, such that Alf’IA2=O;,,I(A1)=I and I(A2)=0;,2(A1)=0 and

2(A2) 1. Consider any such A1, A2 Now, denote any element of { 1, 2} by j Then for every
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3, #’(Aj)= inf {#(L’)IL’ 6 ’ and L’ D Aj}, by the definition of #’, hence since vj(Aj)= 1, and

#, 5 6 I() and # < v,j on E, #’(A) 1 Further, note since A N A2 , #’(Al N A) 0 Next,

note since/.t, g on E’ and g is submodular by assumption, #, is submodular on ’ Hence since

for every element of T’(X), E,#’(E)=u(X)-#,(E’),#’ is supermodular on . Conse-

quently #’(AI)+#’(A2)<#’(AtAA,e)+I.d(AA,,.) Hence since #’(A) 1, #’(A2) 1, and

#’(A! N A,_, 0, 1 + 1 < #’(A CA Ao. + 0 < 1 Therefore the assumption is wrong Consequently

is normal

Corollary 2 8 and Proposition 2 9 dictate the following

THEOREM 2.10. is normal ifffor every element ofI(), #, is submodular

3. SET-MEASURABILITY AND PROPERTY (,)
In [8] the following fact is established

Every finite regular outer measure has the following property

For every subset of X, E, if (E) + (E’) (X), then E is v-measurable (.) (p. 96, Thin

122)
In [8] an example is also given of a finite outer measure which although not regular, has Property

(.) (p 95, Ex.g)
In this section, we investigate the importance of Property (.) without regard to regularity. More

specifically

(a) With an arbitrary finitely subadditive outer measure u (on P(X)) which is submodular, we

associate a certain eountably superadditive inner measure p (on P(X)), we determine the class of p-

measurable sets, we also determine the relationship between the classes of u-measurable sets and p-
measurable sets, using Property (.) during the process.

(b) With an arbitrary finitely subadditive outer measure u (on P(X)), we associate a certain finitely

subadditive outer measure u (on "P(X)) and a certain eountably superadditive inner measure u0 (on
P(X)) using the class of u-measurable sets, (incidentally, we define regularity of u in terms of u) we

determine the relationship between u, u, and u0 we also determine the relationship between the classes

of u-measurable, u-measurable, and u0-measurable sets, using Property (,) during the process.

(c) We consider two arbitrary finitely subadditive outer measures u, u2 (on P(X)) such that

Ul <_ u and u (X) u(X); we determine the relationship between the associated classes of measurable
0 for j 1, 2, using Property (.) during the process. Wesets and the relationship between u0 and u

give several examples.
Consider any finitely subadditive outer measure u (on P(X)). Now, consider the function p on

T’(X) determined by p(E) u(X) u(E’).
Prt ()

PROPOSITION .1. p is supermodular iff u is submodular.

(Proof omitted.)
COROLIRY &2. If u is submodular, then p is a eountably superadditive inner measure.

(Proof omitted.)
PROPOSITION && Ifu is submodular, then

(1) ,9 {E P(X)]p(E) u(E)}. (2) ,9,, G ,9. (3) ,9 ‘9, iffu has Property (,).
PROOF. Assume u is submodular.

(1)(c0 Show ‘9 {E7:’(X)]p(E)=u(E)}. Consider any element of ‘9o, E. Then

p(X) p(E) + p(E’), by the definition of p-measurable set. Also, u(X) u(E) + p(E’), by the

definition of p. Consequently p(E) + p(E’) u(E) + p(E’). Hence since p(E’) < + co,

p(E) v(E). Thus ,90 C {E 6 P(X)Ip(E) v(E)}.
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(/3) Show {E E 7)(X)Ip(E)= u(E)} C ’-";r, Consider any element of "P(X), E, such that

p(E) u(E) Note to show E E S/,, since p is a finitely superadditive inner measure (on 7:’(X)) (see
Cot 3 2), it suffices to show for every element of 7(X), G, p(G)< p(GNE)+p(GNE’)
Accordingly, consider any element of 7:’(X), G Note since u is submodular by assumption, p is

supermodular (See Prop 3 Then

p( E) + p( E’) >_ (p(G) + p(E) p( u E)) + (p() + p(E’) p( u E’))

(since p is supermodular and p is finite)

2p(o) + p(x) (p( u E) + p(O u E’))

(using the definition ofp and the assumption p(E) u(E))

> 2p() + p(x) (p(( u E) u ( u E’)) + (( u E) ( u E’)))

(since p is supermodular)

2p(G) + p(X) (p(X) + p(G)) p(G).

Hence p(G) < p(G E) + p(G f E’) Consequently E G SR Thus {E T’(X)]p(E) u(E)}
(3’) Consequently ,Sp {E 7:’(X)]p(E) u(E)}
(2) Consider any element of S, E Then u(X) u(E) + u(E), by the definition of

measurable set Hence u(E)= u(X)- u(E). Consequently p(E)= u(E). Then E SR Thus

(3) (a) Assume ,S p and show has Property () Consider any element of 7(X), E, such

that v(X) u(E) + u(E’) and show E ,S. Note v(X) p(E) + v(E’), by the definition of
Consequently p(E) (E) Then E ,St, by (1). Hence since ,S, C ,S by assumption, E
Consequently u has Property ()

(/3) Assume has Property () and show ,S ,S, Note for this, since ,S C ,S, by (2), it suffices
to show ,St, c ,S Consider any element of,S, E. Note to show E E ,S, since u has Property (), it

suffices to show u(X)= v(E)+v(E’) Note since E S,, p(E)= v(E), by (1) Hence since

u(X) p(E) + u(E’) by the definition of p, u(X) u(E) + u(E’) Consequently E S Thus
So c S. Consequently S So.

art (b)
Recall the facts: ,S is an algebra and uls is a measure.

(a) Consider the function u on T’(X) determined by u(E) inf{u(S)]S e ,S,, and S D E).
(/3) Consider the function u on T’(X) determined by uo(E) sup {u(S)IS S and S c E}
PROPOSITION 3.4. (1) u is submodular (2) u0is supermodular.
(Proof omitted.)
PROPOSITION 3.5. (1) uo _< t, _< u and u0 u u on ,S.
(2) (i) u is a finitely subadditive outer measure (on P(X)).
(ii) u0 is a countably superadditive inner measure (on P(X)).
(3) For every element of ,S, E, for every element of 7:’(X), G, if G c E, then uo(G)=

(E) (E ().
(4) For every element of T’(X), G, uo(G) + u(G’) u(X)
(5) For every element of,S,,, E, u(E) + u(E’) u(X).
PROOF. (2) (ii) Note the function uo is from P(X) to R, uo(0) 0, and u0 is increasing

Further, note since uo is supermodular (see Prop 3.4, (ii)), u0 is finitely superadditive Consequently u0 is

a countably superadditive inner measure (on "P(X)).
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(3) Consider any element of $., E, and any element of 79(X), G, such that G c E Note to

show vo(G)=v(E)-v(E-G), according to the definition of v0, it suffices to show

v(E) v(E G) sup {v(S)[S S. and S c G}
(a) Show (E) v(E G) is an upper bound of {v(S)IS S. and S C G} Accordingly,

consider any element of S., S, such that S c G and show v(S)< v(E)- v(E-G) Note
v(S)<(E)-v(E-G) iff v(E)-v(S)_>v(E-G) Now, consider E-S and note

E-SS., since E,SS. and E-S3E-G, since SCG Hence by the definition of

v,v(E-S)>v(E-G) Further, note since vl& is a measure and ScGcE, v(E-S)=
v(E)- (S’) Consequentlyv(E)- v(S) > v(E- 67) Hence v(S’) < v(E)- v(E- G) Thus

v(E) (E G) is an upper bound of {v(S)IS S. and S c G}
(/3) Show for every positive number e, there exists an element of $, S, such that S c G and

v(,_q) > (v,(E)-(E-G))-e Accordingly, consider any positive number e Then since

v(E G) inf{(S)lS S. and .5’ 3 E G} by the definition of, and v(E G) < + oo, there
exists an element of S,, S, such that S E G and (S) < v(E G) + Consider any such S
Then v(S) > v(E (7) Hence v(E) (S) > (v(E) v(E (7)) Hence
v(E) v(E f3 S) > (v(E) v(E G)) Consequently v(E-E N S) > v(E) (E G))
Thus E- E fqS E S and E- E NS C G and v(E- E NS) > (v(E) v(E- G))

(3’) Consequently vo(G) v(E) v(E G).
The following proposition will dictate the definition of regularity of a finitely subadditive outer

measure v (on P(X))
PROPOSITION 3.6. Consider the following statements.

For every element of T’(X), E, there exists an element ofS., S, such that S D E and

(S) (E). (1)

v v (2)

Then (1) implies (2)
PROOF. Assume (1) Consider any element of T’(X), E. Then since (1) is true, there exists an

element of S, S, such that S E and v(S) v(E). Consider any such S. Now, recall v(E) inf

(v(N)IN &, and N D E}, by the definition of v Consequently v(E) <_ v(E) < v(S) v(E)
Hence v(E) v(E). Thus v v, i.e., (2) is true

Observation If v is countably subadditive, then (2) implies (1)
DEFINITION 3.7. v is regular iff v v.
In [8] the following fact is established:

Every regular outer measure #* has the following property:
For every increasing sequence of sets, (A,),/z* (lim, A,) lim,/z* (Am). (#) (p. 95, Cot. 12.1 1.)
To show that the countable subadditivity of #* is essential in the proof of this fact, we will present

a finitely subadditive outer measure which although regular, does not have Property (#), namely:
Consider any lattice space (X,/) such that/: is not countably compact. Then according to the

theory (see INTRODUCTION, (c)), I(/2) Io(). Hence there exists an element of I(), #, such that

# . Io(.) Consider any such # Note #’ is a finitely subadditive outer measure (on 7:’(X)) which is

regular. Further, note since # Io(.), there exists a sequence in Z;’, (L’), such that (L’) is increasing
and lim, L’ X and for every n, #(L’) 0 Consider any such (L’) Note #’ (lim, L’) #’ (X) 1

and lim, #’(L’) 0. Hence #’(lim L’) lim, #’(L’). Thus #’ does not have Property (#).
Observation. In general, every finitely subaditive outer measure v on P(X), that is not countably

subadditive, does not have Property (#) (because, if it did, it would be countably subadditive).
Consider the function p defined in Part (a).
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PROPOSITION 3.8. v is regular iffp v0

PROOF. Note v is regular iff v- v (by definition) iff for every element of 7(X) E,
v(E) v(E) -inf{v(S’)lS E ,_’;‘, and S E} (by the definition of v) iff v(X)- v(E) sup

{v(S’)]S’ E ,;’‘, and S’ c E’} (since v(X) < + cxz and v s is a measure) iff p(E’) vo(E’) (by the

definitions of p and v0) iff p v0

PROPOSITION 3.9. Ifv is regular, then v has Property (,)
PROOF. (Slight modification of proof in [8] for countably subadditive outer measures

Assume v is regular To show v has Property (,), consider any element of T’(X),E, such that

u(E) + u(E’) u(X) and show E ,; Note to show E E ,,q‘,, it suffices to show for every element

of 7(X), G, u(G E) + u(G E’) < u(G) Accordingly, consider any element of T’(X), G Now,
consider any positive number e Then since u(G)-inf{u(N)[N ,S‘, and N D G} and

u(G) < + c, there exists an element of $‘,, N, such that N D G and u(N) < u(G) + Consider

any such N Then

u(X) u(E) + u(E’), by assumption,
=(u(EN)+u(EN’))+(u(E’N)+v(E’N’)), since N

(.(E 71 N) + .(E’ N)) + (u(E U’) + .(E’ N’))
> u(N) + v(N’), since v is finitely subadditive,
=v(X), since NE

Hence (u(E V N) + u(E’ V N)) + (v(E Y N’) + v(E’ N N’)) v(N) + v(N’) Hence since

v(E V N’) + v(E’ V N’) >_ v(N’), v(E N) + v(E’ Y N) <_ u(N) Consequently v(G V E) +
u(GVE’) <_v(NNE)+v(NNE’) <_v(N) <v(G)+e Now, note since v is regular by
assumption, v v by definition Consequently v(G E) + v(G E’) < v(G) + Hence

u(G t E) + v(G t E’) <_ v(G) Consequently E ,5,, Thus v has Property (,)
At the beginning of Section 3, it was mentioned that in [8] an example is given of a finite outer

measure which although not regular, has Property (,).
We will present a family of finite outer measures which regular or not have Property (,)
PROPOSITION 3.10. Consider any lattice space (X,:) and any element of M(/:), # Then #’

has Property (,).
PROOF. To show #’ has Property (,), consider any element of "P(X), E, such that ’(E)+

#’(E’)=’(X) and show E ESu, For this, use ([10], Yhm 2.16), namely, Su,=
(E C P(X)Iu’(E) sup(#(L)lL c Z: and L C E}}. Note since #’(E) +/’(E’) #’(X) and

u’(x) =u(x)< +oo,

u’(E) u(x) u’ (E’)
#(X) inf{#(L’)]L’ :’ and L’ 2) E’}, by the definition of #’,
sup {#(L)IL /2 and L C E}.

Then by the theorem mentioned above, E 8u,. Then # has Property (.).
Observation. If# I(:), then # is regular.
COROLLARY 3.11. (1) Su, {E G :P(X)Im(E) #’(E)}. (2) Su,
PROOF. Recall #’ is a finitely subadditive outer measure (on P(X)), #’ is submodular, and

for every element of P(X), E, #,(E) =#(X)-#’(E’). Then by Prop 3,3, (1)
,.S, {E e P(X)[#,(E) #’(E)}; (2) ,S., 8.,, since #’ has Property (.) (by Prop 3.10).

PROPOSITION 3.12. If u has Property (.), then (I) 8: C ,S.. (2) u0 has Property (.)
(3) ,.q. C S.0. (4)

PROOF. Assume, has Property (.)
(1) Consider any element of,S.o, E. Then
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v(X) <_ v(E) + v(E’), since v is finitely subadditive,

<_u(E)+u(E’), since u_<u,
=u(X), sinceEE$.,

=u(X), since u-ton

Hence u(X) u(E) +/,(E) Hence since/, has Property (,) by assumption, E E S. Thus S.o c

(2) To show /,0 has Property (,), consider any element of 7(X), E, such that

/,(E) +/,(E’) -/,(X) and show E S0 Note to show E E S.0, it suffices to show for every

element of 7:’(X), G,/,(G N E) +/,(G N Et) </,(G) Accordingly, consider any element of T(X),
G. Now, consider any positive number e Then since u(G) inf{/,(S)lS $ and S D G} and

/,0 (G) < + cxz, there exists an element of S,,, S, such that S D G and/,(S) </,o (G) + Consider any

such S Then/,o (G f3 E) +/,o (G fq EI) <_/,(S t E) +/,o (S E’), since/,0 is increasing Now, note

/,(X) <_/,(E) +/,(E) <_/,(E) +/,(E’) =/,(X) (by assumption) -/,(X) Hence/,(X) =/,(E) +
/,(E) Hence since /, has Property (.) by assumption, E S. Consequently /, (G tq E) +
/,(G fq E’) <_ /,(S fq E) + /,(S E’) /,(S f3 E) + /,(S t E’) /,(S) < /,(G) + e Hence

/,(G E) +/’(G E’) <_/,(G) Consequently E S0 Thus/’o has Property (.)

(3) Consider any element of,S., E. Now, note since/,o has Property (.) by (2), to show E
it suffices to show/,(E) +/’(E’) -/,(X) Note since E S,/-(E) =/,(E) and/,(E’)
Then

.O(E) + .O(E,) .(E) + .(E’)
=/,(X), since ES,

.o (x).
Hence/-(E) +/’(E’) =/-(X). Consequently E E S.o. Thus S. c So

PROPOSITION 3.13. (1) If/" has Property (.), then /,oo =/’o, that is, /,o is regular (2) If

/,oo =/’o, that is, if/,o is regular, then/,o has Property (.).
PROOF. (1) Assume /" has Property (.). Now, to show/’oo =/’o, consider any element of

79(X), E, and show/,(E) =/,(E). Note u(E) (/-)(E) inf{v(S)lS e ,So and S D E}, by
definition Further, note since /, has Property (.) by assumption, S.o S by (Prop 3 12, (4))

Consequently/,(E) inf{/,(S)[S So and S D E} inf{/,(S)[S S and S D E} =/,(E), by

the definition of/,o Thus/,oo =/’o.

PROPOSITION 3.14. (1) S {E P(X)I/’o(E) =/’(E)}. (2) S.o C S (3) S.o
iff /,o has Property (,) (4) S c S (5) If /- has Property (,), then So =S =,S

{E V(X)I/’o(E) =/’(E)}.
PROOF. Note since/’o is afinitely subadditive outer measure (on T’(X)),/’o is submodular, and

for every element of :P(X), E,/’o(E) +/-(E’) =/,(X) or, equivalently, /,o(E) =/,(X) -/,(E’)
/,(X) -/,(E’) by (Prop. 3.5, (4)), by Prop 3 3, (1), (2), and (3) are true

(4) Consider any element ofS, E. Then/,o(E) =/,(E) =/,(E). Hence by(l), E S Thus

S C S
(5) Assume/, has Property (,) Note So S, by (Prop. 3.12, (4)) Further, note S. c S ((4)

above). Also, note So =S by [(Prop 3 12, (2)) and ((3) above)]. Then by ((1) above),

So S. So {E :P(X)I/-o(E)
Part (c)

PROPOSITION 3.15. Consider any two finitely subadditive outer measures /’1, /’2 (on79(X)),
such that /-1 _</’2 and /,I(X)=/,2(X) If /-1 has Property (,), then (1) S 3S (2)

/’20 <_/-lO _</’10 <_/’20. (3) (2)implies (1)
PROOF. Assume/- has Property (,).
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(1) Consider any element of$,, E Note to show E E $, since uhas Property (.), it suffices to

show v (E) + v (E’) v (X) Note

v1(X) < Vl(E) + vl(E’), since v is subadditive,
< v2(E) + v2(E’), since v _< v2 by assumption,
=vo.(X), since E

vl(X), by assumption

Hence vl (X) v (E) + Vl (E’) Consequently E

(2) (o) Show v20 vo Consider any element ofP(X), E Note vo(E) sup {v2(S)IS
and S c E} and vo(E) sup {Vl (S)IS S. and S c E}, by definition Now, consider any element

ofSn, S Note

V (S) V (X) v (St), since S

v (X) v (S’), since v v and v (X) v(X) by assumption,
va(S), since S S by(l).

Consequently v(S) v(S) Thus vz Vl on S Consequently Vo(E) sup {v(S)]S S and

S c E} sup {Vl (S)iS S, and S c E} Vl0(E) Thus v0 5 Vl0

(fl) Show v v Consider any element of P(X), E Note v(E) inf{v(S)[S S, d
S D E} and v(E) inf{v(S)]S S and S D E}, by definition. Now, recall v2 v on S (from
pan (a)) Consequently v(E) inf{vl(S)]S S, d S D E} inf{v2(S)]S S d

SDE}=(E) Thusu
() Consequently u20 u0 u
(3) Assume (2) and show (1) Note Uo u on S Then u0 uon S, using the

assumption. Hence 8 C 8o, by (Prop. 3 14, (1)) Fuher, note since u has Propey (.) by

assumption, 80 c 8, by (Prop 3.14, (5)). Consequently

APPLICATIONS OF PROPOSITION 3.15.

APPLICATION 3.1. Consider y two elements of M(), ,u, such that u d

(X) u(X). Fuher, consider ’, ’ Reel the facts: and u are finitely subadditive outer

measures (on P(X)); ’ ’ and ’(X) ’(X); ’ has Propey (.) rop. 3.10). Hence by rop.
3.15, (1)), 8 8,,.

APPLICATION 3.17. Consider y element of M(E), #. Fuher, consider #’, #" Rfll the

facts #’ is a finitely subadditive outer measure (on (X)) d #" is a finitely subadditive outer measure

(on (X)); #" #’; if# Mo(E), then #"(X) #’(X) (see [10]) Consequently, according to rop.
3 15, (1)), if # Mo(E) d #" has propey (.), then , 8,. Finflly, recfll the fact. If a finitely

subadditive outer msure (on (X)) is rel, then it h Propey (.) rop. 3 9). Consequently if

# Mo(E) and #" is rel, then ,, ,,.
APPLICAON 3.18. Consider y element ofM (E). Fuher, consider ’, #", d #* (where

#* is the outer measure induced by #). Rcfll the facts: #’, #", d #* are fitely subadditive outer

measures (on (X)), #* #" #’ (hence #*(X)= #"(X)= #’(X)); #* is rel (hence #* has

Propey (.)). Hence by (Prop 3.15, (1)), . Su, d Su. Su,,. Fuher, fecal the fact If, in

addition, # is E-rel, then * #". (Consequently #" is rel.) Consequently if # M(E), then
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