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ABSTRACT. In this paper we prove the existence and uniqueness of weak solutions of the mixed
problem for the nonlinear hyperbolic-parabolic equation

(K (z,t)) + Koz, t)u' + A(t)u + F(u) = f
with null Dirichlet boundary conditions and zero initial data, where F'(s) is a continuous function such
that sF(s) >0, Vs € R and {A(t);¢t > 0} is a family of operators of L(HJ(Q); H '(Q)) For the
existence we apply the Faedo-Galerkin method with an unusual a priori estimate and a result of
W A Strauss Uniqueness is proved only for some particular classes of functions F'
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1. INTRODUCTION
In this paper we study the global existence and uniqueness of weak solutions to the mixed problem for
the nonlinear hyperbolic-parabolic equations

(P){ (Ki(z,t)u") + Ky(z,t)u' + A@t)u+ F(u) = f in Q,
u(z,0) = yo(z), u'(z,0) = ui(z), € Q,

where Q is a cylindrical domain of R"*! and K(z,t), Ka(z,t), F are functions which satisfy some
appropriate conditions

Physical motivations for studying (P) come from several problems of continuum mechanics, such as
turbulence, combustion, material aging, transonic flows, etc

Let Q be a bounded open set in R* By @ we represent the cylinder 2 x |0, T(, T an arbitrary
positive real number In @ we consider the mixed problem for the hyperbolic-parabolic equation

Ki(z)v" + Ko(z)u' —Au=f in Q an

where Ky(z) > 0and Ky(z) > >0,z € Q

This type of equation was studied by Bensoussan-Lions-Papanicolau in [1] Medeiros [2] studied the
existence of weak solution of the mixed problem for (1 1) plus the nonlinear term |u|Pu, p > 0 Lima [3]
analyzed the equation (1 1) in a nonlinear abstract framework In Lar'kin [4] (1 1) was studied with more
general nonlinearities, K; and K, depends also t, included also in f, but still with null initial conditions,
plus strong restrictions on f

Many authors studied the equation (1 1) when coefficients K; and K, also depend on ¢ Among
them we mention Bryukhanov [5], Bubnov [6], Vragov [7] and Gadzhier [8] All of them assume zero
initial data
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A significant nonlinear generalization of problem (1 1) is the following
(Ki(z,t)u) + Koz, t)u' —Au+ F(u) = f in Q 12
with initial data
u(z,0) = ug(z),v'(z,0) = u (z),z € Q. 13)

Strauss [8] studied the existence of weak solution for (1 2) and (1 3) when K, = 1, Ky = O and F'is
a function that satisfies

F continuous and sF(s) > 0 forall s in R. (14)

Maciel [10] studied existence and uniqueness of weak solutions problem (1 2)-(1 3), when F is
continuous and sF(s) > O for all s € R, where the uniqueness is proved only for some particular cases of
function F, and K, and K, satisfies

Kl(-”-',t)ZO, KQ(xrt)Zﬁ>0 (1 5)

1
Ky(z,t) — ElK“(x,tﬂ > 6y > 0. (16)

But with null initial conditions
The problem (1 2) may be included in the following general formulation

n

(Koo, 0) + Kol 0 = 3 2 (o,

1,7=1 9z,

Su

az])+F(u)=f in Q. a7

Observe that on the set K(z,t) = 0 the equation (1 7) degenerate into parabolic equation

In this paper we study existence and uniqueness of weak solution of the mixed problem for the
equation (1 7) in the case of null initial data, with F satisfying condition (1 4) For the existence we apply
the Faedo-Galerkin method (see Lions [11]), a priori estimates not usual and a result of W A Strauss for
the nonlinear term (see Strauss [9]). The uniqueness is considered only for some particular cases of F'
which permit the application of a method due to Visik and Ladyzenskaya [12]

The paper is organized as follows.

2 Some terminology and assumptions.

3 Existence of weak solutions

4 Uniqueness

2. SOME TERMINOLOGY AND ASSUMPTIONS

By D(Q2) we denote the space of infinitely differential functions with compact support contained in Q,
the inner product and norm in L?(Q) and H}(f2) will be represented by (.,.), |.| and ((.,.)), ||.l
respectively By H~1(Q) we denote the dual space of H} ()

Let X be a Banach space, we denote by L?(0,T; X), 1 < p < oo, the Banach space of vector-valued
functions v : (0, T) — X which are measurable and ||u(t)||% € L?(0, T) with the norm

[ull g0, x) = €35 sup_{lu(®)llx-
0<t<T

Let us consider the following family of operators in L(Hj (), H1(2))

Ay =-3 = @,(m%)

1,7=1
where
a,=a, forall i,7=1,.,n (V)]

{a”,%a,]}e(L°°(0,T;L°°(Q)))2 forall i,j=1,..,n. 2.2

Here ;% denote the derivative in distributional sense
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We suppose that

3 ay(z )68, > B(IES + ... + €., 23)

1.3=1

for all (t,£) € [0,T] x R™ and a.e. in 2, with 8 > 0 a constant.
If we denote by a(t,u,v) the family of bilinear forms in HJ () x H}(Q) associated with A(t), we

have
atun) =3 [amn 2 2
1,7=1
which is symmetric. From (2.3) it follows that
at,u,u) > Bllul®, forall uwe H}(R) and tel0,T). 249
From the assumptions on a,;, we have that h(t) = a(t, u,v) belongs to L=(0,T). It follows that
h(t)_Z/ It)au 37.1
1,)=1
which will be denoted by a’(t, u, v).

3. EXISTENCE OF WEAK SOLUTIONS
THEOREM 3.1. Consider F satisfying (1.4) and suppose the functions K, K, and f satisfy

Ki(z,t)>0 aein Q, Vtel[0,T] @31
(K1, K2} € C'([0,T) : L®(2)) x C°((0,T] : L™ (Q)), (32
Ky(z,t) + —Iﬁ(;—’t) >6>0, aein Q, Vte[0,T], (33)
fe}(0,T;I*(Q)). (34)

Then there exists u defined in Q such that
ue L°(0,T; H} (), (35
{«, /(K1) u'} € L*(0,T; () x L™ (0, T; L*(2)), (36)
(Kw') + Kou' + A(ju + F(u) = f in L'(0,T; H1(Q) + L'(Q)), G

and

u(0) = (K;u')(0) = 0. (38)

REMARK 3.1. Suppose we have proved (3 5)-(3.7). Let us see that the initial data (3 8) make
sense. In fact, by (3.5) and (3.6) follows, that u € C°([0, T]; L?(R)), therefore «(0) makes sense By
(3 6), (3.7) it follows that

K € C°([0,T); H1(Q) + L'())

so that (Ku')(0) = 0 also makes sense.

The proof of Theorem 3 1 will be a consequence of the following

THEOREM 3.2. Let F; : R — R be a function satisfying the following conditions sFy(s) > 0,
Vs € R, F} is Lipschitzian and differentiable except on a finite number of points Then for each k € N
there exists u; defined in @ such that

{ur, uk, V(K1) ui } € L®(0,T; HY (Q)) x L2 (0, T; L*(Q)) x L™ (0, T; L*(Q)), (39)
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and

(Ku}) + Koul + A(t)ug + Fi(ue) = f in L*(0,T; H™1(Q)), (3 10)
u(0) = (Kyu})(0) = 0. @3.11)

PROOF. We know (see [9]) that there exists a sequence of functions F; : R — R such that each Fi
is Lipschitzian with constant cy, derivable except on a finite number of points. sFi(s) > 0 and the
sequence converges uniformly to F on the bounded sets of R.

For each k € N, € € R (fix) with 0 < € < 1, we consider the problem-

(Kreuly) + Kouly + A(t)uex + Fic(uex) =
(b { (i) K g A+ Pl

where K = K; +¢€
Let (w,),.y be a basis of H}(2) and V,, = [wy,...,wn] the subspace generated by the m first
vectors of the basis (w,). For m € N consider the function

Uekm(T,8) = Y Gekmi(Bws(z), 0<t <ty tm < T, G 12)

where gexm: (t) are found as solutions of the initial value problem for the system of ordinary differential

equations ,
((Kleu:km) ) wt) + (KQu:kmy wz) + a.(t, Uekm wz)
+ (Fk (Uekm), w) = (fwn), 1 <i<m (313)

Uekm (0) = (K1Ulgm) = 0. 314)

By Carathéodory's theorem follow the existence of gekmi(t), 1 <@ < m. The a priori estimates
which shall be obtained, permit us to extend the approximate solutions ., to the interval [0, T] and also
pass to the limit when m,k — co and e — 0.

In fact, multiplying the equations (3.13) by gli,,, adding from i =1 to ¢ = m and integrating in
[0,77, t < t,,, we have

|V Klf(t uekm(t | +a(t uskm(t) uskm(t))
2 [ (K60 + 3 K6 Jalanohrtan() ) do 42 [ Bt (6 ni
= 2/(; (f Ul (8))ds +/0 a' (8, Uekm (8), Uekm (8))ds. (3.15)
REMARK 3.2, Let Gi(t) = fi Fx(£)d¢. Then Gi(t) > 0 and
t
/ (Fr(uekm(8)), Ubem (8)) = / G (Uekm(z, t))dz > 0.
0 Q
Using Remark 3.2 and hypotheses (2.4), (3.2) and (3.3) in (3.15) we obtain the estimate

t
|V EKe(t Uékm(t”? + 50/; [ (8)° + Blluam @) < C, (3.16)

where C is a constant independent of ¢, k, ¢, and m. The estimate (3.16) implies that we can prolongate

the approximate solution U to interval [0, T]. Then there exists a subsequence of (Uekm ), which we
still denote by (ucxrm ), and a function u such that

Uekm — Uex  weakly-starin L (0, T; Hg (%)) G17)

Uy, — Ul weaklyin L2(0,T; L*(Q)) (3 18)

ity — VKl weakly-starin L®(0,T; L*(Q)). (319)
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REMARK 3.3. We have that F} is Lipschitzian with constant o > 0, and satisfy sFi(s) >0Vs€ R,
then F}.(0) = 0 Therefore we obtain

1 1
T 2 T 2
IFk(uekm)lu(o_T'Lz(Q)) = (A IFk(uckm(t))F) < (02/0‘ Iu(km(t)lzdt)

< akl“(kmle(o‘Tsz(Q)y
Using (3 16) and the continuous inclusion of L*(0, T; L?()) into L2(0, T'; L(2)), we obtain that
| Fi (wekm)| 20,7 2202y < Clew),

where C(ay) is a constant which depends only on aj. Then, by the compactness argument, it follows
that

Fy(uekm) — Fr(ugk) aein Q, as m — oo.

Now we combine Remark 3 3 with a result from Lions (see [11, p 12]), we have that
Fi(tekm) — Fi(ue), weaklyin L2(0,T; L2 (Q)). (3.20)

Multiplying (3 13) by 6 € C§°(R2), integrating in [0, T, using (3 17)-(3 19) and the fact (w,) is a basis of
H}(Q2) we have

T T T
—/ (Kkuik,ve’)dt+/ (Kguik,vG)dt+/ a(t, ue, vl)dt
0
T 0 T ¢
+ / (Fi(uek), v0)dt = / (f,v8)dt,Yv € H}(Q) (321)
0 0

Observe that the estimate (3 16) is yet true for u, Then we can take the limit as ¢ — 0 in (3 21) and
we obtain a function uy, such that
{uk, vk, VK1 ui } € L*(0,T; Hy (@) x L2(0, T; L*(Q)) x L=(0,T; L*(R)) (322)
and
(Kiui) + Koug + A(t)ug + Fi(ue) = f in L*(0,T; H™1(Q2)). (323)
By the standard way (as in Lions [11]) we can see that
u(0) = (K1u)(0) = 0. (329)
The proof of Theorem 3.2 is completed.

Multiplying (3.23) by u; (in the sense of the duality between H~1(Q) and H}(Q)) and integrating in
[0, T'] we obtain

T
/ (Fi(uk),ux)dt < C, (3.25)
0
where C is a constant which does not depend on k

Observe that the estimate (3 16) does not also depend on k. This implies that there exists a
subsequence of (u ).y, which we still denote by (u;), and a function u such that

up —u weakly-starin L*(0,T; H}(R)) (3 26)
uj —»u' weaklyin L?(0,T; L*(Q)) 327
VEKiup — /Kiu' weakly-starin L*(0,T; L*(2)). (3.28)

By (3 26) and (3.27) and Aubin-Lions' lemma (see [11, p 58]) we have that
up —»u stronglyin L*(0,7;L*(2)) andae.in Q. (329

At this point we state the following theorem from Strauss
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STRAUSS' THEOREM. Let Q be a finite measure space with measure dz, X and Y the real
Banach spaces, (u;) a sequence of strong measurable functions of Q in X and (h,) a sequence of
functions of Q x X such that

(i) (h,) is uniformly bounded in @ x K for all bounded K C X.

(i) h,(.,u,(.)) is measurable and f9||u,(a:)||xl|hj(a:,u,(x))||y < C < o0, Vj
@iii) ||h)(z, u,(z)) — v(z)|ly, = O0asj— coae inQ.
Thenv € L}Y(Q;Y) and

LWM%%@%W@Wy*OaSij-

Since we have (3 25) and (3.29), we can use Strauss' Theorem and we have that
Fi(ux) = F(u) stronglyin L'(Q). (3.30)
Finally we take the limit as € — 0 and k — 0o (3.21) and we obtain (3.7).

4. UNIQUENESS

We do not prove uniqueness in the general case. For some particular F we can use Ladyzenskaya's
methods (see [12]) in order to obtain the uniqueness of solutions So we have uniqueness in the
following cases

THEOREM 4.1. Suppose that F': R — R is a local Lipschitz function such that sF(s) > 0 for all
s € R, Kj € L*(0,T; L*(Q)) and

Ka(z,t) — %]K{(x,t)l >6>0 aein Q Vtel[0,T) @.1)

and n = 1. Then there exists a unique function u(z, t), (z,t) in Q, such that
{u,v'} € L*(0,T; H) () x L*(0,T; L*(Q)) 42
which is a solution of the problem (3.5)-(3.8).

PROOF. Suppose we have two solutions u and v in the conditions of Theorem 3 1. It follows that
w = u — v is a solution of:

(K1w') + Kow' + A(tyw+ F(u) - F(v) =0 in L'(0,T; H}(Q) + LY(2)) 43)

w(0) = (K12')(0) = 0. (44)

We prove that w = 0 in [0, T]. Withn = 1 then H}(2) C L*(R). Since {u, v} € (L*(0, T; H}(%)))*
and F is a local Lipschitz function then
o - 2
{F(u), Fv)} € (L*(0,T; H™}(Q)))".
Therefore by (4.3) we have
(Kyw') + Kpw' + A(t)yw + F(u) — F(v) =0 in L2(0,T; H}(Q)). 4.5)
We consider for 0 < s < T a function ¥(t) be defined by:
= [w®dé if 0<t<s
‘I'(t)_{o if s<t<T.

This integral exists and ¥(t) € H}(2) If we represent

m@=£w@%

then
¥(t) = wi(t) — wi(s).
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We have ¥(s)=0, ¥'(t) =w(t), and it makes sense to evaluate (K w')€ H '(Q) in
¥(t) € H}(Q). We obtain

[ty v Ot + [ (Rt vieas
+ [ A v O @ ayrat
+/08 (F(u) — F(v),¥(t)) >dt =0, 46)
so we have

[, 8Ot = = (Kt we)) + 5 [ (ki wiat,
/os ((Kow')(2),¥(t))dt = — /03 (Kyw, ¥ (t))dt — /08 (Kow, w)dt

- % (0, ¥(0), ¥(0)) — % /0 (W), UE))dt  (47)
Then from Equation (4 6) we obtain that

3 (K)o we) +8 [ lw@lae+ 5 w0

< /0s (F(u) — F(v),¥(t)) ‘dt+ A
+ % /03 la’(t, ¥ (t), ¥(t))|dt. (48)

With {u,v} € L®(0,T; L™ (1))? then exist a constant C > 0 such that
|u(z,t)] < C and |u(z,t) <C| aein Q.

Therefore we have

/ (F(u) — F(v), 9(t) )dtl / / |F(u(z,8) - F(o(z, )] |9(t)|dzdt

<g [ w@le@E @9
0
So we have
[ i veper] < ¢ [ uiiewiae (@10
0 0
3 [l v w0 < o [P+ st G @1

Using (4.9), (4.10) and (4.11) in (4.8) and the fact ¥(0) = — w;(s) we obtain
3 (Ew)00) +6 [ Tw@Pd+ § @I
<c /0 w@lln@ldt+C (@) () ldt

e /0 o @)t + Crslles ()] @12)
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Let A > 0 be a number to be fixed later. The inequality (4 12) become:
c?
3 ()@, u) + (o - ) [ wolar+ (£ - (04 ) Jotm@r?

(cl+—) [ hnoifae. @)

Now choosing A such that & — C?\ = %‘1 we obtain \ = 2—?}7 and if so is such that
g - (01 + %)so = % we obtain

8
s0=———"77->0
4(C1 + &
and for 0 < s < 3o, ( 2’\)
o (s)] < & (cl + —) / s (&), @14)

This inequality implies wy(s) = 0 forall 0 < s < 8p, orw(s) =00n0 < s < sp, orw = 0on [0,T),
which proves the uniqueness of Theorem 4.1.

THEOREM 4.2. Ifn > 2, F € C'(R), |[F'(s)| < C|s|’, Vs € R, where 1 < p < 25 ifn > 20r
0 < p < oo if n =2. Then, there exists a unique function u(z, ), (z,t) € Q whxch isa solutxon of the
problem (3.5)-(3.8).

PROOF. With sF(s) > 0 and F is continuous then F(0) = 0 and [; F(¢§)d¢ > 0 Then F satisfies
conditions of Mello [13], and therefore we have the uniqueness.

THEOREM 4.3. Suppose that F : R — R is a global Lipschitz function such that sF(s) > 0 for all
3 € R Then exists a unique function u(z, t), (z,t) € Q that is a solution of the problem (3.5)~(3.8).

PROOF. See Maciel [10]
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