
Internat. J. Math. & Math. Sci.
VOL. 19 NO. 3 (1996) 549-554

549

MAXIMAL IDEALS IN ALGEBRAS OF VECTOR-VALUED FUNCTIONS

J. w. KITCHEN

Department of Mathematics
Duke University

Durham, NC 27706 USA

and

D. A. ROBBINS

Department of Mathematics
Trinity College

Hartford, CT 06106 USA

(Received October 6, 1994 and in revised form December 2 l, 1994)

ABSTRACT. Subsuming recent results of the authors [6,7] and J Arhippainen [l], we investigate

further the structure and properties ofthe maximal ideal spaces of algebras of vector-valued functions
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1. INTRODUCTION
One way to create new topological algebras from old is to look at algebras ,A of functions from a

space X which take their values in topological algebras Ax (z E X). IfX is itself a topological space (or
sometimes even if it is not), these algebras .A can be topologized in various ways. It is natural to ask how

the ideal structure of .A is related to the ideal structures of the A The history of this question dates

back at least to 1960 and C. Rickart’s book [9] and to 1961 and the paper of J M. G Fell [2]. Among
many other results, this latter paper identified the space of irreducible *-representations of section spaces
of bundles of C*-algebras The topological algebras of these sources were commutative Banach algebras
with identities and C*-algebras, respectively. Among the more recent studies examining the relationships

between the ideal structure of 4 and the ideal structures of the Ax are the papers by J. Arhippainen ],
who looked at commutative locally multiplicatively convex A:, and by the authors ([6] and [7]), for

whom the A were commutative Banach algebras and arbitrary Banach algebras, respectively The

references in these papers provide a guide to some of the record.

The purpose of this note is to investigate further the structure and properties of the maximal ideal

spaces of algebras of vector-valued functions In it, we subsume results of our own and of J Arhippainen

in the works noted above by using the theory of bundles of locally convex topological vector spaces



2. IDENTIFICATION OF MAXIMAL IDEALS
Consider the following stuation let X be a completely regular Hausdorff topological space, and

denote by Ct,(X) the space of bounded and continuous complex-valued functions on X Let
/A, "x E X) be a family of non-trivial commutative locally multiplicatively convex (lmc) algebras
ndexed by X Let A be the disjoint umon O{A, x E X) of algebras (which can, if we like, be thought
of as the set ,, x({Xt A, )), and let 7r A X be the natural surjection Assume further that we

have on the fibered space A a family of seminorms {,, .9} such that, for each x

(where ,’ is the restriction of ,, to AT) is a family of submultiplicative seminorms which generates the

topology on A, Assume, finally, that we have an algebra .A of selections (-- choice functions)
(7:X A such that

1) for each x X, ev,(.A) {(7(x) (7 E .A} A (in this case,.A is said to be full).
2) .,4 is a C(X )-module. and

3) for each (7 ,4 and for each .5, the numerical function x u,((7(x)) is upper

semicontinuous on X
Before going farther, we point out two special cases of this situation If X is compact, and if each

A is a commutative Banach algebra (and the set A is a singleton), then we have the situation in [6] On

the other hand, if B is a commutative lmc algebra, and if.,4 C(X, B) is the algebra of all continuous

B-valued functions on X (so that A B for all x X), then we have the situation described in [1]
Returning now to the general situation, we make .A into a commutative lmc algebra First, we select

a compact cover of X which is closed under finite unions For each K ’ and E .,q we

define a seminorm pr, on .A by pr,((7)= sup v((7(z)) Then the PK., are easily seen to be

submultiplicative, so that they generate an lmc topology on .,4 The sets

V(,K,,) {- A: .(- -) < }

form a subbasic system of neighborhoods ofa ,4 as K ,, E J, and every e > 0 vary

Note that different choices of covers 6may lead to different topologies on .,4 In the constant fiber

case .A C(X, B), described above, we can let be the family of all compact subsets of X. in which

case has the compact-open topology (the topology of uniform convergence on compact subsets of

X) If, at the other extreme, we let d’be the family of finite subsets of X, then .At has the topology of

pointwise convergence on X
In the general case, we note further that since A with the given topology is an lmc algebra, the

multiplication on ,4 is (jointly) continuous in the topology given by the seminorms Pg., (see [8])
Moreover, if we endow Cb(X) with the sup norm topology, it is easily seen that the module

multiplication (f,a)- fa from C,(X) A to A is also jointly continuous, so that A is in fact a

topological Cb(X)-module
For a subset J c ,A and K let JIK {alK a J}, where crlK denotes the restriction of

a to K. Denote the restriction map by restr A
PROPOSITION 1. Suppose that J C AlS an 1deal in A which is also a Cb(X)-module of

Then J K is an ideal in AIK which is also a C(K)-module.
PROOF. Evidently, JIK is an ideal in .AIK
Let a J, and let f C(K) We may extend f to f* C(X), see [4, p 90] Then

restK(f*a) restK(f*) restK((7) f (crlK) .ILK,

since f*a E J IZI !-11"!
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PROPOSITION 2. Suppose thai J C ‘4 t.s" a Ct,(X)-.submodule and a closed proper Meal. lhen

there exlsI.s z E X such thai ev, (J) J, Is" a chzs’edproper Meal m A,.
PROOF. Fix K E 3(, and consider .,41K This is a space of choice functions over K, whose

seminorm functions :c u; (a(x))(a .4, .,0) are then upper semicontinuous over K by restriction,

and hence bounded on K By [3, Theorem 5 9, p 49], there is a bundle 7rc AK--* K of lmc

topological algebras such that 1-’(TrK) ‘41K, the topology on AIK is generated by the PK,

Suppose now that for each zX, we have J =A,, and let oE‘4 We will show that every

neighborhood V of contains an element 7- J Since J is closed, this will show that J, contrary

to the assumption that J is a proper ideal in ‘4 We may assume that V is of the form

V ( V(,K, ip,),
p

where the z’s are indices in .; From the preceding, JIK is a C(K)-submodule of‘4lK F(zrh-) such

that ev (JIK) is dense in each A (x E K) Then, using [3, Theorem 4 2, p 39], J[K is dense in

By the definition of the topology on ‘41K, this means that there is a 7- E J such that pr.,;(r 7-) < e for

p 1 n But this says precisely that 7- E V E]VIV!

PROPOSITION 3. Suppose that H" .At C s a non-trivial contmuous multphcatve

homomorphsm; set J ker H. ]hen there exists x X such that J is a proper ideal In Az.
PROOF. It suffices to show that J is a Cb(X)-submodule of‘4 If it is not, we may choose a J

and f Cb(X) such that f J Since J is in any event an ideal, we have (re)2 (fa) j But

H((fa)2) [H(f)] # 0, a contradiction I-il-II-I

PROPOSITION 4. Let /x,(‘4) be the Gelfand space of .At space of non-trivial continuous

homomorphsms H" .,4 C). IfH /x,(‘4), then there exist x X, h /k(Az) such that H h o ev.
PROOF. Let H E/k(A), set J ker H, and choose x E X such that J is a proper ideal in

Thus, A_ :/: 0 Since ev .4 A maps J into J, there is a unique linear map $ - which

makes the diagram

commute, where 7r and r: are the natural surjections Since ev .A A is surjective, the induced map- - # is also surjective Thus, q5 maps the one-dimensional space surjectively onto the non-

@ It follows that is one-dimensional, which means that is a closed regular maximalzero space

ideal in A Hence, ker h for some h /k(A). The map h o ev .,4 C is clearly a non-trivial

algebra homomorphism. If a J, then eva(a) ,/ ker h, so (h o ev)(a) 0 Hence ker

H J c ker(h o ev). Because ker H and ker(h o ev) are closed maximal ideals, it follows that ker

H ker(h o ev), and hence that H h o ev DE]V]

COROLLARY 5. Under the situatton as described, we may tdenttfy ZS(‘4) as a point

set wth the dtsjoint umon of the /X(A). (For bookkeeping purposes, we may also write

/(.4) Ux({:} /X(A)).)
PROOF. Since ev ‘4 A is continuous, it follows that, if z X and h /X,(A), then

h o ev /x,(‘4) By using the same method as in the proof of [6, Proposition 6], it may be shown that

the map

Uex({X} x A(A)) - A(.4), (x,h) h o ev, H
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In all the above, we need to call on the result for lmc algebras which corresponds to that tbr Banach

algebras namely, in a commutative Imc algebra/3, there s a one-to-one correspondence between the set

of continuous non-trivial homomorphsms from B to C and the set of closed regular maximal ideals in B,
see [8, Corollaries 7 l, 7 2, pp 71-72]

3. TOPOLOGICAL CONSIDERATIONS
So, under the circumstances described, we have a fibering of &(AI by X For II AIAi, we may

write h o ev, for some (unique) x (5 X and h (5/k(A, Let p A(A) X be the obvious projection
map, H- h oev, x

PROPOSITION 6. /he proleclon map p ." continuous when A(.A
PROOF. It suffices to show that whenever {H,}-{h,, o ev, } is a net in /",(.A) such that

H,, h, ev, H h ev,, we have f(:r,,) f(:r) for each f (5 C,(X), because when X ts

completely regular and Hausdorffis topology is determined by C(X), see [4, p 40] Suppose now that

f C,(X) and that cr (5 .,4, with H(cr) h(cr(x)) ?6 0 Snce for (5 A. and since ho o evo h o ev,

weak-" in/", (.,4), we have

h,([fcr](z,,)) h,,(f(z,,)a(z,)) f(z,,)h(a(z,,)) h([fcr](z)) f(z)h(cr(z)).

Since h,(cr(z,,)) h(cr(:r.)) # O, it follows that f(z,) f(z) Since f (5 C(X) was arbitrary, we

ave the desired result I-I1-11--i

On the other hand, we can look at how A(A embeds into

PROPOSITION 7. Gtve A(A) tts weak- topology and, fi)r each x X, gve A(A.)tts weak-"

topology. Then A(A embeds homeomorphcally into A(A).
PROOF. Fix z X Evidently, the map % A(A.) X(A), h h o ev., is one-to-one if

ht h,2, then we may choose a (5 A such that h(a) h2(a), and use the fullness of ..4 to choose

cr (5 .,4 such that or(z) a It is then clear that (h oev)(cr) # (h2 oev)(cr)
Now, suppose that we have a net h, C A(A such that h, h ZX(A) when A(A) is given

its weak-" topology Let o- (5 .,4 We then have (ho oev)(cr) ho(cr(z)) h(cr(:r)) (h oev)(cr),
ie %(h,) hoev in A(.A). It is likewise easy to show that if {h, oev} is a net in %(A(A:))
which converges weak-" to h o ev (5 %(A(A:)), then ho h weak-" in A(A) I-’11"-I1"-!

Previous work of the authors [6] has provided examples which demonstrate that the projection map

need not be closed, even when each fiber A is a Banach algebra with identity Moreover, the projection

need not be open, even when each fiber A is a Banach algebra with identity and .,4 satisfies the even

stronger condition that it contain the identity selection Both of these examples use the weak-"

topologies

Suppose now that we re-examine the situation when each A: is a commutative Banach algebra and

X is compact Under these special conditions, .,4 is the space of sections of a bundle of Banach algebras
n-" A--, X We may look at the Seda topology on .M I,.J:x({:r} x A(A))= [3exA(A)
Recall from the Banach bundle case that the Seda topology is the weak topology on
(R) Uex({Z} x B((A.)’)) (where B(Z) denotes the closed unit ball of a Banach space Z) which is

generated by the conditions (:c,,F,) (z,F) (5 .Ad iff z z (5 X and Fo(cr(z,)) F(cr(:r)) for

each cr (5 .,4 It is shown elsewhere that (R) is compact in the Seda topology (See [10] and [5] for more

information about this topology
PROPOSITION $. Let X be a compact Hausdorffspace, and suppose that ,4 [’(rc) ts the space

of sections of the bundle of commutatn,e Banach algebras 7r" A X. Then the weak-" topology on

A(A) and the (relative) Seda topology on .M are homeomorphc.
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PROOF. As above, for H E/k(.A), write H h o ev, for some x E X and h /k(A, The map

H (x,h s a bjecton If H,, h, oev,. H h oev, weak-" in/A(A),thissayspreciselythat

Ha(o) h.(cr(x.)) H(a): h((x)) for each cr A, above we have shown that x, x Thus,

(x,, h.) (x, h) in the Seda topology The other direction is clear l-li-II-I

We may also consider the continuity of the projection map and the embeddings when /k(.A) and

/k(A, are endowed with their hull-kernel topologies

PROPOSITION 9. l/nder the given general circumstances, suppose lhal /(.,4 1s gtven its hull-

kernel topology, attd that each /(A, )(x X) ts given its hull-kernel topology, lhen the prolectton

map p /(A X and the embeddmgs of the/(Ar) into/(A) are continuous.

PROOF. To show that the natural projection p’/(.A)- X is continuous in the hull-kernel

topology, let H, hoo evo be a net in/(A) with ho o eVo h o ev H /(.A) in the hull-

kernel topology We claim that :r, x

If not, we may then choose an open neighborhood N of x and a subnet {x,, of {x, such that

:r,), N Choose a A such that h(a) O, and choose a’ .,4 such that a’(x) ev(a’) a Since

X is completely regular, we may choose a function f Cb(X) with f(X) C [0, 1] and with f(x) 1 and

f(X\N)=O Set or=for’ Since h,, oeV:o,-- h oev, we have P= ["lo, ker(ho, oev,)cker(h oev)
Since cr(zo,)-0 for all a’, we have cr E P C ker(hoev:) But this is a contradiction, since

(h o ev)(a) h(cr(x)) h(a)
Now, fix x X For the second part, it suffices to show that for a set W C/(A), and for

h /(A), we have h in the hull-kernel closure of W iff H h o ev is in the hull-kernel closure of

-(w) {h’o. h’ e W}
Suppose, then, that h is in the hull-kernel closure ofW in/k(A) Then {kerh" h’ c= W} c kerh,

we claim that ["]ker {h’ oev h’ E W} C ker(h oev) So, let a ,A be such that a ker(h’ oev)
for each h’W Then h’(a(x))=O for each h’W, e a(x)kerh’ for all h’EW, so that

a(x) ker h Hence, a ker(h o ev) A proof of the reverse inclusion, which uses the fullness of A,
is equally straightforward

We note that these are essentially the proofs used in [7, Propositions 17, 18] ill-IV]

Recall (see [8, p 332]) that a topological algebra B is said to be regular provided that any weak-"

closed subset W of/k(B) and point of/k(B) disjoint from it may be separated by an element of B It

happens that B is regular iff the weak-* and hull-kernel topologies coincide on/X,(B)
PROPOSITION 10. Suppose that we are given the general data on .A, as above. If.A ts a regular

algebra, then so s each A.
PROOF. Choose x X We know that /(.A) contains a homeomorphic copy of/’x(A) in

the weak-* topology, in particular, {x} W p-(W) is weak*- closed in A(A) whenever W is a

weak-* closed in /(A), where p’/(dt) /(A) is the continuous projection map. Hence, if

h /(Ax)\W, then (x,h) /(.A)\p-l(W), and so there exists a .A which separates (x,h) and

p-l(W) Then it is evident that a(x) A separates h and W in/(A) I’11"-I1-1

Now, if x E X, and if I c A is an ideal, set A(x,I) {a .,4 a(x) I} It is easy to see

that .A(x, I) is always a closed proper ideal in ,4 whenever I is a closed proper ideal ofA (In fact,

.A(x, I) is also a closed Cb(X)-submodule of.A when I is closed

PROPOSITION 11. Let J c .,4 be a closed ideal which ts also a Cb(X)-submodule of .A. Then

J NxX(:,),
PROOF. Clearly, S C Nx.a(,
To show the reverse inclusion, we use a partition of unity argument similar to that of Theorem 8 of

[1 Let cr J’ To show that cr J, it suffices to show that for K Off, 3, and > 0 there is

7- J such that PK,, (or 7-)
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Fix K, t, and t, and let x E K be arbitrary Then o(x) E J-, and so there exists a’ E J such that
u,’ (o(x) o’(x)) < since the seminorm functions x’ u," (o(x’) ’(x’)) is upper semicontinuous,
there is a neighborhood U, ofx such that when x’ E U, we have u[’ (a(x’) o’(x’)) <

Since K is compact, we may choose a cover Us U., of K, with corresponding o’,..., ap J
such that u;’(o(x’) (x’)) < whenever :r’ C U,r(r- ,p) Now, {UT]K "r= p} is

an open cover of the compact Hausdorff space K, and so there is a partition of umty

{f, "r- 1,...,p} cC(K) subordinate to {u,rlK} In particular, 0_ f,(x)_ l(xCK,.
P

supp(f, C Ur]K for r 1 p, and fr(x) 1 for x E K As in Proposition l, we may extend

f, to f Cb(X) Then "r fo’r J, and it is easy to check that p-.,(o "r) < l-Ii-ll-I

COROLLARY 12. Suppose that A has an tdentity e, and let J C ,4 be a closed ideal. "lhen
N, .- (,).
PROOF. It suffices to note that J is a Cb(X)-submodule ofA Let f Cb(X) and a E J Then

fo f(eo) (fe)o J [-lOi-I

COROLLARY 13. Let J C 4 be a closed proper ideal, and let (J) denote the closed C(X)-
.bmodule m 4 generated by J. Then (J) x,A(x,-ff-).

PROOF. This follows immediately from the method of proof in Proposition 11 I’-!i-11-1

We point out in closing the crucial role which the assumptions on the space X play Complete
rgularity of X allows us to extend the functions appearing in the proofs of Propositions and 11, and

provides sufficiently many continuous functions to demonstrate the continuity of the projection map
p- A(4) X in Propositions 6 and 9. That X is Hausdorff means that each K f is a compact

Hausdorff space, and allows us to use the full power of the cited theorems from [3] in the proof of

Proposition 2
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