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ABSTRACT. The object of the present paper is to derive some properties of neighborhoods of analync
functions with negative coefficients in the open unit disk
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INTRODUCTION
Let A(n) be the class of functions of the form

f(z) z- Z akzk (ak _> O, n e N {1,2,3,...})
k=n+l

(1 1)

that are analytic in the open unit disk U z [z < 1} For any f(z) E A(n) and 6 > 0, we define

N,,,(f) g e A(n) g(z) z- Z bz’ Z klak --bkl <-- 6 (12)
k=n+l k=n+l

which was called (n, 6)-neighborhood of f(z) So, for e(z) z, we see that

N,,,(e) g A(n) g(z)- z- Z bkzk’ lbl _< 6
k--n+l k=n+l

The concept of neighborhoods was first introduced by A W Goodman [Proc Amer Math Soc 8

(1957), 598-601 and then generalized by Ruscheweyh
In the present paper, we consider (n, 6)-neighborhoods for functions with negative coefficients in U

2. NEIGHBORHOODS FOR CLASSES S(a) AND
Let S(a) denote the subclass of A(n) consisting ofnctions which satis

Re
f(z)

> (z U) (2 l)

for some a(0 _< a < 1) A function f(z) in S(a) is said to be starlike of order a in U A function

f(z) A(n) is said to be convex oforder a if it satisfies

{ zf"(z)) >a (zeU) (22)Re 1+ ,f,(z)

for some a(0 < a < 1) We denote by Cn(a) the subclass of A(n) consisting of all such functions
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For classes S2(a) and C.(c), we need the following lemmas by Chatterjea [2] (also, see Srivastava,

(2 3)

(2 4)

Owa and Chatterjea [3])
LEMMA 2.1. A function f(z) E A(n) is in the class S,(o) if and only if_, (k--a)ak < 1-a.

k---n-

LEMMA 2.2. A function f(z) A(n) is in the class C,(o) if and only if

( ) <_ 1 .
k--n+l

Applying the above lemmas, we prove
THEOREM 2.1. S,(a) C Nn.(e), where 6 (n + 1)(1- a)/(n + 1- a), and S(0)= N,(e)
PROOF. It follows from (2 3) that if f(z) S(a), then

kak < (n+l)(1--a)
=6.

n+l--ak=n+l

Further, ifa O, then f(z) S(O) if and only if

ka 1.
k=n+l

Tis gives that f(z) N, (e).
Letting n 1 in Theorem 21, we have

COROLLARY .1. S() C N,e(e), where 2(1 )/(2 ), and St(0 N.(e)
TNEON .. ff(a) C N,e(e), where g (1 -a)/(n + 1 -)
PROOF. Noting that f(z) G() satisfies

1-a
< (27)

k=n+l
n + 1

then C(a)c N,(e)
Making n 1 in Theorem 22, we have
COROLLARY .. G(a) C N,e(e), where (1- a)/(2- ).. IGBOOOSFOR CLaSSeS n() P()
A nction f(z) A(n) is said to be in the class () if it satisfies

for some a (0 N < 1). A nction f(z) in () is sd to be close-to-convex of orr in U

uren [4], or Sangid Uralegaddi [5]).
Further, a nction f(z) A(n) is sd to be a member ofthe class P() if it satisfies

for some a (0 a < 1)
It is easy to see that

LENNA 3.1. A nction f(z) A(n) is in the class () if and only if

ka l-a. (33)
k=n+l

LENNA 3.Z A nction f(z) A(n) is in the class P() if and only if

al-. (34)
k=n+l

(26)

(2 5)
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From the above lemmas, we see that R,
Now, we derive

THEOREM 3.1. P,(a) N,.,(e), where

The proof of Theorem 3 is clear from Lemma 3

THEOREM 3.2. N,,6(e) C P,(a), where a (n + 1 6)/(n + 1)
PROOF. If f(z) E N,.6(e), we have

E kak <_ 6,
k=n+l

which gives that

Thus we see that f(z) E Pn (a)

5 n+l-5E ak< --1--
k--n+l n+l n+l

(3 5)

(3 6)

Making n 1 in Theorem 3 2, we have

COROLLARY 3.1. Nl,,(e) C P1 (a), where a (2 5)/2

4. NEIGHBORHOODS FOR CLASSES K, (a, ) AND ,.q, (c, fl)
Let f(z) and g(z) be given by (11) and

9(z) z- E bkzk (bk _> O). (41)
k:n+l

Ifa function f(z) A(n) satisfies

{ f’(z) } (zU) (42)Re >a

for some a(0 < a < 1) and g(z) E 3(/3)(0 </ < 1), then we say that f(z) K,(a, fi) If we take

g(z) z, then Kn(a,/) becomes P(a) Further, a function f(z) A(n) is said to be in the class

S, (a,/) if it satisfies

f(z) (z U) (43)9--I <l-a

for some a(O _< a < I) and 9(z) S,(fi)(0 _< < I) If we put 9(z) z, then S,(a,) becomes

P,(a)
For classes K, (a, fl) and S, (a,/3), we prove
TItEOREM 4.1. K,(a,/3) C Nn.6(e), where

6 {n(X a) + (1 -/3)}/(n + 1 -/3).

PROOF. Iff(z) E K,., (o, 3), then we have

1 kakzk-1 1 kak
Re k=n+l > k=n+l > a. (44)

1- kbkzk-1 1- kbk
k=n+l k=n+l

It follows from (4 4) that



800 (.) AI.I,TINTAS/MNI) ,’,; ()WA

< 1--O+O
n+l-/3

(1-,) + (1- Z)< =3.
n+l-

(4 5)

This gives f(z) E N.,, (e)
Putting n 1 in Theorem 41, we have

COROLLARY 4.1. K (a,/5) C N,e(e), where 6 (2 a fi)/(2 fi)
Finally we derive

THEOREM 4.2. N,,(9) C S(a,), where g(z) e S() and

(n + 1 )
n(n + 1) (46)

PROOF. Let f(z) be in N,,(9) for g(z)
Then we know that

k=n-1

(47)

and

E bk<
1-/3

k--n+l n+l--fi
(48)

Thus we have

(n+1-/5)6
1-a. (4 9)

n(n + 1)

This implies that f(z) S (a,/5).
Letting n 1 in Theorem 4 2, we have

COROLLARY 4.2. NI,(g) C S1 (a,/0), where g(z) 6 S’ (/3) and a 1 (2 5)6/2
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